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Symmetry-resolved entanglement is a useful tool for characterizing symmetry-protected topolog-
ical states. In two dimensions, their entanglement spectra are described by conformal field theories
but the symmetry resolution is largely unexplored. However, addressing this problem numerically
requires system sizes beyond the reach of exact diagonalization. Here, we develop tensor network
methods that can access much larger systems and determine universal and nonuniversal features in
their entanglement. Specifically, we construct one-dimensional matrix product operators that en-
capsulate all the entanglement data of two-dimensional symmetry-protected topological states. We
first demonstrate our approach for the Levin-Gu model. Next, we use the cohomology formalism to
deform the phase away from the fine-tuned point and track the evolution of its entanglement fea-
tures and their symmetry resolution. The entanglement spectra are always described by the same
conformal field theory. However, the levels undergo a spectral flow in accordance with an insertion
of a many-body Aharonov-Bohm flux.

I. INTRODUCTION

Symmetry-protected topological states (SPTs) are
characterized by a symmetric bulk state that does not
host fractional excitations. Still, they are topological
in the sense of carrying anomalous edge states at their
boundary with a trivial state or different SPTs. In two
dimensions, the edges are described by a one-dimensional
conformal field theory (CFT) [1–5]. The presence of these
states is dictated by a specific structure in their entan-
glement. Yet, unlike topologically-ordered (fractional)
states, the entanglement entropy of SPTs does not con-
tain a topological term. Instead, the topological nature
of these states may be revealed by resolving the entan-
glement entropy according to symmetries or by studying
entanglement spectra (ES).

The entanglement entropy of a system with global
symmetries can be decomposed according to the asso-
ciated quantum numbers [6–9]. Specifically, it is given
by the sum of entropies for each choice of these quan-
tum numbers in one subsystem. The Rényi moments
of the symmetry-resolved entanglement are experimen-
tally measurable [10–13] as also demonstrated for one-
dimensional SPT states [14, 15] on IBM quantum com-
puters. For such states, each symmetry sector con-
tributes equally to the total entropy [16]. This equiparti-
tion corresponds to exact degeneracies in the ES [17, 18].
These have been recognized as the source of the com-
putational power of one-dimensional SPTs [19] within
measurement-based quantum computation [20].

The ES generalizes the entanglement entropy and con-
tains additional universal information. For 2D topolog-
ical states with a chiral edge, the Li-Haldane conjec-
ture [21, 22] states that the levels of the ES correspond to
the conformal field theory that describes a physical edge.
Extrapolating to the nonchiral case, one may expect that
the ES of SPT phases have the same universal properties
as their nonchiral edge CFTs, such as the central charge
c. For example, for SPTs stabilized by a ZN symmetry,
the free boson CFT with c = 1 was found to describe the

edge [1, 2]. While the ES should correspond to the same
CFT as that of the physical edge, the two may differ
by nonuniversal parameters such as the compactification
radius. Other nonuniversal properties include effective
fluxes, which change the boundary condition of the 1D
edge.

Our motivating questions are: how does the ES de-
compose according to symmetry in 2D SPTs? How does
this decomposition fit into the CFT? What are its uni-
versal properties, and how does the ES vary within a
given SPT phase? Previous work by Scaffidi and Ringel
exploring the emergent CFT in the ES of SPTs was lim-
ited to small system sizes [4]. It could, in principle, have
performed a symmetry resolution, which does not require
large systems. By contrast, distinguishing universal from
nonuniversal properties upon continuous variation of the
ground states, as we find, does require large system sizes.

In order to address these issues in this work, we de-
velop an efficient numerical method [23, 24] to calculate
the ES of short-range entangled states in two dimensions.
Our method is summarized in Fig. 1 and described in
Sec. II. It uses a quantum circuit representation to con-
struct gapped one-dimensional models that exhibit the
same entanglement properties as the 2D SPTs in ques-
tion. In particular, they allow us to extract the entangle-
ment spectra of large systems and their symmetry reso-
lution using tensor network methods [25–28].

In Sec. III, we apply this approach to the Levin-Gu
model [2] on an infinite cylinder with circumferences as
large as L = 150. In agreement with previous studies
of much smaller systems [4], we observe the spectrum of
a CFT with central charge c = 1. Specifically the ES
can be organized in terms of primary states and their
descendants. We find that all the descendant states have
the same subsystem symmetry quantum numbers as the
corresponding primary state. We also identify an un-
expected subtlety in the ES of the Levin-Gu model: it
distinguishes cylinders whose circumference is a multiple
of three from all others. We attribute this effect to the
lattice and show that it translates into a flux insertion of
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FIG. 1. Schematics of our method: (a) We analyze a state
|Ψ〉 given as a quantum circuit representation as in Eq. (1).
The entanglement between subsystems A and B is created
by a unitary UAB acting within a finite distance from the
entanglement cut (dashed line). (b) We consider an SPT on
a cylinder consisting of regions A and B.

the corresponding CFT.
In Sec. IV, we apply our method to explore more

generic states. We construct a continuous family of wave-
functions within one SPT phase using the framework of
cohomological classification [29]. The ES of these states
reveal a direct relation between so-called coboundary
transformations and certain fluxes affecting the many-
body SPT states.

In Sec. V, we further elaborate on the gapped one-
dimensional models derived in Sections III and IV. We
demonstrate that they can be used to obtain the central
charge of the SPT edge very efficiently without reference
to ES. Restricting the edge Hamiltonian to terms that
act within a single subsystem results in a critical chain
that is described by the same CFT as the SPT edge.
The central charge of such one-dimensional chains can
be readily extracted from the scaling of the entanglement
entropy, which satisfies the Calabrese-Cardy formula [30].

II. DIMENSIONAL REDUCTION AND
TENSOR NETWORK APPROACH

Before specifying to 2D, consider a d-dimensional
space. The two subsystems A and B share a (d − 1)-
dimensional boundary ∂A = ∂B. By virtue of their finite
depth circuit representation [31], any SPT state can be
written as

|Ψ〉 = UAUBUAB |0〉. (1)

Here |0〉 is a site-factorizable product state, i.e., the
ground state of a trivial gapped Hamiltonian H0 that
is the sum over one-site operators. The unitaries UA
and UB act only on subsystems A and B, respectively.
UAB acts in a (d − 1)-dimensional region denoted CAB
extending a finite distance from ∂A; see Fig. 1(a). Con-
sequently, the ES is fully encoded in UAB . Indeed, the

reduced density matrix of region A is given by

ρA = TrB |Ψ〉〈Ψ| = UATrB

(
UAB |0〉〈0|U†AB

)
U†A. (2)

Up to the unitary transformation UA, which does not
affect the ES, ρA acts nontrivially only in the interface
region CAB . Consequently, the ES can be fully encoded
by a state |ψedge〉 that lives only in CAB . We define this

edge state via UAB |0〉 = |ψedge〉⊗|0〉A
⋃
BrCAB such that

the operator

ρedge = TrB |ψedge〉〈ψedge| (3)

exhibits the same spectrum as ρA. The ‘edge density ma-
trix’ ρedge acts nontrivially only on a (d−1)-dimensional
region within subsystem A. It is the central object in this
paper, which we construct using tensor-network methods;
see Fig. 2(c).

