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In atomic physics, the Hund rule says that the largest spin and orbital state is realized due to the
interplay of spin-orbit coupling (SOC) and Coulomb interactions. Here, we show that in ferromag-
netic solids the effective SOC and the orbital magnetic moment can be dramatically enhanced by
a factor of 1/[1 − (2U ′

− U − JH)ρ0], where U and U ′ are the on-site Coulomb interaction within
the same oribtals and between different orbitals, respectively, JH is the Hund coupling, and ρ0 is
the average density of states. This factor is obtained by using the two-orbital as well as five-orbital
Hubbard models with SOC. We also find that the spin polarization is more favorable than the or-
bital polarization, being consistent with experimental observations. The theory is also extended to
study the spin fluctuations and long-range Coulomb interactions, and can be applied to understand
the enhanced orbital magnetic moment and giant Faraday effect in ferromagnetic nanogranules in
recent experiments. This present work provides a fundamental basis for understanding the enhance-
ments of SOC and orbital moment by Coulomb interactions in ferromagnets, which would have wide
applications in spintronics.

I. INTRODUCTION

The Hund’s rule in atomic physics says that the state
with both the largest spin moment and the largest orbital
moment is realized in an atom, required by the minimum
of the Coulomb repulsive energy. The similar picture
was obtained in the magnetic impurity systems. In the
Anderson impurity model, the spin magnetic moment of
impurities is developed due to the large on-site Coulomb
interaction U [1]. In 1964, the extended Anderson im-
purity model with degenerate orbitals has been studied,
where the role of U and the Hund coupling JH has been
addressed [2, 3]. Forty years ago, Yafet also studied the
Anderson impurity model within Hartree-Fock approxi-
mation and found that the on-site Coulomb interaction of
impurities can enhance the effective spin-orbit coupling
(SOC) in the spin-flip cross section [4]. Later, Fert and
Jaoul applied this result to study the anomalous Hall ef-
fect due to magnetic impurities [5]. The relation between
the onsite Coulomb interaction U and the effective SOC
in magnetic impurity systems has also been discussed by
the density functional theory (DFT) calculations [6] and
the quantum Monte Carlo simulations [7]. The multior-
bital Hubbard models have been extensively addressed by
some advanced numerical calculations, such as the quan-
tum Monte Carlo simulations [8, 9], and the dynamical
mean-field theory calculations [10–22]. The long-range
Coulomb interactions in Hubbard models have also been
studied [23–27].

In these years, one of the fast developing areas in con-
densed matter physics is spintronics [28, 29]. It aims
to manipulate the spin rather than the charge degree of

freedom of electrons to design the next-generation elec-
tronic devices with small size, faster calculating ability,
and lower energy consumption. SOC, as one of the key
ingredients in spintronics, is related to many significant
physical phenomena and novel matter [30]. In addition
to the magnetic anisotropy [28, 31], SOC plays an im-
portant role in the phenomena such as anomalous Hall
effect [32, 33], spin Hall effect associated with the spin-
charge conversion [34–37], topological insulators [38–42],
skymions [43–45] and so on. To design better spintronic
devices, a large SOC is usually required. As SOC is a
relativistic effect in quantum mechanics, it is often small
in many materials. A key issue is what factors can affect
the magnitude of the SOC in solids.

On the other hand, the orbital moment in the FeCo
nanogranules was experimentally shown to be about
three times larger than that in bulk FeCo, as a result of
the enhanced Coulomb interaction in the FeCo/insulator
interface [46], because the Coulomb interaction in the
FeCo/insulator interface is expected to be larger than
that in the ferromagnetic FeCo bulk. In addition, a large
Coulomb interaction up to 10 eV was discussed in Fe
thin films in the experiment [47]. The spin polarization
in the Hubbard model with Rashba SOC can also be
enhanced by the on-site Coulomb interaction U [48]. Re-
cently, in the two-dimensional magnetic topological insu-
lators PdBr3 and PtBr3, the DFT calculations show that
the band gap and the SOC can be strongly enhanced by
the Coulomb interaction [49]. The interplay of Coulomb
interaction and spin-orbit coupling has been discussed by
the numerical calculations [50–55].

