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Motivated by experiments on chains of superconducting qubits, we consider the dynamics of a
classical Klein-Gordon chain coupled to coherent driving and subject to dissipation solely at its
boundaries. As the strength of the boundary driving is increased, this minimal classical model
recovers the main features of the “dissipative phase transition” seen experimentally. Between the
transmitting and non-transmitting regimes on either side of this transition (which support ballistic
and diffusive energy transport respectively), we observe additional dynamical regimes of interest.
These include a regime of superdiffusive energy transport at weaker driving strengths, together with a
“resonant nonlinear wave” regime at stronger driving strengths, which is characterized by emergent
translation symmetry, ballistic energy transport, and coherent oscillations of a nonlinear normal
mode. We propose a non-local Lyapunov exponent as an experimentally measurable diagnostic of
many-body chaos in this system, and more generally in open systems that are only coupled to an
environment at their boundaries.

I. INTRODUCTION

The relaxation dynamics of a many-body system at
long times is generically dominated by a small number
of hydrodynamic slow modes, corresponding to its local
conserved charges. A classic method for probing such hy-
drodynamic behavior consists of coupling the boundaries
of the system to thermal reservoirs at different temper-
atures [1], thereby forcing energy flow through the sys-
tem, and waiting for a locally equilibrated steady state
to form in the bulk. Coupling to the boundaries of a sys-
tem in this way can be viewed as a “weak” perturbation,
in the sense that it allows one to probe bulk transport
in the non-equilibrium steady state (NESS) without al-
tering the properties of the system. This technique has
been used to elucidate transport in both ergodic and non-
ergodic classical [1] and quantum [2] many-body systems.

Recent experiments on coupled arrays of circuit QED
resonators [3, 4] explore a different kind of boundary driv-
ing, whereby a given system is driven coherently at one
end by an external laser and the outgoing radiation is
measured at the other end. This interplay between co-
herent driving and incoherent dissipation, induced by
the intrinsic loss rates of photonic cavities, opens new
avenues for exploring genuinely non-equilibrium steady
states and the possible phase transitions between them.
The effects of such coherent boundary driving are far less
well-studied theoretically than the effects of coupling to
incoherent thermal reservoirs; we refer to Refs. [5–9] for
some recent investigations. For a generic, thermalizing
system that is driven in this manner, one might expect
that at long times the system again approaches a lo-
cal equilibrium state, which is characterized by hydrody-
namic behavior and which interpolates smoothly between
an effective temperature set by the coherent drive and
zero effective temperature at the non-driven end. How-
ever, this expectation is only reasonable at low driving

frequencies and amplitudes. Continuous driving of the
system at large frequencies will in general sustain non-
hydrodynamic degrees of freedom, while driving at large
enough amplitudes will eventually hamper local equili-
bration. This raises the question of which aspects of a
bulk system’s physics dictate its response to strong, co-
herent boundary driving.

Here, we study this question systematically in a classi-
cal Klein-Gordon chain which is coherently driven at one
end and is subject to dissipation at both of its bound-
aries. Our choice of model is particularly motivated by
the superconducting circuit experiments of Ref. [3, 4],
which explored the nonequilibrium transport of inter-
acting photons in a boundary-driven setting. We focus
on dissipation that is spatially localized at the ends of
the chain because the dominant source of dissipation in
these experimental systems is typically set by the pho-
ton loss rates of the first and last cavities [4]. These ex-
periments observed a transition between “transmitting”
and “non-transmitting” regimes as the driving strength
was increased, which was interpreted as a “dissipative
phase transition” and was reproduced within a semi-
classical analysis [3]. Qualitatively similar features were
also observed numerically in the semiclassical regime of
the boundary-driven Bose-Hubbard model [7], which sug-
gests that such dynamical behavior should arise even in
boundary-driven dissipative classical nonlinear systems.