The presence of an on-site symmetry generated by
S = SA ⊗ SB , implies that [ρA, SA] = 0. It follows that

[ρedge, U
†
ASAUA] = 0. As a result, the symmetry-resolved

ES is obtained by diagonalizing ρedge simultaneously with
the edge symmetry operator

Sedge = U†ASAUA. (4)

It is convenient to think of the pure state |ψedge〉 as
the ground state of a local edge Hamiltonian

Hedge = UABH0U
†
AB , (5)

which has the same (gapped) spectrum as H0. Hedge

acts on the support of CAB , which contains the union
of two adjacent (d− 1)-dimensional regions in A and B.
Accordingly, Hedge can be separated as

Hedge = HA +HB +HAB . (6)

We remark that, unlike the standard “entanglement
Hamiltonian” HE defined by ρA = e−HE , the edge
Hamiltonian Hedge acts on both subsystems. However,
in Sec. V, we argue that HE and HA describe a CFT
with the same universal properties dictated by the bulk
SPT phase.

III. SYMMETRY-RESOLVED ES OF THE
LEVIN-GU MODEL

Next, we focus on the paradigmatic 2D Levin-Gu
model and demonstrate our method for the computation
of the ES and its symmetry resolution.

The Levin-Gu state admits a quantum circuit form [32]

|ΨLG〉 = UCCZUCZUZ |+〉, (7)

where UCCZ , UCZ , and UZ are, respectively, the prod-
ucts of CCZ, CZ and Z gates acting on all trian-
gles, edges, and vertices, and |+〉 is the ground state
of H0 = −

∑
iXi. We consider a cylinder geometry as

displayed in Fig. 1(b). Next, we use this quantum circuit
form to derive a 1D Hamiltonian that encodes the ES of
this 2D model, exemplifying the general prescription of
Sec. II.
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FIG. 2. (a) The resulting 1D edge Hamiltonian corresponding
to Fig. 1(b) with the underlying triangular lattice is a zigzag
chain containing both A (even) and B (odd) sites. (b) We
construct a MPS of the ground state of Hedge living on A
and B. (c) The reduced density matrix of subsystem A is
constructed as an MPO by contracting the odd sites (∈ B) of
two copies of the MPS state.

A. Gapped 1D edge Hamiltonian

The Levin-Gu state provides an explicit example of
Eq. (1). In this case,

UA =
∏

triangles∈A

U ijkCCZ
∏

links∈A

U ijCZ
∏

sites∈A
U iZ , (8)

and similarly for UB . The triangles and links that con-
nect the two subsystems identify the interface region CAB
as a zigzag chain with i even ∈ A and i odd ∈ B; see
Fig. 2(a). The corresponding entangling gates are

UAB =
∏
i

U i−1,i,i+1
CCZ

∏
i

U i,i+1
CZ ≡ UCCZAB UCZAB . (9)

The edge Hamiltonian of Eq. (5) is then given by

Hedge = UABH0U
†
AB = UCCZAB HclusterU

CCZ
AB , (10)

where Hcluster = UCZABH0U
CZ
AB = −

∑
i Zi−1XiZi+1 is the

1D cluster Hamiltonian. A more explicit form of Hedge

is readily obtained by virtue of the identity

U ijkCCZXiU
ijk
CCZ =

1

2
Xi[I + Zj + Zk − ZjZk]. (11)

We thus obtain Hedge as a sum of tensor products of
1-qubit operators,

Hedge =
∑
i

1

4
Xi[I − Zi−2 + Zi−1 + Zi+1 − Zi+2

+Zi−2Zi−1 + Zi−1Zi+1 + Zi+1Zi+2

−Zi−2Zi+1 − Zi−1Zi+2 − Zi−2Zi+2

+Zi−2Zi−1Zi+1 + Zi−2Zi+1Zi+2

+Zi−2Zi−1Zi+2 + Zi−1Zi+1Zi+2

−Zi−2Zi−1Zi+1Zi+2].(12)

We construct a matrix product state (MPS) of the ground
state of Hedge, denoted |ψedge〉 and depicted in Fig. 2(b),
using the iTensor and Julia libraries [33]. The ground
state |ψedge〉 converges with bond dimension χ = 9 for pe-
riodic boundary conditions. Subsequently, we construct
the matrix product operator (MPO) for ρedge by con-
tracting the B sites of the outer product |ψedge〉〈ψedge|;
see Fig. 2(c). Finally, an excited state density ma-
trix renormalization group (DMRG) calculation on ρedge

yields the ES.

B. Symmetry resolution

The Z2 symmetry operator of the Levin-Gu model is
X =

∏
iXi. To see that the Levin-Gu state is an eigen-

state of X and determine its eigenvalue, we use the quan-
tum circuit form [cf. Eq. (7)] along with the identities

XZiX = −Zi, (13)

XU ijCZX = −U ijCZZiZj ,
XU ijkCCZX = −U ijkCCZU

ij
CZU

jk
CZU

ki
CZZiZjZk.

The third identity implies, in particular, that

XUCCZX = (−1)TUCCZ , (14)

where T is the number of triangles. The product over all
triangles includes each link and each site an even number
of times such that all Z and CZ factors cancel. Similarly,
the product over all links includes each site an even num-
ber of times, and thus

XUCZX = (−1)LUCZ , (15)

where L is the total number of links. It follows that

X|ΨLG〉 = (−1)T+L+V |ΨLG〉, (16)

where V is the total number of vertices (i.e., sites).
For a perfect triangular lattice without a boundary,
(−1)T+L+V = 1.

According to Eq. (4), the edge symmetry operator is

given by SLG
edge = U†AXAUA, where XA =

∏
i∈AXi and

UA is given by Eq. (8). Unlike the case of the full system,
the product over all triangles in subsystem A involves the
links along the edge only once. Consequently, commuting
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XA across UA using Eq. (13) produces uncanceled Z and
CZ factors. Consequently, SLGedge acts nontrivially near

the edge and we write U†AXAUA = SLGedge ⊗
∏
i∈Ar∂AXi.

The first factor only acts on ∂A, which contains all even
sites. It is given by

SLG
edge =

∏
i=even

Xi

∏
i=even

U i,i+2
CZ Zi, (17)

up to an additional overall factor (−1)TA+LA+VA = 1
accounting for the total number of triangles, links, and
vertices in subsystem A. As we can see, in addition to the
on-site factor

∏
i=evenXi, there is a non-on-site factor [1].

The latter is the manifestation of the nontrivial SPT. In
fact, it is this factor, which is classified [1] by the third
cohomology group H3(Z2, U(1)) = Z2. One can rewrite
the edge symmetry operator as

SLGedge =
∏

j=even

Xj

∏
j=even

ei
π
4 (ZjZj+2−1), (18)

which shows explicitly that the on-site and non-on-site
factors commute.

Having constructed the edge symmetry Eq. (18), we
confirm that the eigenstates |ψi〉 of ρedge that we obtained
from DMRG satisfy SLGedge|ψi〉 = si|ψi〉, where si = ±1 is
the symmetry eigenvalue.

