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We calculate the dynamical spin structure factor of the generalized spin-1/2 compass spin chain using the
density matrix renormalization group. The model, also known as the twisted Kitaev spin chain, was recently
proposed to be relevant for the description of the spin chain compound CoNb2O6. It features bond-dependent
interactions and interpolates between an Ising chain and a one-dimensional variant of Kitaev’s honeycomb spin
model. The structure factor, in turn, is found to interpolate from gapped and non-dispersive in the Ising limit
to gapless with non-trivial continua in the Kitaev limit. In particular, the component of the structure factor
perpendicular to the Ising directions changes abruptly at the Kitaev point into a dispersionless continuum due
to the emergence of an extensive groundstate degeneracy. We show this continuum is consistent with analytical
Jordan-Wigner results. We also discuss implications for future inelastic scattering experiments and applications
to materials, particularly CoNb2O6.

I. INTRODUCTION

Orbital physics in Mott insulators can lead to a wide range
of important phenomena [1–5] including dimensionality re-
duction [5], orbital-selective Mott phases [6–8], and, in the
presence of spin-orbit coupling, bond-dependent magnetic ex-
change interactions [1, 3, 9]. The latter feature dramatically
in compass models [3], with Ising interactions along specific
spin-space directions depending on the spatial bond direction.
A famous example is Kitaev’s honeycomb spin model [10],
which realizes a quantum spin liquid ground state. Its possible
material realizations have been the subject of intense research
recently [11–13].

Another intriguing example is the 1D quantum compass
model (QCM) with alternating S x

i S x
i+1 and S y

i+1S y
i+2 interac-

tions for different bonds along the chain direction [14, 15],
which provides an exactly solvable model presenting a quan-
tum multicritical point [16, 17] in extended models. The
QCM can be viewed as arising from orbital order in systems
of weakly interacting zigzag chains [18], or simply as a 1D
version of Kitaev’s honeycomb model: a Kitaev spin chain.
Chain and ladder versions of the Kitaev honeycomb model
and its extensions (including e.g. Heisenberg and off-diagonal
Gamma interactions) have been studied theoretically [19–42],
mostly for their tractability and potential realizations in engi-
neered chains [43]. It was also proposed that charge order in
K-intercalated RuCl3 may lead to effective Kitaev-Heisenberg
chains [23, 25], but a different charge order was found in ex-
periments [44].

Given the above information, zigzag chains appear to be
the most promising way towards such 1D Kitaev-like models
in materials. Due to the variability of bond angles and lat-
tice distortions, it is natural to consider a generalized compass
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model (GCM) [18, 45],

H = −K
L/2−1∑

i=0

(
τ

n̂1
2i τ

n̂1
2i+1 + τ

n̂2
2i+1τ

n̂2
2i+2

)
, (1)

where τ
n̂ j

i = n̂ j · ~τi is the projection of the pseudospin Pauli
operator vector on site i onto the bond-dependent Ising di-
rection n̂ j. Using a coordinate system where the two axes
n̂1 and n̂2 lie in a plane, we allow the angle 2θ between n̂1
and n̂2 to vary continuously. At θ = 0, π/2 the Ising chain is
recovered, while θ = π/4 yields the QCM [46], which was
solved in the seventies as a special case of the alternating XY
model [47]. The interpolation between Ising and Kitaev spin
chains motivated Morris et al. [45] to introduce “twisted Ki-
taev spin chain” as an alternate name for the GCM away from
these limits. They also proposed the Hamiltonian (1) as a de-
scription of long-distance properties in the zigzag chain ma-
terial CoNb2O6 [45], which is commonly considered the best
known realization of the ferromagnetic (FM) transverse-field
spin-1/2 Ising chain due to its observed field-induced criti-
cality [48–52]. The description as a pure FM Ising chain is,
however, insufficient to explain the zero-field behavior, the de-
scription of which motivates considering bond-dependent in-
teractions [45, 53].

What would originate such interactions in CoNb2O6? Their
Co2+ ions are surrounded by oxygen octahedral cages and
form zigzag chains along the c axis; see Fig. 1. Hund’s cou-
pling favors a high-spin d7 configuration (t5

2ge2
g), which may

be viewed as a S = 3/2, L = 1 state. Spin-orbit coupling then
splits the energy levels further, resulting in a pseudospin-1/2
ground state Kramers doublet, just as in proposals for Kitaev
physics in honeycomb cobaltate systems [54, 55]. Although
CoNb2O6 is not a honeycomb system, its symmetry permits
identification of two alternating Ising directions [45]. Distor-
tion of the octahedra splits the energy levels further, but the
ground state Kramers doublet remains [56]. We note that the
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FIG. 1. Zigzag chain in CoNb2O6 featuring a two-site unit cell with
lattice constant c along the chain direction. The lattice symmetry
allows for different interactions between spins along the two dis-
tinct bonds. Similar bond-dependent interactions may emerge also
in other zigzag chain systems with specific electron configurations.