Inspired by recent experimental and numerical results
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on the enhanced SOC due to the Coulomb interaction in
strongly correlated electronic systems, here we develop a
theory on the relation between SOC and Coulomb inter-
action in ferromagnets. By a two-orbital Hubbard model
with SOC, we find that the effective SOC and orbital
magnetic moment in ferromagnets can be enhanced by a
factor of 1/[1−(2U ′−U−JH)ρ0], where U and U ′ are the
on-site Coulomb interaction within the same oribtals and
between different orbitals, respectively, JH is the Hund
coupling, and ρ0 is the average density of states. The
same factor has also been obtained for the five-orbital
Hubbard model with degenerate bands. Our theory can
be viewed as the realization of Hund’s rule in ferromag-
nets.

II. TWO-ORBITAL HUBBARD MODEL WITH

SOC

Let us consider a two-orbital Hubbard model, where
only a pair of orbitals with opposite orbital magnetic
quantum numbers m (-1 and 1, or -2 and 2) are consid-
ered. Thus, the Hamiltonian can be written as

H =
∑

k,m,σ

ǫkmσnkmσ + U
∑

i,m

nim↑nim↓

+ U ′
∑

i,σ,σ′

nimσnim̄σ′ − JH
∑

i,σ

nimσnim̄σ,
(1)

where ǫkmσ is the energy of electron with wave vector k,
orbital m, and spin σ (↑, ↓) [56], U and U ′ are the on-
site Cuolomb repulsion within the orbital m and between
different orbitals m and m′, respectively, JH is the Hund
coupling, and nkmσ(nimσ) represents the particle number
with wave vector k (site index i), orbital m and spin σ.
For simplicity, we consider four degenerate energy bands,
which are lifted by an external magnetic field h and the
Ising-type SOC [5]:

ǫkmσ = ǫk − σµBh−
1

2
σλsom, (2)

where λso is the SOC constant, ǫk is the electron en-
ergy without external magnetic filed and SOC. Using
the Hartree-Fock approximation, we have nimσnim′σ′ ≈
〈nimσ〉nim′σ′ + 〈nim′σ′〉nimσ − 〈nimσ〉 〈nim′σ′〉. Assum-
ing the system is homogeneous, the occupation number
nimσ is independent of lattice site i: 〈nimσ〉 ≈ 〈nmσ〉, and
through Fourier transformation

∑

i nimσ =
∑

k
nkmσ,

the Halmiltonian in Eq.(1) can be diagonalized as:

H ≈
∑

k,m,σ

ǫ̃kmσnkmσ, (3)

with ǫ̃kmσ = ǫk − σµBh − 1
2σλsom + U 〈nmσ̄〉 +

U ′ (〈nm̄σ〉+ 〈nm̄σ̄〉) − JH 〈nm̄σ〉. We define the spin
polarization per site as sz = µB(〈nm↑〉 − 〈nm↓〉 +

〈nm̄↑〉 − 〈nm̄↓〉), and the orbital polarization per site
as lz = mµB(〈nm↑〉 − 〈nm̄↑〉 + 〈nm↓〉 − 〈nm̄↓〉). Here
we should remark that the so-defined orbital polariza-
tion from itinerant electrons on different orbitals with
SOC differs from the conventional orbital moments of
atoms that are usually quenched owing to the presence
of the crystal fields in transition metal ferromagnets. In-
troduce the particle numbers of the parallel (np) and
antiparallel (nap) states of the spin σ and orbital m:
np=〈nm↑〉+〈nm̄↓〉, nap=〈nm̄↑〉+〈nm↓〉. Then the energy

ǫ̃kmσ can be written as ǫ̃kmσ = ǭ−σµB

(

h+ U+JH

4µ2

B

sz

)

−

1
2m

(

σλso −
U−2U ′+JH

2µBm2 lz

)

.