1. Entanglement Hamiltonian

The above algorithm yields the eigenvalues λi of the re-
duced density matrix ρedge, from which we obtain a list
of quasienergies ξi = − log λi, being the eigenvalues of
the entanglement Hamiltonian defined by ρedge = e−HE .
According to the Li-Haldane conjecture [21], in topologi-
cal systems, the latter displays the spectrum of a physical
edge. In the present SPT, this spectrum is known to be
a nonchiral free boson CFT [1].

We match the list of quasienergies {ξ0, ξ1, . . . } in in-
creasing order to the form

ξi − ξ0 =
v

L
∆i, (19)

where v is a free parameter corresponding to the velocity
of the CFT, L is the circumference of the cylinder, and
∆i are “scaling dimensions” of the CFT, as given below.

C. Entanglement spectrum for L divisible by 3

As discussed in detail in Appendix A, we can see that
the numerically obtained eigenvalues of the entanglement
Hamiltonian approximate the free boson spectrum

∆(`,m,R) =
`2

R2
+
R2m2

4
+ integers (`,m ∈ Z), (20)

with compactification radius R =
√

2. As reviewed in
Appendix D, this spectrum can be viewed as an infinite

FIG. 3. Entanglement spectrum of the Levin-Gu model on
a cylinder with circumference L = 12 and its symmetry res-
olution. The low-lying energy levels and their degeneracies
match Eq. (20), with the second term “integers” being given
by

∑
i>0 i(ni + n̄i) with ni, n̄i ∈ N being the i’th integer

(i ≥ 1) excitation on top of the primary field denoted (`,m).
The right panel displays the ES levels and their degeneracy
according to Eq. (20). The symmetry eigenvalue si = ±1 is
denoted by blue and red, respectively.

set of primary states |`,m〉. Each of these generates an
infinite tower of descendant states denoted in Eq. (20) by
“integers”.

The low-lying levels of this spectrum can already be
seen to match this pattern in a short system of L = 12,
as seen in Fig. 3. Results for longer systems, shown in
Appendix A, confirm this pattern for higher energy levels.

As required, each eigenvector of ρedge has a well-
defined subsystem symmetry. We find that the corre-
sponding quantum number is given by si = (−1)`+m, as
predicted from a field theory analysis [1, 3]. In particular,
all states generated by a given primary field inherit its
symmetry properties. In Fig. 3, the symmetry eigenval-
ues si = ±1 are indicated in blue and red, respectively.

D. Entanglement spectrum for L nondivisible by 3

Our numerical results for lengths L that are not mul-
tiples of 3 follow a reproducible sequence different from
Eq. (20). Instead, they approximate the pattern shown
in Table I (cf. Appendix A). This sequence is captured
by the modified free boson spectrum

∆(`,m) =
(`− φ)2 − φ2

2
+
m2

2
+ integers, (21)
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TABLE I. ES for the Levin-Gu model on a cylinder with cir-
cumference L not divisible by 3 as described by Eq. (21). We
display the degeneracy, quantum numbers (`,m), and sym-
metry eigenvalues si = (−1)`+m of the low-lying states. The
first descendants are denoted by (`,m)′. This spectrum is ob-
tained in the thermodynamic limit from our numerical results
in Appendix A.

∆i Deg. (`,m) si

0 1 (0,0) 1

1/6 1 (1,0) -1

1/2 2 (0, ±1) -1

2/3 2 (1,±1) 1

5/6 1 (-1,0) -1

1 2 (0,0)’ 1

7/6 2 (1,0)’ -1

4/3 3 (2,0), (-1,±1) 1

3/2 4 (0,±1)’ -1

5/3 4 . . . 1

11/6 4 -1

2 7 1

13/6 7 -1

7/3 ? 1

with φ = 1/3, and the same symmetry resolution si =
(−1)`+m as before. The parameter φ can be viewed
as a flux threading the cylinder and affects the ground
state wavefunction like a many-body Aharonov-Bohm
effect [3]. (In Appendix. C we provide additional de-
tails that demonstrate this 3 periodicity using correlation
functions)

E. Velocity of the edge CFT

So far we determined the spectra {∆i} by matching
numerical results to a CFT pattern of levels with unit
spacing between descendants. This removes any ambigu-
ity in the values of ∆1. We can now extract the velocity
v from the ES. Indeed, we have ξ1 − ξ0 = v

L∆1. This
gives

ξ1 − ξ0 =

{
v

2L , for L divisible by 3
v

6L , for L not divisible by 3.
(22)

These two cases are plotted in Fig. 4. We thus obtain a
value for the dimensionless velocity,

v ≈ 11.023. (23)

F. Symmetry equidecomposition in the
thermodynamic limit

While the ES are different for the two symmetry sectors
(blue vs. red levels in Fig. 3), the total probabilities of

FIG. 4. Inverse of the finite size gap in the quasienergy spec-
trum (i.e., eigenvalues of − log ρedge) as a function of system
size L. From Eq. (22), it allows to extract the velocity as in
Eq. (23), which is obtained both for L divisible (upper panel)
and not divisible (lower panel) by 3.

the subsystem to be in either sector,

Peven/odd =

∑
i∈even/odd λi∑

i λi
, (24)

converge quickly to 1/2 upon increasing L. The red curve
in Fig. 5 shows |Peven−Peven|, which decays exponentially
with system size.

As an attempt at an analytic description of the de-
cay of Peven − Podd with L, we employ the CFT spec-
trum, although the latter only describes the low-lying
levels, whereas the probabilities |Peven − Peven| presum-
ably probe the entire spectrum. Nevertheless, from the
CFT spectrum, we find

Peven − Podd =

∑
`,m(−1)`+me−

v
L (`2+m2)∑

`,m e
− v
L (`2+m2)

=

(
θ4

(
e−

v
L

)
θ3

(
e−

v
L

))2

≈ e−Lπ
2

2v , (25)
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FIG. 5. Difference between the parity-resolved probabilities
obtained from our tensor network methods and confirmed us-
ing exact diagonalization for small systems, as a function of
system size. Upon increasing L we obtain equipartition. We
compare with the CFT prediction in Eq. (25) for two values
of v.

where θi are Jacobi theta functions. In Fig. 5, we plot this
difference for the velocity v = 11.023 (found in Sec. III E)
as a dashed curve. The exponent does not quite match
the numerical data, as expected. Curiously, the data can
be fitted to Eq. 25 with another value of the velocity,
v = 6.897 (black curve).

IV. DEFORMED LG WAVEFUNCTIONS

The Levin-Gu wavefunction studied in the previous
section lies within the unique nontrivial 2D SPT phase
protected by the Z2 = {1,−1} symmetry. In this sec-
tion, we would like to explore how the ES varies within
the SPT phase. We start with a convenient but inessen-
tial simplification of the parent LG state. Keeping only
the CCZ gates in Eq. (7), we write

|Ψ′LG〉 = UCCZ |+〉. (26)

We study continuous deformations of this state given by

|Ψ′LG(λ)〉cob = Ucob(λ)|Ψ′LG〉, (27)

with

Ucob(λ) =
∏

triangles

(
λ(Zj , Zk, 1)λ(Zi, Zj , 1)

λ(Zi, Zk, 1)λ(Zi, Zj , Zk)

)sijk
.