GCM, Eq. (1), is general and not restricted to materials such
as CoNb2O6. It may also emerge in d9, high-spin d4, and low-
spin d7 configurations, where the eg orbital degree of freedom
replaces the Kramers doublet degree of freedom [18]. Further
potential applications include Co zigzag chains on surfaces
[57] and quantum simulation in optical lattices [58, 59].

Since Eq. (1) and variations of the model are exactly solv-
able using Jordan-Wigner fermions [60, 61], many proper-
ties have been studied. These include ground state properties
[14, 15, 18, 62–67] , thermodynamic properties [18, 68, 69],
and aspects of quantum quench dynamics [70–72]. Numerical
results were also reported in Refs. [17, 64, 73] using Lanc-
zos exact diagonalization and Ref. [69] using matrix product
state methods. However, to the best of our knowledge, the
full dynamical spin structure factor S (k, ω) has not yet been
studied except in the Ising limit, although time-dependent re-
sults for the spin dynamics of the QCM were obtained ana-
lytically for spin components in the plane spanned by n̂1 and
n̂2 ⊥ n̂1 [74] and for spin components transverse to the same
plane [75][76]. The goal of the present paper is thus to study
the frequency-dependent dynamics at zero temperature and as
function of the angle θ.

Using the density matrix renormalization group (DMRG)
[77, 78] we obtain all components of S (k, ω) as a function of
the angle θ. The spectra interpolate from gapped and non-
dispersive at the Ising points towards a gapless continuum as
the Kitaev point is approached, with gapped and dispersive be-
havior in-between. There are abrupt qualitative changes in the
spectra at the Kitaev point, related to an underlying macro-
scopic degeneracy. In particular, the transverse component
S yy(k, ω) becomes gapless and dispersionless in the Kitaev
limit. These spectral features are understood via the Jordan-
Wigner ground state solution. Our S (k, ω) results can help the
design and interpretation of future experiments employing, for
example, inelastic neutron scattering (INS) or resonant inelas-
tic xray scattering (RIXS) techniques.

The paper is organized as follows. Sec. II introduces global
coordinate systems for Eq. (1) to interrelate the conventions
of Refs. [18, 45]. We review relevant Jordan-Wigner results
in Sec. III and describe the numerical methods in Sec. IV.
We present our results in Sec. V, discuss their consequences

and summarize the conclusions in Sec. VI. A derivation of the
dispersionless continuum at the Kitaev point is provided in
Appendix A.

II. COORDINATE SYSTEMS

For concreteness, we first consider the application of Eq. (1)
to CoNb2O6. The crystal structure features zigzag chains
along the crystallographic c axis as shown in Fig. 1, in which
the two Ising directions are constrained by symmetry to be
related by a twofold rotation symmetry about b, Cb

2. Follow-
ing Morris et al. [45] we use a global xyz coordinate system
where two Ising directions n̂1, n̂2 define the xz-plane. This is
done by choosing x̂ parallel with the b axis, and ẑ such that
it bisects the angle 2θ ≈ 34◦ between n̂1 and n̂2 and is at an
angle φ ≈ 31◦ to the c axis. The first Ising axis can be taken
as n̂1 = (sin θ, 0, cos θ), with n̂2 fixed by Cb

2 symmetry.
Substituting the n̂ j into Eq. (1), transforming to pseudospin-

1/2 operators S a
i = τa

i /2 and defining K̃ = 4K one obtains

H1 = −K̃
∑

i

[
cos2 (θ) S z

i S
z
i+1 + sin2 (θ) S x

i S x
i+1

+
sin (2θ)

2
(−1)i

(
S x

i S z
i+1 + S z

i S
x
i+1

)]
, (2)

as in Ref. [45]. In the absence of magnetic fields there is a
twofold ground state degeneracy due to invariance under spin
rotations around ŷ by π. We call this the Ising-like coordinate
system because the Ising nature of the Hamiltonian is manifest
at θ = 0, π/2. However, since the bond alternation is in the
symmetric off-diagonal (or Γ) terms, the Kitaev nature at π/4
is obscured:

Hθ=π/4
1 = − K̃

2

∑
i

[
S z

i S
z
i+1 + S x

i S x
i+1 + (−1)i

(
S x

i S z
i+1 + S z

i S
x
i+1

)]
.