Our results on the boundary-driven dissipative Klein-
Gordon chain show that the coherent injection of en-
ergy provided by a monochromatic external drive can
lead to both conventional hydrodynamic behavior and to
far-from-equilibrium phases that are beyond the purview
of conventional theories of hydrodynamics and trans-
port. For example, while we find that the experimentally
observed dynamical regimes of high and low transmis-
sion are recovered within our model at weak and strong
driving amplitudes respectively, with the weakly-driven
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FIG. 1: Schematic of the set-up considered in this paper. The system consists of N anharmonic oscillators with on-site
potential U(r) and inter-particle coupling V (rij). The system is coupled at either end to two reservoirs, which are taken to be
semi-infinite harmonic chains. The left hand bath is also subjected to an external driving force F (t).

regime exhibiting conventional near-harmonic behavior,
the strongly-driven regime exhibits an unusual coexis-
tence of diffusive energy transport with incomplete lo-
cal thermalization. We also uncover additional dynami-
cal regimes at intermediate driving strengths, which were
not seen experimentally; these include a locally equili-
brated regime that hosts conventional hydrodynamic be-
havior, albeit with an anomalous dynamical exponent,
and an unconventional, non-hydrodynamic resonant non-
linear wave regime that shows both ballistic energy trans-
port and coherent nonlinear oscillations at the driving
frequency. All regimes but the latter persist up to the
largest system sizes we have investigated numerically,
which suggests that they correspond to genuine non-
equilibrium phases of matter1. In contrast, our numerics
indicate that the resonant nonlinear wave regime is ab-
sent in the thermodynamic limit, but should nevertheless
appear as a distinct dynamical regime at system sizes ac-
cessible to current experiments. These dynamical regimes
and their qualitative features are summarized in Table I.

Finally, besides diagnosing thermalization (or the lack
thereof) in these distinct NESSs, we propose a non-local
Lyapunov exponent as a practically useful diagnostic for
chaos in the bulk of the system. This yields a minimally
disruptive method for probing the bulk dynamics and
involves weakly perturbing the phase of the external drive
at one end of the system, before studying the effect of this
small change on the radiation emitted at the opposite end
of the system.

This paper is organized as follows: in Sec. II, we de-
fine the boundary-driven dissipative Klein-Gordon chain
starting from a microscopic model that includes the cou-
pling to external reservoirs and an external coherent

1 To show convincingly that these distinct regimes survive in the
thermodynamic limit would require theoretical arguments be-
yond the primarily numerical evidence in this paper. For this
reason, we refer to dynamical “regimes” rather than “phases”
throughout this work.

drive. As we show in Appendix A, the reservoirs can
be systematically eliminated with the effective dynamics
of the system governed by generalized Langevin equa-
tions that include a coherent drive acting on one end
and incoherent dissipation localized at both ends of the
chain. In Sec. III, we discuss the various probes, includ-
ing the energy current and the non-local Lyapunov expo-
nent, that we use to diagnose thermalization and chaos
in the NESS we obtain. As a warm-up, we consider the
analytically tractable case of the boundary-driven dissi-
pative harmonic chain in Sec. IV. We present the main
results of this paper on the fully anharmonic chain in
Sec. V. The distinct dynamical regimes that we find for
this model are characterized in Secs. V A-V D, while re-
sults on the non-local Lyapunov exponent are presented
in Sec. V E. We conclude in Sec. VI with a summary of
results and a discussion of open questions.

Quasilinear
Regime

Thermal
Regime

Resonant
Nonlinear

Wave Regime

Partially
Thermal
Regime

Non-thermal
NESS in the

bulk

Thermal
NESS in the

bulk

Non-thermal
NESS in the

bulk

Thermal
NESS in a
subregion

j ∼ F 2
d j ∼ Fα(>2)

d j ∼ F 0
d j ∼ F−2

d

Ballistic
j ∼ N0

Superdiffusive
j ∼ N−0.40

Ballistic
j ∼ N0

Diffusive
j ∼ N−1

Regular
dynamics
(λ = 0)

Chaotic
dynamics
(λ > 0)

Regular
dynamics
(λ = 0)

Chaotic
dynamics
(λ > 0)

TABLE I: Dynamical regimes for the boundary-driven
dissipative Klein-Gordon chain at system sizes N ∼ 500. The
distinct regimes (going left across the table) are obtained by
increasing the driving amplitude Fd at fixed driving
frequency ωd. Here, j refers to the steady-state current and
λ to the non-local Lyapunov exponent (see Sec. III).
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II. MODEL AND GENERAL SETUP