(28)

To define this transformation, one first enumerates all
the vertices, and then denotes triangles by their or-
dered vertices i < j < k. Here, sijk = ±1 is the

orientation of the triangle [29]. The U(1)-valued func-
tions λ are invariant under the global symmetry, i.e.,
λ(Zi, Zj , Zk) = λ(−Zi,−Zj ,−Zk). Due to this symme-
try, λ is parameterized by four independent phases. Each
choice thereof yields a different wavefunction within the
same nontrivial SPT phase since Ucob(λ) is a local sym-
metric unitary transformation. The resulting wavefunc-
tion is a special case of more general cocycle wavefunc-
tions, which are reviewed in Appendix E. In that context,
Ucob(λ) are referred to as coboundary transformations.

We can see that Ucob(λ) can be incorporated into the
quantum circuit form of Eq. (1) with

UA(B) =
∏

triangles∈A(B)

U ijkCCZ × U
A(B)
cob (λ), (29)

where

U
A(B)
cob (λ) =

∏
triangles∈A(B)

(
λ(Zj , Zk, 1)λ(Zi, Zj , 1)

λ(Zi, Zk, 1)λ(Zi, Zj , Zk)

)sijk
.

(30)
Similarly, UAB = UCCZAB UABcob (λ), where

UABcob (λ) =
∏

triangles∈A&B

(
λ(Zj , Zk, 1)λ(Zi, Zj , 1)

λ(Zi, Zk, 1)λ(Zi, Zj , Zk)

)sijk
.

(31)

A. Coboundary transformations

To explore how the ES is affected by coboundary
transformations, we follow a specific path through the
four-dimensional parameter space of λ. Specifically, we
take λ(1, 1, 1) = λ(−1, 1, 1) = eiθ and λ(1,−1, 1) =
λ(−1,−1, 1) = 1. This choice is arbitrary, and most
other choices lead to the same phenomenology. Next,
we apply our tensor network methods to extract the ES
of |Ψ′LG(λ)〉cob, together with its symmetry resolution.
As derived in Appendix E, the edge symmetry operator
Eq. (4) is affected by the transformation.

B. Results

We first construct the state |+〉, then apply UAB to get
the MPS state on the zigzag chain CAB . Although the
bond dimension may change with coboundary transfor-
mation, we find that, in our case, it is constant at χ = 9.
Subsequently, we construct ρedge as in Fig. 2(c), which
doubles the bond due to the partial trace. Consequently,
ρedge has the bond dimension 92.

For each value of θ, we obtain the low-lying eigenvalues
and eigenvectors of the reduced density matrix. In Fig. 6,
we plot the symmetry-resolved quasienergies for the first
excited levels. Our results show how the ES evolves with
θ. The obtained parabolic shapes motivate us to make
an ansatz for the ES that corresponds to a flux insertion
described by two additional parameters. Specifically, we
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FIG. 6. Parity-resolved ES for the deformed Levin-Gu wave-
function Eq. (27) upon varying the variable θ controlling the
coboundary transformations. We show the first six levels as
obtained from DMRG calculation for L = 12. The symmetry
eigenvalue s = ±1 is marked in blue and red, respectively.

expect the scaling dimensions [Eq. (19) with a suitable
choice of v] to match the shifted CFT spectrum

∆(`,m) =
(`− φ(θ))2

2
+

(m− ϕ(θ))2

2
+ integers

− (φ(θ))2

2
− (ϕ(θ))2

2
, (32)

where φ and ϕ are the flux parameters. To assess whether
the data follows this formula, we numerically fix v, φ and
ϕ for each θ from the first four energy levels, i.e., three
excitations ξi−ξ0. Having fixed all the parameters in our
ansatz, we compute four additional levels and find that
they are correctly predicted by Eq. (32). In Fig. 7(a),
we plot the scaled and shifted spectrum from the fit, for
a small range of θ near θ = 0. We see that the CFT
indeed changes from no flux to a finite flux that depends
on φ(θ), ϕ(θ) as plotted in the inset. In Fig. 7(b), we fo-
cus on the vicinity of the point θ = π/2, which displays a
degeneracy between the symmetry sectors, and also cor-
responds to the form of Eq. (32) with φ = ϕ = 1/2. These
findings corroborate our suggestion that the coboundary
transformation mediates a flux insertion.

We note that the compactification radius of the CFT
that captures the ES remains constant, independent of
our transformations. There is a priory no reason for
a fixed radius. Instead, this behavior implies that our
coboundary transformations describe a limited set of
transformations within the SPT phase. On the other
hand, our finding of the continuously varying fluxes al-
ready suggests a nontrivial structure of the SPT phase
as a manifold.

(a)

(b)

FIG. 7. The same ES as in Fig. 6, plotted in the form of
the ∆i defined in Eq. (19). In (a) we focus on the vicinity of
θ = 0, and in (b) we focus on the vicinity of θ = π/2. The
resulting levels match the CFT pattern Eq. (32). φ(θ), ϕ(θ)
are calculated for each point and plotted in each inset. At
θ = π/2, we have φ(π/2) = ϕ(π/2) = 1/2 corresponding to a
4-fold degenerate lowest level. See Appendix F regarding the
generation of the fits.

V. WIRE DECOMPOSITION OF Hedge

In the previous sections we saw that the ES is sensitive
to nonuniversal details such as the system size modulo an
integer or coboundary transformations. Consequently,
identifying the gapless edge theory from the ES involves
guesswork, which may sometimes be difficult to achieve.
In this section, we provide an algorithm to identify the
gapless theory based on the gapped edge Hamiltonian
Hedge. The following decomposition is similar to field-
theoretical wire constructions of fractional quantum Hall
states [34–37], SPTs [38], or other spin liquids [39–41].

We decompose the 1D edge Hamiltonian as

Hedge = HA +HB +HAB , (33)
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where HA(B) acts only within A(B), and HAB couples A
and B. Based on the Li-Haldane conjecture [21] it was
argued [42–44] that the ES between the legs of a two-
leg ladder resembles the actual energy spectrum of each
decoupled leg. Following this relationship in reverse, we
suggest to infer the nature of the gapless theory describ-
ing the ES from the isolated chain HA.

We remark that the study of HA reveals a number of
interesting properties, such as a period 3 modulation of
correlation functions and a corresponding 3-fold depen-
dence on L of the finite size spectrum. Thus, the differ-
ence of the ES found in Sec. III depending on whether
L/3 is a integer or not, has its origin already on the level
of a single chain. Additionally, the model HA has the nice
property that finite size properties converge very quickly
to the infinite size limit. Below, we show results for the
entanglement entropy of this 1D model.