(3)

The connection to Kitaev or compass physics becomes
clearer by canonically transforming to an alternate coordinate
system (x′y′z′) by a π/4 counterclockwise rotation around −ŷ.
In this Kitaev-like coordinate system the bond-alternation is
moved to the Ising terms,

H2 = − K̃
2

∑
i

{[
1 − (−1)i sin (2θ)

]
S x′

i S x′
i+1 (4)

+
[
1 + (−1)i sin (2θ)

]
S z′

i S z′
i+1 − cos (2θ)

[
S x′

i S z′
i+1 + S z′

i S x′
i+1

]}
,

making the Kitaev nature manifest at θ = π/4. The drawback
is that the Ising nature at θ = 0, π/2 is now obscured, where
the Hamiltonian takes the form of an X’Y’ model with a Γ in-
teraction term. We will report our spin dynamics results in the
Ising-like coordinate system, both because of its established
connection to experimentally relevant systems and because
the rotation to the Kitaev-like coordinate system generically
induces off-diagonal S x′z′/z′x′ (k, ω) correlations, which can be
significant.
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Finally, to connect with prior Jordan-Wigner analyses of the
GCM it is convenient to apply a π/2 spin rotation about x̂,

S x → S̃ x, S y → S̃ z, S z → −S̃ y, (5)

to Eq. (2), yielding

H3 = −K̃
∑

i

[
sin2 (θ) S̃ x

i S̃ x
i+1 + cos2 (θ) S̃ y

i S̃ y
i+1

− sin (2θ)
2

(−1)i
(
S̃ x

i S̃ y
i+1 + S̃ y

i S̃ x
i+1

)]
. (6)

In the following we will use H3 in the discussion of the
Jordan-Wigner solution, but present spin dynamics results in
the coordinate system of H1. This approach gives both a con-
crete connection to CoNb2O6 and similar systems, and in-
creased numerical efficiency from working with real-valued
Hamiltonians.

III. JORDAN-WIGNER SOLUTION

We review here aspects of the exact solution of the model
in the Jordan-Wigner formalism [60, 61], following mainly
Refs. [18, 70]. Introducing the standard transformation

S̃ +
i = S̃ x

i + iS̃ y
i = c†i exp

iπ i−1∑
j=1

c†jc j

 , (7)

S̃ −i = S̃ x
i − iS̃ y

i = exp

−iπ
i−1∑
j=1

c†jc j

 ci, (8)

S̃ z
i = c†i ci −

1
2
, (9)

where
{
ci, c

†
j

}
= δi, j, Eq. (6) is recast in terms of spinless

fermions,

H3 = −K
L∑

i=1

[
c†i ci+1 + H.c.

]
+ K

L/2∑
i=1

[
c†2ic

†
2i+1e−i2θ

+ c†2i+1c†2i+2ei2θ
+ H.c.

]
, (10)

where L is the length of the chain, L/2 is the number of unit
cells, and H.c. denotes Hermitian conjugate. We adopt a peri-
odic Fourier convention with

c2 j−1 =

√
2
L

∑
k

e−ik jak, c2 j =

√
2
L

∑
k

e−ik jbk, (11)

and momenta given by

k =
2nπ
L
, n = −

(L
2
− 1

)
,−

(L
2
− 3

)
, . . . ,

(L
2
− 1

)
. (12)

Following the Fourier transform, Eq. (10) is rewritten in a
symmetrized Bogoliubov-de Gennes form,

H =
1
2

∑
k

Γ
†
kh(k)Γk, Γ

†
k =

(
a†k , a−k, b

†
k , b−k

)
, (13)

where

h(k) =


0 0 Ak Pk + Qk
0 0 − (

Pk − Qk
) −Ak

A?
k −

(
P?

k − Q?
k

)
0 0

P?
k + Q?

k −A?
k 0 0

 (14)

and

Ak = −K
(
1 + eik

)
, (15)

Pk = K cos (2θ)
(
1 − eik

)
, Qk = iK sin (2θ)

(
1 + eik

)
. (16)

Unitary diagonalization of Eq. (14) yields a spectrum sym-
metric around zero, with energies {±εk,n}, n = 1, 2 given by