A. Spin polarization

It is noted that without external magnetic field h
and SOC λso, the four energy bands with spin σ (↑
and ↓) and orbital m (for example 1 and −1) are de-
generate, and the occupation numbers nap = np. In
terms of the translational symmetry of the lattice system:
〈nmσ〉 =

1
N

∑

i〈nimσ〉 =
1
N

∑

k
〈nkmσ〉 =

1
N

∑

k
f(ǫ̃kmσ),

where f is the Fermi distribution function. For the
system with a paramagnetic (PM) state (h = 0),
f(ǫ̃kmσ) can be expanded according to h, which is a
small value compared to Fermi energy, and nap = np,
sz = µB

∑

k[f(ǫ̃PM,km↑) − f(ǫ̃PM,km↓) + f(ǫ̃PM,km̄↑) −
f(ǫ̃PM,km̄↓)] = 0. Up to the linear order of h, the spin
polarization becomes

sz =
4µ2

Bρ0
1− (U + JH)ρ0

h, (4)

where ρ0=
1
4

∫∞

0 [−∂f(E)
∂E

][ρm↑(E) + ρm̄↑ (E) + ρm↓(E) +
ρm̄↓(E)]dE is the average density of states of the four
energy bands. The instability condition of the spin po-
larization is

(U + JH)ρ0 > 1. (5)

This condition can be taken as an extension of Stoner cri-
terion in the presence of SOC in itinerant ferromagnets.

B. Orbital polarization

Similarly, the orbital polarization can be expressed
as lz = µBm(〈nm↑〉 − 〈nm̄↑〉 + 〈nm↓〉 − 〈nm̄↓〉) =
µBm
N

∑

k[f(ǫ̃km↑)−f(ǫ̃km̄↑)+f(ǫ̃km↓)−f(ǫ̃km̄↓)]. For the
ferromagnetic (FM) state, the SOC can be regarded as a
small value [5], so f(ǫ̃kmσ) can be expanded according to
λso, and when λso = 0, nap = np, the zero-order term is
zero. To the linear order of λso, the orbital polarization
gives

lz =
m2µBρs

1− (2U ′ − U − JH) ρ0
λso, (6)
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TABLE I. Comparison of the theoretical results among the Anderson impurity model, the one-orbital Hubbard model (Stoner
model), and our two- and five-orbital Hubbard models with the spin-orbit coupling (SOC). sz and lz are the spin and orbital
polarization, respectively. The instability conditions (IC) of sz and lz in these models are listed. λeff

so is the effective SOC
affected by atomic SOC λso, the electron correlations U , U ′ and JH , and the electron density of state ρ. The equations of
five-orbital Hubbard model can be found in the Supplemental Material [57].

Anderson impurity
model

One-orbital Hubbard
model (Stoner)

Two-orbital Hubbard model
with SOC(m = ±1 or m = ±2)

Five-orbital Hubbard model
with SOC (m = 0, ±1, ±2)

sz –
2µ2

B
ρ(EF )

1−Uρ(EF )
h [58]

4µ2

B
ρ0

1−(U+JH)ρ0
h [Eq.(4)]

10µ2

B
ρ0

1−(U+4JH )ρ0
h [Eq.(63)]

lz – – m2µBρs
1−(2U′−U−JH )ρ0

λso [Eq.(6)] µB(ρ1s+4ρ2s)
1−(2U′−U−JH)ρ0

λso [Eq.(78)]

IC of sz (U+4JH )ρ(EF ) > 1 [2, 3] Uρ(EF ) > 1 [58] (U + JH)ρ0 > 1 [Eq.(5)] (U + 4JH )ρ0 > 1 [Eq.(65)]

IC of lz – – (2U ′
− U − JH)ρ0 > 1 [Eq.(8)]

λeff
so

λat

1−(U−JH)ρ(EF )
[4] – λso

1−(2U′−U−JH )ρ0
[Eq.(7)]

where ρs=
1
2

∫∞

0 [−∂f(E)
∂E

][ρm↑(E) + ρm̄↑(E) − ρm↓(E) −
ρm̄↓(E)]dE is the average spin polarized density of states.
Then Eq. (6) can be rewritten as lz = µBm

2ρsλ
eff
so , where

the effective SOC λeff
so is

λeff
so =

λso

1− (2U ′ − U − JH) ρ0
. (7)

One may note that the orbital polarization discussed here
Eq. (6) is totally induced by the SOC, which can be
enhanced by increasing U ′ or decreasing U and JH , we
will discuss this in detail. In the absence of the SOC, such
an orbital polarization is absent according to Eq. (6).
The instability condition of orbital polarization would
be:

(2U ′ − U − JH)ρ0 > 1. (8)

The detailed derivation is given in the Supplemental Ma-
terial [57].