A. Spectrum of HA of the Levin-Gu model

For the Levin-Gu model, the HamiltonianHLG
A is given

in Eq. (12),

HLG
A =

L∑
i=1

[(Zi−1XiZi+1 −Xi) + (Zi−1Xi +XiZi+1)],

(34)
where here we only focus on subsystem A, so we label
its sites by integer i (rather than even integer). The
decomposition of HLG

A into two terms is inessential for
our purposes; it refers to the fact that, individually, each
term is easily seen to yield a gapless spectrum. The fate
of the full Hamiltonian is not readily apparent, and we
determine it numerically. Specifically, by exploring the
scaling of its ground state entanglement entropy, we show
that HLG

A is gapless and extract the central charge c of
its field theory. In Fig. 8, we plot the entanglement en-
tropy S of a bipartition of this 1D chain of length L as
a function of subsystem size l. The numerical values are
compared with the analytical CFT expression [30]

S(l) =
c

3
log

(
L

π
sin

[
πl

L

])
+ κ, (35)

where c is the central charge and κ is a nonuniversal
constant. We find that c = 1 agrees very well with the
numerical data.

B. Robustness of the central charge upon
coboundary transformations

The central charge c = 1 is expected to describe the
edge theory for the entire SPT phase. We now con-
sider the 1D edge Hamiltonian whose ground state is
|Ψ′LG(λ)〉cob. Our aim is to show that c is independent
of λ. The explicit form of this Hamiltonian, and its de-
composition as in Eq. (6), is cumbersome. In practice,

FIG. 8. Entanglement entropy for the ground state of HLG
A

in Eq. (34) as a function of subsystem size l obtained from a
MPS with system size L = 150 and varying bond dimension
χ. The numerical result converges to the CFT result Eq. (35)
with central charge c = 1.

FIG. 9. Entanglement entropy, as in Fig. 8, but for the
ground state of Eq. (36), describing the wire decomposition
of the deformed Levin-Gu state, as parametrized by θ, and
also symmetry resolved to a definite parity sector. In the
main panel we consider the ground state of HA for a spe-
cific arbitrary point, θ ≈ 0.3491, and compare it with the
CFT predictions for different central charges. We see that it
matches c = 1, as expected. In the inset, we plot the fit of
the central charge for varying θ, yielding c ≈ 1 for all values
of θ up to a maximal deviation of ∼ 7%. The fit is generated
from Hθ

A of a subsystem of size L = 105 and χ = 4L = 420.

we simply have

HA(λ) = TrB(UABH0U
†
AB), (36)

where UAB depends on λ as given in Eq. (31). Using our
tensor network methods, we perform the partial trace

over B for the MPO representing H = UABH0U
†
AB [sim-
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ilar to Fig. 2(c)] to obtain an MPO representing HA.
We find its ground state and compute the entanglement
entropy using DMRG.

In Fig. 9, we show that coboundary transformations
indeed preserve a good fit with c = 1 for generic values
of θ, which parametrizes our coboundary transformation.

VI. SUMMARY

1D SPTs display degeneracies in their ES [17]. When
performing a symmetry resolution of the ES, these degen-
eracies reflect an equidecomposition of the entanglement
eigenvalues among different symmetry sectors [14]. Here,
we showed that the gapless ES of 2D SPTs also have a
natural symmetry decomposition. The gapless spectrum
is described by a CFT and can be divided into towers
of states which are descendants of primary fields. The
symmetry quantum numbers are determined by the cor-
responding primary states.

To demonstrate these claims explicitly for large sys-
tems on concrete models, we developed tensor-network-
based methods. Starting from a d-dimensional tensor
network of a short-range entangled state, we reduced the
computation of the ES to a d − 1-dimensional problem.
For d = 2, on which we focused, we ended up with effec-
tive 1D calculations that can be dealt with efficiently.

Our construction parallels the wire construction of
topologically ordered phases, like the 2D fractional quan-
tum Hall effect (FQHE). By breaking the 2D problem
into coupled wires, the ES is universally stored in this
inter-wire coupling [22]. Yet the wire construction of
nonchiral SPT order [38] has its unique features. In con-
trast to the wire construction of the chiral topological
ordered case, in our nonchiral case we showed that the
spectrum of the decoupled wires itself reflects the spec-
trum of the edge – or equivalently [21] of the ES.

In the context of the FQHE and similar states, the
wire construction allowed to explicitly construct effective
quasi-1D synthetic realizations, e.g., using cold atoms
[45–49], which could be much easier to realize compared
to their full 2D versions. In this sense, our 1D tensor
network approach gives explicit quasi-1D models for 2D
SPT order. This allows realizations of such states and ex-
plorations of their symmetry-resolved entanglement, e.g.,
on a small quantum computer, hence generalizing many
existing realizations of 1D topological states, such as the
cluster state [14].
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Appendix A: Numerical results for the Levin-Gu
model

In this appendix, we present numerical results for the
ES of the Levin-Gu model calculated using the methods
of Sections II and III. The lists of numerical results in
Tables II and III contain two columns for each L. The
left column shows the bare eigenvalues λi of the ES. Re-
sults for small systems confirmed by exact diagonaliza-
tion are denoted by (ED). The second column of ∆i’s
denoted “CFT” is obtained from the first column by us-
ing Eq. (19), by fixing v such that ∆1 = 1

2 for L being

a multiple of 3 (L = 12, 18, 24, 30), or ∆1 = 1
6 for L not

being a multiple of 3 (L = 14, 17, 20).
We can see that for L being a multiple of 3, the

shifted and rescaled spectrum is a good approximation
of Eq. (20), and for L’s that are not multiples of 3 the
ES follows the pattern in Eq. (21).

Appendix B: Exact diagonalization of the reduced
density matrix for the Levin-Gu model

1. Eigenvalues of ρA

Consider the ground state of Levin-Gu model |ψ〉 =∑
si∈{0,1}S UCCZUCZUZ |si〉, where S is the number of

spins in the system and UCCZ, UCZ, UZ are as defined in
the main text. Here we focus on the reduced density ma-
trix for subsystem A, which is obtained by partial trace
over the complement of A, which we denote as B. Its
eigenvalues give the ES of the system. We will show
how we obtain the partial trace efficiently using numeri-
cal methods.

Let us now focus on the Hamiltonian dynamics of the
resulting edge. The groundstate is

|ΨLG〉 =
∑

sA,sB ,sAB

UCCZ(sA, sB , sAB)UCZ(sA, sB , sAB)

UZ(sA, sB , sAB) |sA, sB , sAB〉 . (B1)

As in the main text, by splitting the U ’s pieces acting
uniquely on A,B or on the boundary AB, we are able
to ignore and cancel the A,B bulk parts, respectively.
Hence, we have that the reduced density matrix entries
are

ρsA,s′A =
∑
sB

UAB
CCZ(sA, sB)UAB

CCZ(s′A, sB) (B2)

UAB
CZ (sA, sB)UAB

CZ (s′A, sB),

where UAB are the unitaries that act on both subsystems
A and B, sA,B are binary strings representing the spins
on the boundaries of A,B, and we use the standard (Z)
basis of spins.

The structure of ρA further decomposes into the prod-
uct of matrix M and its hermitian conjugate M†. Let’s
define M =

∑
sA,sB

UAB
CCZ(sA, sB)UAB

CZ (sA, sB) |sA〉 〈sB |

TABLE II. The largest eigenvalues of the ES for L that is
a multiple of 3 obtained numerically mostly by using MPS
methods described in the text. Blank lines separate degen-
erate eigenvalues to ease reading. The result of L = 12 is
a result of ED to provide a comparison of the two methods.
The results are scaled in the CFT column to match the CFT
spectrum described in the text.