εk,1 =

√
Ck −

√
Dk, εk,2 =

√
Ck +

√
Dk, (17)

where

Ck =
∣∣∣Ak

∣∣∣2 +
∣∣∣Pk

∣∣∣2 +
∣∣∣Qk

∣∣∣2 = 4K2
[
1 + cos (k) sin2 (2θ)

]
(18)

and

Dk =
(
A?

k Pk + AkP?
k

)2 −
(
A?

k Qk − AkQ?
k

)2

+
(
P?

k Qk + PkQ?
k

)2
(19)

= 16K4 cos2
(

k
2

)
sin2 (2θ)[

3 + cos (4θ) + 2 cos (k) sin2 (2θ)
]
. (20)

εk,1 and εk,2 are called the acoustic and optical branches, re-
spectively, in analogy with phonon terminology. Positive en-
ergy states represent physical excitations, while negative en-
ergy states stem from the redundancy in the description and
are filled in the ground state, which has energy

E0 = −1
2

∑
k

(
εk,1 + εk,2

)
. (21)

This function is plotted in black in Fig. 2(a).
Some important observations follow directly from the

eigenvalues (17). First of all, the energies are independent
of the sign of K. Second, since εk,1 ≤ εk,2 ∀k, θ the exci-
tation gap is given by ∆ (θ) = 2 mink εk,1 (θ) , which generi-
cally has extrema at k = 0, π and is plotted in Fig. 2(b). We
note that the gap ∆(θ) is best understood as the physical en-
ergy gap in the thermodynamic limit, i.e. the gap between a
spontaneously Z2-symmetry-broken ground state and the first
excited state above it. At finite system size, analysis of the gap
in the Jordan-Wigner formalism requires careful treatment of
boundary conditions and Bologiubov vacua [14], which is out-
side the scope of the current paper. In numerical calculations
on finite-size systems the physical gap may be identified via
∆2 = E2 − E0, where En is the nth lowest eigenvalue and mul-
tiplicity is taken into account.

In the Ising limits at θ = 0, π/2, the excitations are gapped,
doubly degenerate and nondispersive, with εk,1 = εk,2 = 4 |K|
(Dk = 0, Ck = 4K2). At the Kitaev point εk,1 (θ = π/4) =
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FIG. 2. (a) Groundstate energy in units where |K| = 1. The black line
is the Jordan-Wigner result in the thermodynamic limit with periodic
boundary conditions. The other curves represent DMRG results for
finite FM systems with open boundary conditions. Antiferromag-
netic (AFM) K yields the same energy. (b) Excitation gap in the
thermodynamic limit from the Jordan-Wigner solution.

0 ∀k, meaning that the excitations are nondispersive and
gapless. The acoustic +εk,1 branch thus becomes degenerate
with the −εk,1 branch, which leads to a macroscopic degen-
eracy [18], and h(k) becomes singular. As shown below, this
degeneracy results in anomalous behavior at the Kitaev point.
Away from the Ising and Kitaev limits, the excitations are dis-
persive and gapped.

IV. NUMERICAL METHODS

We performed zero-temperature two-site DMRG [77, 78]
calculations using the DMRG++ software [79] and open
boundary conditions (OBC). The dynamical spin struc-
ture components S aa(k, ω) were calculated in the Krylov
correction-vector approach [80–82], which works directly in
frequency space and allows constant frequency resolution.
The center-site approximation was employed, and elastic delta
function peaks in S zz(k, ω = 0) due to static order away from
the Kitaev point were removed by subtracting the ground state
magnetization from the center-site operator; see the supple-
mental material for details [83]. Since this procedure relies on
a well-defined expectation value 〈S z

c〉 , 0 it is reliable only
for a non-degenerate ground state. Thus, for 0 ≤ θ < π/4
[π/4 < θ < π/2] S zz(k, ω) [S xx(k, ω)] was computed in the
presence of a small uniform (staggered) symmetry-breaking
magnetic pinning field of magnitude 10−6K̃ along ẑ [x̂] for FM
(AFM) K, compatible with the static correlations; see Sec. V.

Our main results (i.e. spectra) were obtained with L = 64
sites, keeping up to mmax = 1920 states in the calculations. A
Lorentzian broadening of η = 0.1K̃ and a frequency step of
∆ω = 0.025K̃ were also used. Truncation errors below 10−10

were targeted, which was easily achieved in practice (since
most calculations used substantially fewer states than allowed
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FIG. 3. Nearest-neighbor static spin-spin correlation functions for
(a) K > 0 and (b) K < 0. All data is for L = 64 and mmax = 1280.

by mmax), except in the vicinity of the QCM, where the largest
single truncation error was instead on the order of 10−6. We
note that we obtained very similar results for the QCM also
for a lower value mmax = 1280, albeit with a larger trunca-
tion error. Overall, calculations at the critical point dominated
the computational effort; see the supplemental material [83],
which also provides additional details for reproducing the nu-
merical results.