III. FIVE-ORBITAL HUBBARD MODEL WITH

SOC

Our theory can be easily extended to the five-orbital
Hubbard model with degenerate bands, and the detailed
derivation is given in the Supplemental Material [57]. For
the five-orbital case, the instability condition of the spin
polarization becomes as (U + 4JH)ρ0 > 1. The same
expression has been obtained for the presence of local-
ized spin moment in the Anderson impurity model with
degenerate orbitals [2, 3]. The obtained instability con-
dition of the orbital polarization is (2U ′−U−JH)ρ0 > 1,
which is the same as Eq.(8) for the two-orbital case. In
the five-orbital case, the effective SOC and the orbital
magnetic moment can also be enhanced by a factor of
1/[(2U ′−U −JH)ρ0], that is the same enhancement fac-
tor as in the two-orbital case.

IV. DISCUSSION

The comparison between our theory, the Stoner model
and the Anderson impurity model is shown in Table I.
It is interesting to note that the instability conditions
of sz between our five-orbital Hubbard model with SOC
and the Anderson impurity model are the same, while
the obtained effective SOC λeff

so between the two models
are different. Comparing Eqs.(5) and (8), which are the

Unpolarized

Stoner

1/ρ! (eV)

(e
V

)

Spin polarization (Eq. 5)

Orbital polarization

 (Eq.8)

FIG. 1. The phase diagram of spin and orbital spontaneous
polarization as a function of the inverse average density of
states and the Coulomb interaction U. The shaded area with
blue solid lines represents the spin spontaneous polarization
determined by Eq.(5). The shaded area with red solid lines
represents the orbital spontaneous polarization determined by
Eq.(8). The black dotted line indicates the Stoner criterion of
the spin spontaneous polarization, which is obtained by the
single orbital Hubbard model.

spin and orbital instability conditions of the two-orbital
model in Table I, one may note that the condition of the
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orbital spontaneous polarization is more stringent than
that of the spin spontaneous polarization. The phase
diagram of the spin and orbital spontaneous polariza-
tions as a function of the inverse of average density of
state 1/ρ0 and the Coulomb interaction U obtained with
Eqs. (5) and (8) is depicted in Fig. 1. Considering
the relation U = U ′ + 2JH and the reasonable values
of U = 4 ∼ 7 eV in the 3d transitional metal oxides
[59], for 3d electrons, JH = 1, U ′ = 5, U = 7 eV are a
set of reasonable values, for simplicity we keep the ratio
U : U ′ : JH = 7 : 5 : 1 in Eq.(7), and the shaded area with
blue (red) solid lines indicates the spin (orbital) sponta-
neous polarization. The Stoner criterion of the spin spon-
taneous polarization based on the single orbital Hubbard
model is also plotted in Fig. 1 for a comparison. The
results show that the area of orbital spontaneous polar-
ization is enclosed in the area of spin spontaneous po-
larization. In other words, it is more stringent to have
the orbital spontaneous polarization, which is consistent
with the fact that the orbital spontaneous polarization is
rarely observed in experiments.
In Stoner’s theory, a single-orbital Hubbard model was

studied with a mean-field approximation, and it is shown
that the spin magnetic moment can be enhanced by a
factor of 1/(1 − Uρ), the so called Stoner enhancement
factor. In our work, the multi-orbital Hubbard models
are studied with the similar mean-field approximation,
and it is shown that the orbital magnetic moments and
the effective SOC can be enhanced by a factor of 1/[1−
(2U ′−U−JH)]ρ0. In both Stoner’s theory and our work,
the parameters of U , U ′ and JH are not so large, not in
the large U values to induce the Mott metal-insulator
transition.