L = 12 (ED) CFT

0.03415 0

0.02164 0.5

0.02164 0.5

0.02164 0.500004

0.02164 0.500006

0.01386 0.987772

0.01386 0.987772

0.01386 0.987774

0.01386 0.987774

0.01386 0.987774

0.01386 0.987774

0.00861 1.509386

L = 18 CFT

0.005927 0

0.004377 0.5

0.004377 0.500038

0.004376 0.500224

0.004376 0.500332

0.003241 0.995632

0.003241 0.995650

0.003241 0.995566

0.003240 0.996146

0.003241 0.995580

0.003240 0.996040

0.002376 1.507274

L = 24 CFT

0.00104116 0

0.00082965 0.5

0.00082933 0.500836

0.00082957 0.500206

0.00082866 0.502614

0.00066105 1.000170

0.00066145 0.998830

0.00066110 1.000012

0.00066109 1.000022

0.00066051 1.001982

0.00066053 1.001900

0.00052246 1.518194

L = 30 CFT

0.00018325 0

0.00015283 0.5

0.00015283 0.500048

0.00015234 0.508910

0.00015230 0.509600

0.00012711 1.007720

0.00012668 1.017110

0.00012707 1.008628

0.00012720 1.005916

0.00012646 1.021908

0.00012647 1.021750

0.00010430 1.552650

as the matrix representing the action of the unitaries on
the edge qubits for a specific choice of sA and sB . It
is then clear that ρA = MM†, as the summation over
the B edge spins, is performed by the matrix multipli-
cation, and the dagger matches the B part to reproduce
ρA. Hence, to obtain the eigenvalues of ρA, we only need
to compute M , which is more efficient than computing
ρA.

Moreover, we deduce the eigenvalues of ρA from the
matrix M . We verified numerically that [M,M†] = 0 (we
have yet to have an analytical proof for this). Hence, by
the spectral theorem the eigenvalues of ρA are simply the
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TABLE III. The largest eigenvalues of the ES for L that is
not a multiple of 3 obtained numerically mostly by using MPS
methods described in the text. The result of L = 17 is a
result of ED to provide a comparison of the two methods.
The results are scaled in the CFT column to match the CFT
spectrum described in the text.

L = 14 CFT

0.018205 0

0.015989 0.166666

0.012325 0.500964

0.012324 0.501028

0.010847 0.665022

0.010847 0.665024

0.009456 0.841195

0.00837 0.997875

0.008375 0.997212

0.007323 1.169509

0.007321 1.169927

0.006485 1.325660

0.006483 1.325973

0.006338 1.355135

0.005654 1.501629

0.005655 1.501508

L = 17 (ED) CFT

0.007651817 0

0.006876625 0.166666

0.005552095 0.500502

0.005552092 0.500503

0.004995132 0.665447

0.004995132 0.665447

0.004470445 0.838606

0.004036603 0.997891

0.004036602 0.997891

0.003619472 1.168084

0.00361947 1.168085

0.003264707 1.329045

0.003264706 1.329045

0.003225258 1.348014

0.002925212 1.500374

0.002925211 1.500374

L = 20 CFT

0.00321689 0

0.00293769 0.166666

0.00244834 0.501161

0.00244611 0.502827

0.00223668 0.667140

0.00223563 0.667999

0.00203912 0.836892

0.00185763 1.008016

0.0018588 1.006858

0.00169606 1.175047

0.0016941 1.177177

0.00155797 1.330952

0.00155589 1.333401

0.00154704 1.343873

0.00141089 1.512986

0.00141119 1.512589

L = 31 CFT

0.000134971 0

0.000127297 0.166666

0.000113078 0.503877

0.000113039 0.504854

0.000106617 0.671371

0.000106650 0.670488

0.000100668 0.834815

0.0000941542 1.025287

0.0000942865 1.021286

0.0000887601 1.193246

0.0000888650 1.189886

0.0000843737 1.337537

0.0000843754 1.337478

0.0000843887 1.337029

0.0000789565 1.526459

0.0000788018 1.532042

absolute value squared of the M eigenvalues. The terms
in M are much easier to compute, and thus our method
overall is about 2L times faster than the Naive way of
calculating ρA as we do not sum over sB , where 2L is the
number of spins on the boundaries.

2. Symmetry resolution of ρA

In order to obtain the symmetry-resolved entangle-
ment, one needs to calculate how the symmetry acts in

the Gu-Levin basis. Gu-Levin basis |σ〉 is defined as the
summation over all configurations in A with a specific
configuration σ for the boundary spins, where each such
configuration gets a sign (−1)NA where NA is the num-
ber of domain walls calculated with |↑〉 ghost spins on
the boundary. We conjecture (the proof can be done
by induction) that XA |σ〉 = (−1)D+1 |σ̄〉 where D is the
number of domain walls on the boundary of A divided by
2. Therefore, we see that the symmetry acts nontrivially
on the boundary, as we expect for SPT phases.

To obtain the symmetry-resolved blocks of ρA, we ap-
ply the projection I±XA

2 on both sides of ρA. This

is done by computing ρA = AA† and then computing
I±XA

2 ρA
I±XA

2 = 1
4 [ρA +XAρAXA ± ρAXA ±XAρA] el-

ement by element using the action of XA in the Levin-
Gu basis. Similarly, one can get the momentum k from
the translation symmetry TA with similar projections.
Therefore, the ES is constructed with its symmetry res-
olution using ED for systems up to length L = 12.

Appendix C: Correlations in HA

In this appendix, we further explore manifestations of
the three-fold periodicity. In the main text we argued
that the ES is described by a c = 1 CFT for all system
sizes L, but with different fluxes for L = 3n or L 6=
3n. Here, we explore the ground state properties of the
Hamiltonian HA derived from Eq. 34 for the Levin-Gu
model to understand the origin of this 3-fold periodicity.

The model HA belongs to the family of Hamiltonians

H = −

[∑
i

cos(α)(Xi − Zi−1XiZi+1)

+ sin(α)(−Zi−1Xi −XiZi+1)

]
, (C1)

which interpolates between gapless models. For α = 0
or α = π

2 , this Hamiltonian maps onto an XY model.
Consequently, these cases are described by c = 1 CFTs.
The point α = π

4 recovers Eq. 34. It corresponds to the
Levin-Gu case, which is also a c = 1 CFT, as we have
seen in Sec. V A. We note that this 1D model has an
interesting phase diagram as a function of α that may
be worth exploring in detail. For our purposes, we now
focus on the Levin-Gu case and show that the ground
state of this Hamiltonian has period-three features in its
correlation functions.

We study the correlation functions
〈
σiσ
′
j

〉
− 〈σ′i〉

〈
σ′j
〉
,

where σ, σ′ = X,Y, Z are the different Pauli matrices.
To obtain these correlations, we use the MPS procedure.
Refs. [27, 50, 51] showed that the MPS always exhibits an
exponential damping of the correlation functions, which
may not approximate ground states with algebraic cor-
relations (e.g. |i− j|−α). Hence, the MPS method intro-
duces exponential errors in the large |i−j| regime. These
errors are circumvented by increasing the bond dimension
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FIG. 10. Different correlation functions for the ground state
of the Hamiltonian HLG

A for system size L = 150. All these
correlations exhibit three-fold periodicity.