We use a two-site unit cell as in Fig. 1 and designate mo-
menta in units of the crystallographic lattice constant 1/c. The
momenta are labeled kn = 2πn/N, n = 0, 1, . . . ,N − 1, where
N = L/2 is the number of unit cells. This effectively amounts
to treating the system as if it were periodic, which introduces
a minor error that vanishes in the thermodynamic limit. We
use a Fourier transform convention that accounts for the posi-
tion within the unit cell, which is taken to be 0 for even sites
and c/2 for odd sites. We note, however, that due a glide sym-
metry of Eq. (2) (composed of translation by c̃ = c/2 and a
spin flip) the resulting spin structure factors are insensitive to
the unit cell doubling and show periodicity by 2π/c̃ = 4π/c
[53]. As such, the results can readily be reinterpreted for a
single-site unit cell by scaling k.

V. RESULTS

Figure 2(a) shows the groundstate energy from DMRG and
from the continuum limit of Eq. (21). The numerical re-
sults indicate quick convergence towards the exact result with
system size L. For θ away from θc = π/4 very large sys-
tem sizes can be reached. Figure 3 shows static groundstate
nearest-neighbor correlation functions from the DMRG cal-
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FIG. 4. Dynamical spin structure factor for the 1D FM GCM for
different values of θ. Red stars indicate notable special cases: (a)-(c)
show the FM Ising chain, where spin waves are non-dispersive and
the inelastic weight is concentrated in transverse scattering. (g)-(i)
show results for θ ≈ 17◦, which Ref. [45] proposed is relevant to
CoNb2O6. (m)-(o) show spectra for the FM eg-orbital model (EOM),
and (v)-(x) spectra for the Kitaev spin chain or QCM. Energies are
given in units of |K|. Other panels show spectra for intermediate
values of θ. As θ increases from 0◦, the excitations become dispersive
and the spin gap gradually decreases until it closes at θ = 45◦, where
the nature of the scattering changes. All results shown were obtained
for L = 64 sites and OBC. Elastic δ-function peaks in S zz(k, ω) were
removed for θ < π/4; see Sec. IV.

culations (with zero pinning fields). Four sites at each end of
the chain were neglected to minimize boundary effects, such
that the nearest-neighbor correlations were averaged over the
interior L − 2 × 4 − 1 bonds. In both the FM [Fig. 3(a)]
and AFM [Fig. 3(b)] cases the system is characterized by
large

∣∣∣∣〈S z
jS

z
j+1〉

∣∣∣∣ for 0 ≤ θ < π < 4 and large
∣∣∣〈S x

j S
x
j+1〉

∣∣∣ for
π/4 < θ ≤ π/2, reflecting the change of the easy axis. At
the Kitaev point all correlation functions decrease, associated
with a disordered state, as previously discussed in Ref. [18].

Figure 4 shows the diagonal components of the dynami-

cal spin structure factor for ferromagnetic K > 0 and various
values of the angle 0 ≤ θ ≤ π

4 in the Ising-like coordinate sys-
tem. We use units in which |K| = 1. The range includes the
Ising and Kitaev limits at the ends of the interval, as well as
θ = 3π/32 ≈ 17◦ and θ = π/6 = 30◦, corresponding to pro-
posed values for CoNb2O6 [45] and the FM eg-orbital model
[18], respectively. Spectra for the range π

4 ≤ θ ≤ π
2 are related

to those shown by the substitution θ → π/2 − θ, x↔ z.
At θ = 0 in Fig. 4(a)-(c), we have a FM z-Ising chain with

gapped, non-dispersive excitations. In this limit the ground
state has the form c↑ |↑↑↑ . . . 〉 + c↓ |↓↓↓ . . . 〉, so S zz(k, ω) ∝
δ(k)δ(ω) becomes trivial. As discussed in Sec. IV this elastic
peak was subtracted from the plotted spectrum. The true in-
elastic scattering is contained purely in the transverse compo-
nents. These probe the energy related to domain walls, which
have energy 4|K|.