In this paper, we consider the setup shown in Fig. 1,
which is motivated by current circuit QED experiments
wherein a one-dimensional array of coupled circuit ele-
ments is connected via its boundaries to external reser-
voirs, which can themselves be coherently driven. This
setup generalizes the Rubin model of dissipation [10–12],
which consists of a single impurity embedded in an infi-
nite one-dimensional harmonic chain and provides a sim-
ple physical model of a heat bath whose spectral prop-
erties can be analytically calculated in terms of the mi-
croscopic parameters of the harmonic chain. Instead of a
single impurity, we consider a chain of finitely many an-
harmonic oscillators linearly coupled at its ends to leads,
a setup which has previously been considered in the con-
text of heat conduction [13–16]. Here, however, we are in-
terested instead in the interplay between driving and dis-
sipation on the system’s long time steady-state. We thus
add an external time-dependent driving force to the left
bath which mediates an effective driving on the system.
Finally, while we model the reservoirs as Rubin baths, we
will set their temperatures to zero such that they exert a
vanishing random force on the system and only generate
damping at the boundaries.

The system consists of N nonlinear oscillators with
positions {qj}Nj=1 and momenta {pj}Nj=1. The degrees

of freedom of the baths are denoted by {qj,α, pj,α}Nαj=1,
where α = L,R and Nα specifies the number of reser-
voir oscillators. The classical dynamics of the coupled
system and reservoirs is governed by the following time-
dependent Hamiltonian:

H = HS +HB,L +HB,R +Hc,L +Hc,R +Hd(t) , (1)

where the system Hamiltonian is given by

HS =

N∑
j=1

[
p2j
2m

+ U(qj)

]
+

N−1∑
j=1

V (qj+1 − qj)

+
κL
2
q21 +

κR
2
q2N . (2)

Here, m denotes the mass of the system’s oscillators
while U(r) and V (rij) specify the on-site and interac-
tion potentials respectively. Note that the final two terms
come from the coupling between the first (last) oscilla-
tor of the system and the last (first) oscillator of the left
(right) baths, with κα denoting the respective coupling
strengths. Conventionally, one also includes a counter-
term [17, 18] to ensure that the system-bath coupling
does not renormalize the bare on-site potential seen by
the system’s degrees of freedom; however, as this renor-
malization does not arise in the Nα →∞ limit, we omit
such counter-terms here.

FIG. 2: Effective description of the system after eliminating
the reservoirs. The system experiences boundary driving and
dissipation.

The bath Hamiltonians are given by

HB,L =

NL∑
j=1

[
p2j,L
2mL

+
εL
2

(qj,L − qj−1,L)
2

]
+
κL
2
q2NL,L ,

(3)

HB,R =

NR∑
j=1

[
p2j,R
2mR

+
εR
2

(qj+1,R − qj,R)
2

]
+
κR
2
q21,R ,

(4)

where we fix the left (right) boundary of the left (right)
bath to be fixed q0,L = qN+1,R = 0. The mass and inter-
particle spring constants of the reservoir oscillators are
given by mα and εα respectively. The terms describing
the linear coupling between the system and reservoirs
are given by

Hc,L = −κL q1 qNL,L, Hc,R = −κR qN q1,R , (5)

while the external driving is included through the term

Hd(t) = −qL,1F (t) . (6)

In Appendix A, we systematically eliminate the reser-
voir degrees of freedom to derive the dynamical equations
for the system. Specifically, we assume a continuous dis-
tribution of bath modes (Nα →∞), set the temperatures
of the reservoirs to zero, and take the continuum string
limit, which results in an Ohmic spectral density for the
reservoirs. This approximation results in Markovian dis-
sipation that acts only on the first and last sites of the
system and an external coherent force that drives the first
site (see Fig. 2); the resulting equations of motion are:

ṗ1 = −U ′(q1) + V ′(q2 − q1)− γ0,Lq̇1(t) + 2F (t) (7)

ṗj = −U ′(qj) + V ′(qj+1 − qj)− V ′(qj − qj−1) (8)

ṗN = −U ′(qN )− V ′(qN − qN−1)− γ0,Rq̇N (t) , (9)

with the system initialised at rest: qj(0) = pj(0) = 0.
In the remainder of this paper, we will study the

non-equilibrium steady states of the (finite) inhomoge-
neous boundary-driven dissipative system described by
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Eqs. (7)-(9). We will consider the following on-site and
inter-particle couplings:

U(r) =
mω2

2
r2 + ν

λ

4
r4 , V (rij) =

ε

2
r2ij , (10)

where ν ∈ {0, 1}. For ν = 0, these potentials describe a
harmonic chain, while for ν = 1 they describe an anhar-
monic Klein-Gordon chain with both a quadratic and a
quartic on-site potential. Further, we assume symmetric
boundary dissipation γ0,α = η and take the external driv-
ing to be periodic: F (t) = Fd/2 cos(ωdt). Setting m = 1,
we can further reduce the number of independent scaling
parameters by suitably re-scaling

qj →
√

λ

ω2
qj , t→ ωt , (11)

such that Eqs. (7)-(9) become

q̈1 = −q1 − νq31 − ε̃(q1 − q2)− η̃q̇1 + F̃d cos(ω̃dt) (12)

q̈j = −qj − νq3j − ε̃(2qj − qj+1 − qj−1) (13)

q̈N = −qN − νq3N − ε̃(qN − qN−1)− η̃q̇N , (14)

where the re-scaled parameters are

ε̃ =
ε

ω2
, η̃ =

η

ω
, F̃d =

√
λ

ω3
Fd, ω̃d =

ωd
ω
. (15)

We henceforth drop the tildes to reduce clutter and
note that the strength of the nonlinearity now appears
through the re-scaled driving amplitude. While this de-
fines a rather large and rich parameter space, we will
primarily study this system of equations as a function of
the driving amplitude Fd and driving frequency ωd, as
well as the system size N . Since the external drive pa-
rameters ωd and Fd are likely the easiest to tune in any
experiment, we are most interested in the distinct dy-
namical regimes that can appear at a fixed system size
as the drive parameters are varied.

The Hamiltonian corresponding to the above equations
of motion is given by

HS(ν) =

N∑
j=1

[
p2j
2

+
q2j
2

+ ν
q4j
4

]
+
ε

2

N−1∑
j=1

(qj+1−qj)2 (16)

where ν = 0 (resp. 1) corresponds to the harmonic
(resp. anharmonic) chain and should not be confused
with the strength of the nonlinearity, which we set
to unity in the anharmonic case. The external forcing
can be accounted for through the time-dependent term:
Hd(t) = q1Fd cos(ωdt). Note that the driving term explic-
itly breaks translation invariance, leading to all modes of
the underlying harmonic lattice being driven.

III. DIAGNOSTICS FOR CHAOS AND
THERMALIZATION

In this section, we discuss the quantities we will use to
diagnose ergodicity and thermalization (or lack thereof)

in the boundary-driven dissipative Klein-Gordon chain.

Local temperature and energy current: To explore the
dynamics of the boundary-driven dissipative anharmonic
chain, we will focus mostly on the transport properties in
the NESS induced by the interplay between the driving
and dissipation; specifically, we study the local tempera-
ture profiles and the average energy current in the NESS.
Defining a notion of local temperature first requires defin-
ing a notion of a local equilibrium state. Representing
the Hamiltonian HS in Eq. (16) as a sum of local terms

HS =
∑N
j=1 hj , a natural class of local (canonical) equi-

librium states for this system comprises phase space mea-
sures of the form

ρ(p, q) =
1

Z
exp

− N∑
j=1

βjhj(p, q)

 (17)

where Z denotes the appropriate normalization constant
and βj corresponds to the local inverse temperature. As-
suming Eq. (17) is a valid description of the NESS (below
we will test this assumption numerically), an integration
by parts implies a local version of the equipartition the-
orem [19] 〈

pj
∂hj
∂pj

〉
= Tj , (18)

which allows us to define a local temperature in terms of
the second moment of the canonical momentum distribu-
tion

Tj = 〈p2j 〉 , (19)

where 〈·〉 denotes the time-average in the NESS.
Next, to define the local energy current we look for a

discrete version of the continuity equation

∂th(x, t) +∇j(x, t) = 0 (20)

in terms of the local energy density h`. Taking the time-
derivative of the local energy density h`, we find that [20,
21]