χ. Additionally, as we simulate only finite systems, we
have finite-size effects.

In Fig. 10 we show
〈
σ1σ

′
1+j

〉
−〈σ′1〉

〈
σ′1+j

〉
as a function

of j, for a system of size L = 150 and bond dimension
χ = 450. The three-fold periodicity is evident in all four
correlation functions. This behavior explains the origin
of the same periodicity seen in the ES in the main text
as function of L.

To better understand these correlation functions, we
separately analyze each of the three components with
threefold periodicity. In Fig. 11, we show them on a
logarithmic scale. All non-zero correlation functions are
consistent with a power-law decay. Some of the correla-
tion function yields exponents close to unity, but others
follow more unusual power laws with exponents ≈ 0.85.

Appendix D: Field theory

Refs. 1 and 3 provide a field theory description of
the physical edge of an SPT together with the action of
the symmetry. We will accommodate the results of the
symmetry-resolved entanglement within this field theory.

The field theory is constructed naturally by general-
izing the Z2 symmetry to a ZN symmetry. The edge
theory consists of a pair of fields φI(x) (I = 1, 2),
where 1

2π∂xφ2(x) is the canonical momentum conjugate
to φ1(x). The ZN symmetry in the p-th phase (p =
0, 1, . . . N − 1) of H3(ZN , U(1)) = ZN is

S
(p)
edge = e

i
N (

∫ L
0
dx∂xφ2+p

∫ L
0
dx∂xφ1). (D1)

We can recognize the product of two commuting factors,
as in Eq. (18).

With the mode expansion

φI(x) = φ0I +K−1
IJ PφJ

2π

L
x+ i

∑
n 6=0

1

n
αI,ne

−inx 2π
L , (D2)

where [φ0I , PφJ ] = iδIJ , [αI,n, αJ,m] = nK−1
IJ δn,−m, one

obtains the canonical quantized fields with the commu-
tation relations

[φI(x1),KI′J∂xφJ(x2)] = 2πiδII′δ(x1 − x2), (D3)

where KIJ = (σx)IJ . The winding numbers (Pφ1, Pφ2)
are integers denoted (l,m) and determine the edge sym-

metry S
(p)
edge = e

2πi
N (Pφ2+pPφ1).

Under inversion of the edge coordinate φ1 → φ1 and
φ2 → −φ2, allowing us to define right- and left-moving
fields φR,L = φ1±φ2. Based on this symmetry, the most
general quadratic Hamiltonian can be written in terms
of a pair of parameters as

H = v

∫
dx

(2π)2

(
1

R2
(∂xφ1)2 +

R2

4
(∂xφ2)2

)
. (D4)

Substituting the mode expansion yields

H =
v

L

((
`2

R2
+
m2R2

4

)
+
∑
n>0

n(a†nan + b†nbn)

)
(D5)

where the bosonic creation and annihilation operators
an, bn with canonical commutation relations are related
to the αI,n by a rescaling and Bogoliubov transformation.
The primary edge states are labeled by (`,m) and have

the symmetry S
(p)
edge = e

2πi
N (m+p`). One obtains infinite

towers of states above these states generated by creating
bosonic excitations.

Appendix E: 2D cocycle wavefunctions

In this appendix, we apply our tensor network meth-
ods for 2D cocycle wavefunctions. In contrast to the main
text, we denote the group elements by Z2 = {0, 1}, with
‘0’ representing the identity, to match standard notation
in the literature [29]. The Gu-Levin Z2 wavefunction
studied in the previous section lies within the unique
nontrivial 2D SPT phase. It corresponds to a specific
cocycle wavefunction. Within the cohomological formal-
ism, coboundary transformations allow us to move in the
SPT phase and explore how the ES varies within the SPT
phase.

1. Cocycles wavefunctions

We begin by briefly reviewing the construction of the
cocycles wavefunction [29]. Consider a 2D triangular
lattice on the 2-sphere. The Hilbert space at each site
is spanned by the symmetry group elements |g〉, g ∈
G = Z2 = {0, 1} (with an obvious generalization to ZN ).
The on-site action of the symmetry is Sh|g〉 = |hg〉 with
h ∈ G. The trivial symmetric ground state is given by

|+〉 ≡ ⊗i
(

1√
|G|

∑
g |g〉

)
.
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(a) (b)

(c)

FIG. 11. Power law fits for selected correlations on loglog scale for the Levin-Gu case for a system size L = 150 and bond
dimension χ = 450. The fits (a), (b), (c) are generated from the j modulo 3 = 0, 1, 2 points respectively. The correlations
match power laws.

The ideal SPT wavefunction is constructed as follows.
We are interested in placing an SPT on the 2-sphere. In
order to write its wavefunction we consider the 2-sphere
as the boundary of a 3-ball. We minimally triangulate
this d + 1-dimensional space; to be specific we consider
Fig. 12 [see Fig. 6(a) in Ref. 16]. Here, we place only one
site, g∗ = 0, in the interior of the 3-ball. The remaining
sites are located on the 2-sphere, and the corresponding
states are denoted {gi}. Region A consists of the upper
hemisphere and includes i = even = 2, . . . , 2L on the
zigzag chain in Fig. 1(c) and one extra site gA in the
bulk of A. Similarly, region B in the lower hemisphere
includes the sites with odd i and one extra site in the
bulk of B corresponding to a state gB .

The SPT state is written as |Ψ〉 =
∑
{gi} ψ({gi})|{gi}〉,

where the wavefunction ψ({gi}) is constructed using 3-
cocycles, which reside on the tetrahedra, as explained
next.

2. Cochains, cocycles, and coboundaries

3-cochains, ν3(g0, g1, g2, g3), are U(1)-valued func-
tions of d + 2 = 4 G-valued variables g0, g1, g2, g3,
|ν3(g0, g1, g2, g3)| = 1, which satisfy ν3(g0, g1, g2, g3) =
ν3(hg0, hg1, hg2, hg3) for any h ∈ G.

3-Cocycles are special cochains satisfying∏4
i=0 ν

(−1)i

3 (g0, . . . , gi−1, gi+1, g4) = 1, namely

ν3(g1, g2, g3, g4)ν3(g0, g1, g3, g4)ν3(g0, g1, g2, g3)

ν3(g0, g2, g3, g4)ν3(g0, g1, g2, g4)
= 1.

A 3-coboundary is a special 3-cocycle that is a ‘deriva-
tive’ of a 2-cochain λ2(g0, g1, g2),

(dλ2)(g0, g1, g2, g3) =
λ2(g1, g2, g3)λ2(g0, g1, g3)

λ2(g0, g2, g3)λ2(g0, g1, g2)
. (E1)

It automatically satisfies the cocycle condition.
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FIG. 12. The triangulated 3D lattice used to construct the
cocycle wavefunction. Region A corresponds to the top part
of the 2D surface, with one site in the “bulk”, gA, and L sites
at the boundary. Similarly, subsystem B contains only one
site in the bulk, gB . The 3D lattice has one site in its interior,
denoted g∗.