For 0 < θ < π/4 the presence of additional terms in the
Hamiltonian induces domain wall motion [45], which trans-
lates into dispersive excitations and scattering continua in the
transverse components. This simple physical picture is famil-
iar from FM XY and XXZ chains, but also holds here in the
presence of a site-alternating Γ term. Initially, as in Fig. 4(d)-
(e), the S xx(k, ω) and S yy(k, ω) components appear fairly sym-
metric, both in their bow-tie-like shape and spectral distribu-
tion, which has most weight near ω = 4|K| and k = 2π/c.
However, as θ is increased, the spectral weight in S xx(k, ω) is
redistributed towards the Γ point; see Fig. 4(m),(p),(s). At the
same time, the delta function peak in S zz(k, ω) becomes less
dominant and some dispersive inelastic scattering becomes
visible in Fig. 4(o),(r),(u). As θ → π/4 the spin excitations
become gapless as predicted by the Jordan-Wigner solution,
with significant weight at ω = 0 in S xx(k, ω) and S zz(k, ω),
while S yy(k, ω) becomes more diffuse and completely flat with
a concentration of spectral weight along the top of the spec-
trum; see Fig. 4(w).

This highly unusual dispersionless scattering feature ap-
pears very suddenly at the critical point. To see just how
abrupt the spectra change we consider additional values of
θ close to θc in Fig. 5. The qualitative form of S yy(k, ω) is
symmetric around θ = π/4, and unchanged in the 28π/128 ≤
θ ≤ 31π/128 range, yet suddenly changes at the gap clos-
ing point. Given the abruptness, one may be tempted to ask
if the spectrum in Fig. 4(w) / Fig. 5(k) is correct. We stress
that, although the Kitaev point is the most computationally
challenging, this spectrum is not a simple numerical artifact.
Instead, the anomalous behavior is linked directly to the exten-
sive ground state degeneracy and restructuring of the Hilbert
space seen in the Jordan-Wigner solution. From the analyti-
cal results of Perk et al. [75] for time-dependent correlations
we have obtained the structure of S yy(k, ω) at θ = π/4. It
features a k-independent continuum for 0 ≤ ω ≤ 4|K| with
divergent intensity towards the top of the spectrum, in agree-
ment with the numerical result. See Appendix A for details
of the derivation. We also note that, although the system at
θ = π/4 is referred to as a Kitaev spin chain, the behavior in
the isotropic Kitaev honeycomb model is markedly different.
That model realizes a quantum spin liquid with gapless Majo-
rana excitations, yet remarkably its spin excitation spectrum
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FIG. 5. Dynamical spin structure factor for the 1D FM GCM for
different values of θ close to the Kitaev limit θ = π/4 [panels (j)-
(l), marked with the red star]. Although the S xx(k, ω) and S zz(k, ω)
change reasonably smoothly across the critical point, there is a sud-
den change in the S yy(k, ω) component. All results shown were
obtained for L = 64 sites and OBC. Elastic δ-function peaks in
S xx/zz(k, ω) were removed for θ , π/4; see Sec. IV.

remains gapped [84]. The gap is related to an emergent static
gauge field [84], which is absent in the chain [85].

The antiferromagnetic case in Fig. 6 shows the same be-
havior in the transverse S yy(k, ω) component, however the
S xx(k, ω) and S zz(k, ω) components are modified compared
to the FM case. This is due to a canonical transformation
where spins on one sublattice (e.g. even sites) are rotated
by π around ŷ, taking H1 → −H1. For the dynamics it im-
plies a 2π/c shift in k for S xx/zz(k, ω) between the FM and
AFM cases. The most apparent consequence is the shift of
spectral weight in S zz(k, ω) from k = 0 to k = 2π/c, re-
flecting Néel correlations. Its origin is also clear from the
AFM state in the Ising limit, c↑ |↑↓↑ . . . 〉+ c↓ |↓↑↓ . . . 〉, yield-
ing S zz(k, ω) ∝ δ(k − 2π/c)δ(ω). As other terms are intro-
duced in the Hamiltonian, a continuum develops in the trans-
verse components, reminiscent of the AFM XXZ chain [86].
A qualitative difference compared to the FM case is that the
bow-tie-like shapes of S xx(k, ω) for low θ are replaced by
more rounded shapes [compare, for example, Fig. 4(g) and
Fig. 6(g)], which follows from the 2π/c shift. Essentially, both

FIG. 6. Spectra for the 1D AFM GCM for different values of θ. Red
stars indicate the AFM Ising chain (a)-(c), the AFM eg-orbital model
(m)-(o), and the AFM QCM (v)-(x). Other panels show spectra for
intermediate values of θ. All results shown were obtained for L = 64
sites and OBC. Elastic δ-function peaks in S zz(k, ω) were removed
for θ < π/4; see Sec. IV.

shapes can be understood as emerging from the dispersionless
excitations in the Ising limit by gradually shifting spectral in-
tensity towards k = 0 or k = 2π/c with increasing θ. Inter-
estingly, in both the FM and AFM cases, the Ising limit scat-
tering leaves strong imprints on the spectra at finite θ, whose
k = 2π/c and k = 0 excitations, respectively, retain their en-
ergy scale.