∂h`
∂t

= − (j`+1,` − j`,`−1) , ` ∈ [2, N − 1] (21)

where

j`,`−1 = − ε
2

(p` + p`−1)(q` − q`−1), ` ∈ [2, N ] (22)

is the energy current from site `−1 to site `. Meanwhile,
for the boundary sites ` = 1, N , we find that

∂h1
∂t

= −(j2,1 − j1,L),

∂hN
∂t

= −(jR,N − jN,N−1) , (23)
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where

j1,L = p1Fd cos(ωdt)− ηp21 (24)

is the energy current entering the system from the left.
The first term is the rate of work done by the external
drive on the system and the second term gives the rate at
which energy is dissipated into the left bath (the negative
sign indicates the energy flux leaving site 1 into the left
bath due to dissipation). Similarly,

jR,N = ηp2N , (25)

which gives the rate at which the system dissipates energy
into the right bath. The system hence attains a NESS
when the average energy current j is constant in time
and the following equality holds

j = 〈j1,L〉 = 〈j`,`−1〉 = 〈jR,N 〉 = jB , ∀` ∈ [2, N ] , (26)

with the bulk energy current defined as

jB =
1

N − 1

N∑
l=2

〈jl,l−1〉 . (27)

To understand the nature of transport in the anharmonic
chain, we will study the scaling of the average energy
current with N as well as its dependence on the external
drive parameters Fd and ωd.

Local momentum distribution: Another probe that
reveals the nature of the non-equilibrium steady state is
the canonical momentum distribution along the chain.
In particular, we will check whether the local canoni-
cal momentum distributions in the NESS are Maxwell-
Boltzmann with a temperature set by the local tempera-
ture T` at a given site `. A straightforward test revealing
the (non)-Gaussianity of the canonical momentum dis-
tribution of the time-averaged ensemble (in the NESS) is
given by the kurtosis (or moment-ratio test)

Kurt` =
〈p4`〉
〈p2`〉

2 , (28)

where Kurt` = 3 holds for a Gaussian distribution i.e.,
it indicates local equilibrium with respect to the thermal
Maxwell-Boltzmann distribution

f(x) =
1√
2πT

exp

(
− x

2

2T

)
. (29)

Hence, we will use the kurtosis to measure deviations
from local thermal equilibrium.

Normal mode distribution: We will also find it useful
to characterize the system through the Fourier distribu-
tions in the NESS, both in quasimomentum (k) and fre-
quency (ω) space. We use the following transformation
to normal mode coordinates and canonical momenta:(

qj(t)

pj(t)

)
=

√
2

N

N−1∑
r=0

(
Qr(t)

Pr(t)

)
cos

[
π(2j − 1)r

2N

]
, (30)

with quasimomentum k = rπ/N ∈ [0, π) (r = 0, . . . , N −
1). Here, the r = 0 mode corresponds to a uniform trans-
lation of the chain while r = 1, . . . , N − 1 correspond
to the remaining N − 1 vibrational modes. The above
transformation differs from the standard choice because
we are considering open boundary conditions. This trans-
formation diagonalizes the undriven undamped harmonic
chain, corresponding to the Hamiltonian Eq. (16) with
ν = 0: HS(ν = 0) =

∑
k Ek, with normal mode energies

Ek =
P 2
k + ω2

kQ
2
k

2
, ωk =

√
1 + 4ε sin

(
k

2

)2

. (31)

We will use the time-averaged spectrum of mode energies
〈Ek〉 to monitor the steady-state features of the driven
dissipative chain. For instance, for the harmonic chain we
expect that the mode spectrum will exhibit a sharp peak
(which approaches a δ-function in the limit N →∞) cor-
responding to the mode being resonantly driven by the
external force. In other words, even though the external
force drives all modes (as becomes clear by transforming
the driving term Hd(t) to normal mode coordinates), in
the thermodynamic limit only the mode resonant with
the driving frequency should survive in the long-time
limit, while all others decay on a shorter timescale.