In our construction in Fig. 12, all tetrahedra consist
of 4 vertices, containing gi, gj , gk, which reside on the 2-
sphere, and g∗ which resides in the interior of the 3-ball.
Each 3-cocycle ν3 corresponds to a wavefunction

ψ({gi}) = N
∏
ijk∈∆

ν
sijk
3 (gi, gj , gk, g

∗), (E2)

where gi, gj , gk, g
∗ run over the vertices of all tetrahedra

in Fig. 12. Here, sijk = ±1 is determined by the clock-
wise or anti-clockwise chirality of the triangle dictated
by increasing order i < j < k. Here g∗ can be chosen
arbitrarily [29] to be g∗ = 0.

The cochain condition guarantees that |Ψ〉 =∑
{gi} |{gi}〉 is symmetric under the symmetry group G.

Coboundary transformations of this state are like local
unitary (LU) operators that transform one state into an-
other within the same SPT phase. Two cocycles that
belong to a different cohomology sector, as classified by
H3(G,U(1)), are not connected by a finite depth circuit
of LUs. The case of G = Z2 has exactly two sectors,
H3(G,U(1)) = Z2.

3. Deformed Levin-Gu states

We choose the following 3-cochain,

ν3(gi, gj , gk, 0) = CCZ(gi, gj , gk)
λ2(gj , gk, 0)λ2(gi, gj , 0)

λ2(gi, gk, 0)λ2(gi, gj , gk)
,

(E3)
where CCZ(gi, gj , gk) = −1 if gi = gj = gk = 1 and
CCZ(gi, gj , gk) = 1 elsewhere. Here λ2 is a 2-cochain
parameterized by four independent phases λ2(gi, gj , 0)
(i, j = 0, 1).

The cocycle wavefunction Eq. (E2) has the form of
Eq. (1) where UA, UB , and UAB are diagonal in the basis
|{gi}〉, UA,B,AB =

∑
{gi} UA,B,AB({gi})|{gi}〉〈{gi}| and

given by

UAB({gi}) =

∏2L−2
i=1 ν

(−1)i

3 (gi, gi+1, gi+2, 0)

ν3(g1, g2L−1, g2L, 0)

× ν3(g1, g2, g2L, 0),

UA({gi}) =

∏2L−2
i even=2 ν3(gi, gi+2, gA, 0)

ν3(g2, g2L, gA, 0)
,

UB({gi}) =

∏2L−3
i odd=1 ν

−1
3 (gi, gi+2, gA, 0)

ν3(g1, g2L−1, gB , 0)
. (E4)

4. Symmetry operator

The total symmetry operator

X =
∑

{gi},gA,gB

|{1− gi}, 1− gA, 1− gB〉〈{gi}, gA, gB |,

(E5)
separates into X = XAXB . The effective symmetry act-

ing on ρedge is U†AXAUA. Using Eqs. (E4) and (E1), we
see that UA factorizes into a product of CCZ gates famil-
iar from the Levin-Gu model, and an additional factor
Uλ2 associated with the coboundary transformation,

UA =
∏
ijk

U ijkCCZ × U
λ2 . (E6)

The latter factor, Uλ2 , consists of a product over many 2-
cochains λ2 acting on various triangles. It can be divided
into two factors as Uλ2 = Uλ

′
2Uλ

′′
2 :

• Uλ
′
2 : The 2-cocycles λ(gi, gj , gk) act only on trian-

gles in A within the 2-sphere. Due to the cochain
condition λ(gi, gj , gk) = λ(1− gi, 1− gj , 1− gk), we

have Uλ
′
2
†
XAU

λ′
2 = XA.

• Uλ
′′
2 : The 2-cocycles λ(gi, gj , 0) act on triangles on

the surface defined by a membrane extending into
the 3-ball from ∂A,

Uλ
′′
2 =

∑
{gi}

∏2L−2
i even=2 λ2(gi, gi+2, 0)

λ2(g2, g2L, 0)
|{gi}〉〈{gi}|. (E7)

Since the symmetry operator X does not act on the
interior of the 3-ball, these are nontrivial.
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As a result, we obtain

Uλ
′′
2
†
XUλ

′′
2 = (E8)

X ×
∑
{gi}

∏2L−2
i even=2

λ2(gi,gi+2,0)
λ2(1−gi,1−gi+2,0)

λ2(g2,g2L,0)
λ2(1−g2,1−g2L,0)

|{gi}〉〈{gi}|.

As a result, the edge symmetry operator is

Sedge =
∏

i∈even
Xi

∏
i∈even

Zi
∏

i∈even
U i,i+2
CZ × (E9)

∑
{gi}

∏2L−2
i even=2

λ2(gi,gi+2,0)
λ2(1−gi,1−gi+2,0)

λ2(g2,g2L,0)
λ2(1−g2,1−g2L,0)

|{gi}〉〈{gi}|.

This formula is used to determine the parity eigenvalue
in Figs. 6 and 7.

Appendix F: Flux parameters fit

To fit the parameters φ(θ), ϕ(θ) to the ES, we solve a
system of linear equations. After scaling and shifting the
ES, it matches Eq. (32). To find the scaling coefficients
and φ(θ), ϕ(θ), we write linear equations for the scaled
levels a(ξi − ξ0). To obtain a, φ, ϕ, we construct explicit
equations for the levels (l,m) = (±1, 0), (0,±1), which we
denote ri. By simple algebra, one gets linear equations

for a, φ, ϕ by equating the scaled ES to the CFT spectrum
such that a(ξr1 − ξ0) = 0.5(1 − φ)2 − 0.5φ2 = 0.5 − φ.
Hence, we get four equations:

a =
0.5− φ
ξr1 − ξ0

=
0.5 + φ

ξr2 − ξ0
=

0.5− ϕ
ξr3 − ξ0

=
0.5 + ϕ

ξr4 − ξ0
. (F1)

Assuming no degeneracies exist, there are enough linear
equations. We now write it in a matrix form:

1 1
ξr1−ξ0

0

1 −1
ξr2−ξ0

0

1 0 1
ξr3−ξ0


aφ
ϕ

 =


1

2(ξr1−ξ0)
1

2(ξr2−ξ0)
1

2(ξr3−ξ0)

 . (F2)

Solving these equations, we get a, φ, ϕ for each θ value.
These equations require a guess for the indices r1, r2, r3,
and one has the freedom to choose three of the four avail-
able equations.

Let us focus on the results in Fig. 7. For θ near 0 in
Fig. 7(a), we choose r1 = 1, r3 = 2, r4 = 3 and solve
their corresponding equations. Similarly, for θ near π

2 in
Fig. 7(b), we choose r1 = 2, r2 = 4, r3 = 1. In both cases
the results show a linear behavior for φ(θ) and quadratic
behavior for ϕ(θ).
φ, ϕ have symmetries due to the CFT spectrum.

Specifically, φ → −φ and ϕ → −ϕ do not change the
ES as changing m, l accordingly m → −m, l → −l pre-
serves the ES. Similarly, φ→ φ+ 1, ϕ→ ϕ+ 1 still keeps
the ES the same as m → m − 1, l → l − 1, respectively.
These symmetries allow us to choose 0 ≤ φ, ϕ < 1.
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