VI. DISCUSSION AND CONCLUSION

The lack of U(1) symmetry around the easy-axis in Eq. (2)
implies generally that the two transverse components of the
dynamical spin structure factor will differ. This is seen in
Figs. 4, 6 for θ large enough, where S xx(k, ω) , S yy(k, ω). In
the ferromagnetic case and for low θ, however, S xx(k, ω) ≈
S yy(k, ω) is a good approximation. We note that this as-
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sumption was made in the analysis of inelastic neutron scat-
tering data on CoNb2O6 in Ref. [48]. For θ = 3π/32 [see
Figs. 4(g),(h)] we find that S yy(k, ω) has a ≈ 15% higher peak
intensity than S xx(k, ω), but essentially the same integrated
spectral weight. Given that Figs. 4(g),(h) also indicate an ap-
proximately symmetric distribution of the spectral weight, we
conclude that the assumption is justified also under the Hamil-
tonian parameters proposed in Ref. [45]. However, for sys-
tems approximately described by Eq. (2) at higher θ or AFM
K < 0, spin-polarization-resolved spectroscopic experiments
would be preferable and provide important information about
the bond directionality of interactions.

In systems of weakly coupled Ising chains the interchain
effects can be incorporated through an effective longitudinal
magnetic field that becomes non-zero in the ordered phase
[48, 87]. According to the proposal of Ref. [45], long-distance
properties of CoNb2O6, such as the THz spectrum, can be
well described by H = H1 − hz

∑
i S z

i with K = 0.57meV
and hz = 0.04 meV. However, we have found this model in-
sufficient to reproduce short-distance features seen in the INS
data of Ref. [48], in particular it fails to reproduce the up-
wards curvature of the dispersion at k = 2π/c. More realistic
spin models for this material feature additional interactions,
notably including a second-nearest neighbor AFM Ising inter-
action [48, 50, 53] which appears to be necessary for a full
description of the material in the entire Brillouin zone.

Beyond CoNb2O6, we note that bond-dependent interac-
tions are inherently related to the geometry of electron orbitals
and hopping paths. This means that, except in fine-tuned sys-
tems, one generally expects that additional symmetry-allowed
spin interaction terms may be present, much like is seen in
the honeycomb Kitaev candidates [88]. In materials with
well-separated chains, the impact of such terms can likely be
tuned or minimized using pressure or strain. Some such terms
could potentially also help stabilize the region of the disor-
dered phase of the QCM, which otherwise occupies a singu-
lar point in the phase diagram. The interchain coupling itself
can have important effects on, e.g., magnetic order. However,
as long as it is weak it often does not significantly modify
the high-energy spin dynamics, which can remain effectively
one-dimensional above some cut-off frequency. Thus, there is
hope of realizing a proximate 1D QCM, and more generally
chain systems with substantial bond-dependent interactions.

Here, we have studied the dynamical spin structure factor
of the spin-1/2 generalized compass chain, as a function of
the angle between the local Ising directions. We find smooth
changes in the components in the plane spanned by the Ising
directions, but a sudden change in the perpendicular compo-
nent at the Kitaev point. This is one of several anomalies that
stem from the closing of the excitation gap and the develop-
ment of an extensive groundstate degeneracy. Our results can
help guide the interpretation and design of spectroscopic ex-
periments on materials with similar bond-dependent interac-
tions. Future work may extend the analysis to chains with ad-
ditional symmetry-allowed interactions, ladder models [89],
or chains in the presence of magnetic fields in which addi-
tional quantum phase transitions and also interesting soliton
physics have been reported [42].
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Appendix A: Dispersionless continuum at the Kitaev point

Perk et al. [75] studied time-dependent correlations in the
inhomogeneous one-dimensional XY-model with alternating
interactions,

H = 2
L∑

i=1

[
Jx

i S̃ x
i S̃ x

i+1 + Jy
i S̃ y

i S̃ y
i+1

]
, (A1)

where

Jx
2i = Jx

e , Jy
2i = Jy

e and Jx
2i+1 = Jx

o , Jy
2i+1 = Jy

o. (A2)