Power spectral density: The frequency response of
the system is probed through the quantity

S(ω) = log |F{p2N}(ω)| , (32)

where F{·}(ω) denotes the Fourier transform in time of
the canonical momentum at the last site of the system.
This probe is motivated by the input-output theory of
open systems [22, 23], which relates the correlation func-
tions of the last site of the chain to those of the output
fields i.e., of the reservoir modes, which are the experi-
mentally measurable quantities in circuit QED architec-
tures. In the absence of any nonlinearity in the system, we
expect that the frequency response will be synchronized
with the driving frequency; for the anharmonic Klein-
Gordon chain, we find that the frequency response re-
flects ergodicity (or its failure) as well as the nature of
transport in the NESS. Specifically, we find that a non-
ergodic NESS with ballistic transport has a frequency
response synchronized with the driving frequency, while
steady states in local thermal equilibrium, which have
diffusive transport, display a broadband frequency re-
sponse. These results suggest that the frequency response
of the output emission spectrum is a good probe for non-
linear dynamics in open systems. We note that although
a broadband spectrum arises in the Klein-Gordon chain,
a broadband spectrum does not imply a thermal NESS
in general; for example, we expect that a nonlinear inte-
grable system (such as the Toda lattice) will also exhibit a
broadband response, despite having a nonthermal NESS.
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Non-local Lyapunov exponent: As a measure of
chaos 2 in the non-equilibrium steady state, we intro-
duce the concept of a non-local Lyapunov exponent, a
diagnostic that is specifically motivated by circuit QED
experiments, for reasons we explain below. Conceptually,
this quantity is related to the classical version of the
out-of-time-ordered correlator (OTOC) [26, 27], which
measures how an infinitesimally localized perturbation
spreads in space and grows in time. While the OTOC
has been studied in various extended classical systems to
gain insight into aspects of ergodicity, nonlinearity, and
disorder [28–32], it remains largely unexplored in the con-
text of driven-dissipative systems (see however Ref. 33).
The OTOC is usually defined as follows: consider two
identical copies (A and B) of the system in the same ini-
tial state. At time t = 0, locally perturb the position of
the oscillator at site ` by an infinitesimal amount δ in
copy B and allow the systems to evolve independently
under Eqs. (12)-(14). The OTOC

D(j, t) =
|q(A)
j (t)− q(B)

j (t)|
|δ|

(33)

then measures the spatiotemporal spread of the initial
perturbation and allows one to define a finite-time Lya-
punov exponent [34].

While the above procedure is readily carried out nu-
merically, it is practically challenging to implement in
current circuit QED experiments. Spatio-temporally re-
solved readout of local observables (such as the local oc-
cupation number) has been achieved for a circuit QED
chain with N = 9 sites [35], but it is currently unfea-
sible for one-dimensional circuit QED arrays with sev-
eral (N & 20) sites to obtain local control and readout
of individual lattice sites in the bulk with the requisite
precision. Such experiments on large arrays typically do
not directly perform local measurements in the bulk of
the system but instead probe its properties indirectly by
driving one end of the array with a coherent input and
measuring the signal radiated at the opposite end [3, 23].
Given that these experiments have exquisite experimen-
tal control over the external driving parameters and can
more straightforwardly investigate the response of the
system to a change in the drive by measuring the output
radiation, we propose a modified protocol that probes
chaos in the bulk by measuring how the output at one
boundary responds to an infinitesimal change in the in-
put initially localized at the opposite boundary.

Consider two copies (A and B) of the system with
identical initial conditions and allow them to evolve for
several driving periods T = 2nπ/ωd until they reach the
steady state. At time T , we shift the phase of the external
drive in copy B by an infinitesimal amount φ � 1 rela-
tive to copy A and then allow the systems to evolve in-
dependently under Eqs. (12)-(14). From these equations

2 Whether chaos is necessary for thermalization in isolated many-
body classical systems is an old and yet unsettled debate [24, 25].

of motion, we find that the deviation in the phase of the
external drive results in a deviation Fd/2 (φ δt)2 between
the positions of the first oscillator in the two copies at
time T + δt (δt � 1). In order to systematically track
the spatio-temporal spread of the perturbation across the
chain, we then redefine time such that t = 0 corresponds
to the time at which the positions of the first oscillator
in copies A and B differ by an infinitesimal amount δ
(δ � φ, δt� 1). In other words, the redefined time t = 0
corresponds to