V. EXTENSION OF OUR THEORY

We can extend our theory with the following three
approaches. First, let us discuss the spin fluctuations
in static magnetic susceptibility. In 1964, J. Hubbard
had discussed the scattering correction and the reso-
nance broadening correction in the single-orbital Hub-
bard model based on the higher-order Green’s func-
tion [60]. Following Hubbard’s paper, it is shown that
there are three spin fluctuation terms appearing in the
equation of motion. These spin fluctuation terms ex-
actly cancel out each other, and do not appear in the
final expression of the higher-order Green’s function [60].
Although spin fluctuation terms can appear in the even
higher order Green’s functions, we note that the spin
fluctuation in static magnetic susceptibility is a kind
of higher-order effect, and could have small impacts on
SOC. The details of the discussion are given in Section
III of the Supplemental Material [57].
Second, we study the spin fluctuation and electron cor-

relations in transverse dynamical susceptibility. By the

random phase approximation, we calculated the trans-
verse dynamical spin and orbital susceptibilities in a two-
orbital Hubbard model. It is shown that the transverse
dynamic spin susceptibility can be enhanced by a factor
of

1

1− UΓ−+
spin,m (q, ω)

, (9)

and the transverse dynamical orbital susceptibility can
be enhanced by a factor of

1

1− (U ′ − JH) Γ−+
orb,σ(q, ω)

, (10)

where Γ−+
spin,m (q, ω) and Γ−+

orb,σ(q, ω) are the transverse
dynamic spin and orbital susceptibilities, respectively,
without the Coulomb interactions. Our results show that
the Coulomb interactions can enhance the transverse dy-
namical spin and orbital susceptibilities. The details are
given in Section IV of the Supplemental Material [57].
Third, we consider the long-range Coulomb inter-

actions and static magnetic susceptibility. With the
Hartree-Fock approximation, we studied the effect of
long-range Coulomb interactions in a five-orbital Hub-
bard model. We showed that the static spin susceptibility
can be enhanced by a factor of

1

1− [U + 4JH + (V − V ′′)Z] ρ0
, (11)

and the static orbital susceptibility and the effective SOC
can be enhanced by a factor of

1

1− [2U ′ − U − JH + (2V ′ − V − V ′′)Z] ρ0
. (12)

The long-range Coulomb interactions between the near-
est neighboring sites are considered: V between the same
orbitals and different spins, V ′ between different orbitals
and any spins, V ′′ between the same orbitals and the
same spins. Z is the number of the nearest neighboring
sites. Our results reveal that the long-range Coulomb in-
teractions can enhance the static magnetic susceptibility,
the static orbital susceptibility, and the effective SOC.
The details are given in Section V of the Supplemental
Material [57].

VI. APPLICATIONS

Our theory can be applicable to in the following two
experiments. First, the large orbital magnetic moment
in FeCo-MgF2 nanogranules in a recent experiment [46].
In the experiment, the orbital magnetic moment in FeCo
nanogranules is observed to be three times larger than
that of FeCo bulk. The orbital magnetic moment can be
calculated by Eq. (6). The ratio of the orbital magnetic
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FeCo bulk (Exp; Ref.46)

FeCo nanogranules (Exp; Ref.46)

FeCo (Eq. 13)

DFT: ρ� = 0.07 (1/eV)

U (eV)
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FIG. 2. The enhancement of orbital magnetic moment lz
in the FeCo nanogranules due to Coulomb interaction U.
The renormalized orbital moments of FeCo bulk and FeCo
nanogranules in the experiment [46] are noted by the solid
black pentagon and solid black star, respectively. The orange
solid line is the result by Eq.(13), where ρ0 is the density of
states at Fermi energy of the FeCo interface calculated by the
DFT.

moment lz2 with the Coulomb interaction to the orbital
magnetic moment lz2 without Coulomb interaction can
be approximately written as:

lz2
lz1

=
1

1− (2U ′ − U − JH)ρ0
. (13)