The subscripts e and o denote even and odd, respectively. Here
we have written the Hamiltonian in terms of S̃ operators to in-
dicate the same coordinate system as was used in H3, Eq. (6).
In the Kitaev limit, θ = π/4 in Eq. (6), and

Jx
e = Jy

o ≡ J, Jx
o = Jy

e = 0, (A3)

in Eq. (A1), we identify K̃ = −2J. At this isolated pa-
rameter point we can make use of the analytical results for
the real-space and real-time dependent correlation function
〈S̃ z

i (t)S̃
z
i+r(0)〉 or the intermediate scattering function Ĩzz(k, t)

in Eqs. (4.20) and (4.26) of Ref. [75]. Due to the transforma-
tion (5), these correlations are equivalent to yy correlations in
the Ising-like coordinate system of H1 in Eq. (2).

Taking the Kitaev and zero-temperature limits, one finds
their Eq. (4.26) simplifies substantially to

Iyy(k, t) =
1

8π

∫ 2π

0
dϕ exp

[−iΛ1 (ϕ) t
]
, (A4)

where

Λ1 (ϕ) =
√

2 |J|
√

1 − cos (2ϕ). (A5)

Note that there is no k-dependence in this limit. Next, the
Fourier transform to frequency space yields

S yy (k, ω) ∝ 1
2π

∫ ∞

−∞
dteiωtIyy (k, t)

=
1

16π2

∫ 2π

0
dϕ

∫ ∞

−∞
dt exp

[
it (ω − 2 |J| |sinϕ|)]

=
1

8π

∫ 2π

0
dϕ δ (ω − 2 |J| |sinϕ|)

=
1

4π

∫ π

0
dϕ δ (ω − 2 |J| sinϕ) , (A6)
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where the δ-function produces a continuum. The last step in
Eq. (A6) makes its argument continuously differentiable in ϕ
such that the composition property of the δ-function can be
used. There are three different cases: (i) ω < 0 or ω > 2 |J|,
(ii) 0 ≤ ω < 2 |J|, and (iii) ω = 2 |J|. In the trivial case (i) the
function g(ϕ) = ω − 2 |J| sinϕ has no roots, making S (k, ω)

vanish. In case (ii) there are two roots in the interval [0, π],

ϕ1 = sin−1
(
ω

2 |J|
)
, ϕ2 = π − sin−1

(
ω

2 |J|
)
. (A7)

Both roots leave g′
(
ϕn

)
, 0, making S (k, ω) finite throughout

the entire frequency range. Finally, in case (iii) there is only
one unique root, ϕ3 = π/2. Since g′ (π/2) = 0 it follows
that S (k, ω = 2 |J|) diverges. This is consistent with what we
observe numerically in Figs. 4(w), 6(w), where the intensity is
found to be concentrated along the top edge of the spectrum,
with a weaker dispersionless continuum below it. The lack of
a sharp divergence at ω = 2 |J| = 4 |K| in the numerical result
is due to the Lorentzian frequency broadening.
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phase transitions in the spin-1 Kitaev-Heisenberg chain, Phys.
Rev. B 102, 144437 (2020).

[34] Q. Luo, S. Hu, and H.-Y. Kee, Unusual excitations and double-
peak specific heat in a bond-alternating spin-1 K−Γ chain, Phys.
Rev. Research 3, 033048 (2021).

[35] E. S. Sørensen, A. Catuneanu, J. S. Gordon, and H.-Y. Kee,
Heart of entanglement: Chiral, nematic, and incommensurate
phases in the Kitaev-Gamma ladder in a field, Phys. Rev. X 11,
011013 (2021).

[36] W. Yang, A. Nocera, E. S. Sørensen, H.-Y. Kee, and I. Affleck,
Classical spin order near the antiferromagnetic Kitaev point in
the spin- 1

2 Kitaev-Gamma chain, Phys. Rev. B 103, 054437
(2021).

[37] A. Metavitsiadis and W. Brenig, Flux mobility delocalization in
the Kitaev spin ladder, Phys. Rev. B 103, 195102 (2021).

[38] J. S. Gordon and H.-Y. Kee, Insights into the anisotropic spin-S
Kitaev chain, Phys. Rev. Research 4, 013205 (2022).

[39] W.-L. You, Z. Zhao, J. Ren, G. Sun, L. Li, and A. M. Oleś,
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