As shown in Fig. 2, substituting ρ0 of the FeCo inter-
face with ρ0 ∼ 0.07(1/eV) obtained by DFT calculations
and the ratio of lz2/lz1 = 3 between the orbital magnetic
moments of FeCo nanogranules and FeCo bulk in the ex-
periment into Eq.(13), U can be estimated to be about
9.5 eV for the FeCo interface, which is somehow larger
than the value of U = 4 ∼ 7 eV used in the 3d transition
metal compound [59]. Thus, Eq.(13) can be used to quali-
tatively explain the enhancement of orbital magnetic mo-
ment for the FeCo nanogranules in the experiment. The
FeCo nanogranules can lead to enhanced Coulomb in-
teractions due to the decreased screening effect at the
FeCo/MgF2 interface, and the enhanced Coulomb inter-
actions at interfaces can induce a large orbital magnetic
moment.
Second, the giant Faraday effect in FeCo-(Al-fluoride)

nanogranular films in a recent experiment [61]. In the ex-
periment, the FeCo-(Al-fluoride) nanogranular films ex-
hibiting Faraday rotation 40 times larger than that of Bi-
YIG at the wavelength of optical communication band.
The effective SOC can be calculated by Eq. (7). The
FeCo nanogranules can lead to the enhanced Coulomb
interactions due to the decreased screening effect at the
FeCo/Al-fluoride interface, where the enhanced Coulomb
interactions at interfaces can lead to the enhanced effec-
tive SOC, the latter can induce the enhanced Faraday ef-

fect. Similarly, the enhanced magneto-optical Kerr effect
at Fe/insulator interface was also predicted by numerical
calculations [62].

Equation (7) shows that Coulomb interactions can en-
hance the effective SOC. Recently, for magnetic topo-
logical insulators PdBr3 and PtBr3, it is found that the
energy gap increases with the increase of Coulomb inter-
action U [49]. The enhancement of SOC by the Coulomb
interaction U can be naturally obtained with Eq.(7). In
these topological materials, the energy gap is opened due
to the SOC, whereas the energy gap ∆g can be approxi-
mately proportional to λeff

so

∆g = Aλeff
so , (14)

where A is the coefficient. As shown in Fig. 3, the
blue solid triangles and purple solid circles represent the
band gaps of PtBr3 and PdBr3, respectively, which are
obtained by the DFT calculations with different U val-
ues [49]. The blue and purple solid lines are fitted by
Eqs. (7) and (14), where Aλso and the density of state ρ0
are the fitting parameters. For simplicity we use the ap-
proximation in the DFT calculation, to keep the JH = 0
eV, U = U ′ in Eq.(7), and study the effect of U in the
4d and 5d transition metal compounds. From Eqs. (7)
and (14), it can be seen that the Coulomb interaction
U can enhance the effective SOC parameter λeff

so , and
thereby increase the energy gap. Compared with numer-
ical method such as DFT+U, our paper gives the ana-
lytical equations that clearly shows that electronic cor-
relations can enhance the orbital moment and effective
spin-orbital coupling in ferromagnets.

PdBr  (Eq. 14)

Aλso  = 11.48 (meV)

ρ" = 0.36 (1/eV)

PtBr  (Eq. 14)

Aλso  = 16.75 (meV)

ρ" = 0.66 (1/eV)

PtBr  (DFT; Ref.49) PdBr  (DFT; Ref.49)

FIG. 3. The enhanced energy gap due to Coulomb interaction
U. The blue solid triangles and purple solid circles give the
band gap of PtBr3 and PdBr3, respectively, obtained by the
density functional theory (DFT) calculations with different
parameter U [49]. The blue and purple solid lines are fitted
results by Eq.(7) and Eq.(14), where the Aλso and ρ0 are the
fitting parameters.
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VII. CONCLUSION

A two-orbital Hubbard model with SOC, we show that
the orbital polarization and the effective SOC in ferro-
magnets are enhanced by a factor of 1/[1 − (2U ′ − U −
JH)ρ0], where U and U ′ are the on-site Coulomb inter-
action within the same orbitals and between different or-
bitals, respectively, JH is the Hund coupling, and ρ0 is
the average density of states. The same factor is ob-
tained for the five-orbital Hubbard model with degen-
erate bands. Our theory can be viewed as the realiza-
tion of Hund’s rule in ferromagnets. The theory is also
extended to study the spin fluctuation and long-range
Coulomb interactions, and can be applied to understand
the enhanced orbital magnetic moment and giant Fara-
day effect in ferromagnetic nanogranules in recent exper-
iments. In addition, our results reveal that it is more
stringent to have the orbital spontaneous polarization
than the spin spontaneous polarization, which is consis-
tent with experimental observations. As the electronic
interaction in some two-dimensional (2D) systems can be
controlled experimentally [63], according to our theory,
the enhanced SOC, spin and orbital magnetic moments
are highly expected to be observed in these 2D systems.
This present work not only provides a fundamental ba-
sis for understanding the enhancements of SOC in some
magnetic materials, but also sheds light on how to get a
large SOC through hybrid spintronic structures.

ACKNOWLEDGMENTS

The authors acknowledge Q. B. Yan, Z. G. Zhu,
and Z. C. Wang for many valuable discussions. This
work is supported in part by the National Natural Sci-
ence Foundation of China (Grants No. 12074378 and
No. 11834014), the Beijing Natural Science Foundation
(Grant No. Z190011), the National Key R&D Program
of China (Grant No. 2018YFA0305800), the Beijing
Municipal Science and Technology Commission (Grant
No. Z191100007219013), the Chinese Academy of Sci-
ences (Grants No. YSBR-030 and No. Y929013EA2),
and the Strategic Priority Research Program of Chinese
Academy of Sciences (Grants No. XDB28000000 and No.
XDB33000000). SM is supported by JST CREST Grant
(No. JPMJCR19J4, No. JPMJCR1874 and No. JP-
MJCR20C1) and JSPS KAKENHI (Nos. 17H02927 and
20H01865) from MEXT, Japan.

∗ gubo@ucas.ac.cn
† gsu@ucas.ac.cn

[1] P. W. Anderson, Localized magnetic states in metals,
Phys. Rev. 124, 41 (1961).

[2] T. Moriya, Ferro- and antiferromagnetism of transition
metals and alloys, Prog. Theor. Phys. 33, 157 (1965).

[3] K. Yosida, A. Okiji, and S. Chikazumi, Mag-
netic anisotropy of localized state in metals,
Prog. Theor. Phys. 33, 559 (1965).

[4] Y. Yafet, Spin-orbit induced spin-flip scattering by a local
moment, J. Appl. Phys. 42, 1564 (1971).

[5] A. Fert and O. Jaoul, Left-right asymmetry in the scat-
tering of electrons by magnetic impurities, and a Hall
effect, Phys. Rev. Lett. 28, 303 (1972).

[6] G. Y. Guo, S. Maekawa, and N. Nagaosa, En-
hanced spin Hall effect by resonant skew scat-
tering in the orbital-dependent Kondo effect,
Phys. Rev. Lett. 102, 036401 (2009).

[7] B. Gu, J. Y. Gan, N. Bulut, T. Ziman, G. Y. Guo, N. Na-
gaosa, and S. Maekawa, Quantum renormalization of the
spin Hall effect, Phys. Rev. Lett. 105, 086401 (2010) .

[8] J. E. Han, M. Jarrell, and D. L. Cox, Multiorbital Hub-
bard model in infinite dimensions: Quantum Monte
Carlo calculation, Phys. Rev. B 58, R4199 (1998).

[9] S. Li, N. Kaushal, Y. Wang, Y. Tang, G. Alvarez,
A. Nocera, T. A. Maier, E. Dagotto, and S. John-
ston, Nonlocal correlations in the orbital selective Mott
phase of a one-dimensional multiorbital Hubbard model,
Phys. Rev. B 94, 235126 (2016).

[10] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozen-
berg, Dynamical mean-field theory of strongly correlated
fermion systems and the limit of infinite dimensions,
Rev. Mod. Phys. 68, 13 (1996).

[11] A. Liebsch, Single mott transition in the multiorbital
hubbard model, Phys. Rev. B 70, 165103 (2004).

[12] A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist,
Orbital-selective Mott transitions in the degenerate Hub-
bard model, Phys. Rev. Lett. 92, 216402 (2004).

[13] T. Pruschke and R. Bulla, Hund’s coupling and the
metal-insulator transition in the two-band Hubbard
model, Eur. Phys. J. B 44, 217 (2005).

[14] V. Drchal, V. Janǐs, J. Kudrnovský, V. S.
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