δqj(t = 0) = δq
(B)
j (t = 0)− δq(A)

j (t = 0) = δ δj,1 , (34)

which is the time at which the infinitesimal perturbation
φ in the external drive results in a perturbation δ in the
position of the first oscillator. Since the experimentally
relevant quantity is the output radiation, which is related
to the dynamics of the last oscillator through the input-
output formalism [22, 23], we are interested in how this
perturbation, initially localized at the first site, grows (or
decays) at the last site of the chain. To capture this, we
study the Lyapunov exponent, defined as

λj = lim
t→∞

λj(t) = lim
t→∞

1

t

〈
ln
|δqj(t)|
|δ|

〉
s
, (35)

where we will focus primarily on j = N . Here, δqj(t) =

q
(A)
j (t)− q(B)

j (t) is the deviation between the two trajec-

tories and the average 〈·〉s denotes an average over initial
conditions drawn from the steady-state distribution.

For a chaotic system, one expects that λj(t) ap-
proaches a positive constant λj > 0 at late times, while
for non-chaotic dynamics λj(t) is always negative and
saturates to some λj ≤ 0 at late times. We note that al-
though unbounded chaotic systems can sustain chaos for
arbitrarily long times, for bounded systems (including
those in local thermal equilibrium) λj(t) always decays
as ∼ 1/t at late times for a fixed perturbation strength
δ3 such that the Lyapunov exponent must instead be
extracted from the intermediate time behavior. For a
bounded chaotic system (which satisfies |δqj(t)| ≤ q∗j ∀ t),
we expect that

〈ln δqj(t)〉s = λ(t− t(0)j ) + ln δ , t
(0)
j ≤ t ≤ t

∗
j , (36)

where t
(0)
j denotes the time it takes the initial perturba-

tion to reach the jth site and t∗j denotes the (δ dependent)
saturation time. For a chaotic system, one expects that
the propagation of the perturbation is ballistic and it

3 Strictly speaking, one should define the Lyapunov exponent as

λj = lim
t→∞

lim
δ→0

λj(t) = lim
t→∞

lim
δ→0

1

t

〈
ln
|δqj(t)|
|δ|

〉
s
.

The limit δ → 0 is impractical both experimentally and numeri-
cally, but the exponent can nonetheless be found at fixed δ from
the intermediate time behavior before the deviation saturates.
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will arrive at site j at a time t
(0)
j ∼ j/vb, where vb is the

butterfly velocity and the arrival time is defined as the

time at which the deviation satisfies δqj(t
(0)
j ) = δ [30].

Past the saturation time t∗j i.e., once δqj(t) saturates to
its maximum attainable value, λj(t) ∼ 1/t and the finite-
time Lyapunov exponent ceases to provide any physically
meaningful information.

In this paper, we study the experimentally relevant
quantity λN , which we refer to as a non-local Lyapunov
exponent because it constitutes a non-local measurement
of chaos in the system. Specifically, this quantity cap-
tures the response of the system to an infinitesimal per-
turbation in the coherent input, localized at one end of
the chain, through the output signal radiating from the
opposite end. We calculate λN (t) for the distinct non-
equilibrium steady states of the boundary-driven dissi-
pative anharmonic chain and find that it provides a clear
signature of chaos (or its absence) in the NESS. In partic-
ular, the behavior of λN (t) exhibits two different regimes:
(i) a regular, non-chaotic regime, where λN (t) < 0 ∀ t
and (ii) a chaotic regime characterized by a positive ex-
ponent λN > 0 which we extract from the intermediate
time behavior Eq. (36) since our system is bounded (see
Sec. V E). Our results demonstrate that the non-local
Lyapunov exponent λN (t) provides a crisp, experimen-
tally feasible measure for probing the presence (or ab-
sence) of chaos in boundary-driven dissipative nonlinear
chains.

Numerical procedure: Our numerical procedure for
obtaining the NESS is as follows: we numerically inte-
grate Eqs. (12)-(14) using a velocity Verlet algorithm
that has been adapted to include the damping and driv-
ing [36]. In order to obtain transport properties in the
NESS, we first allow the system sufficient time to relax
to the NESS before time-averaging. In the simulations,
we integrate the dynamics with a time step ∆t = 0.005
and allow a time T = 107 (or 2× 109 time steps) for the
system to reach the NESS. Convergence to the NESS is
checked through Eq. (26), with a flat energy current pro-
file throughout the system signalling the stationary state.
We then obtain time-averaged quantities in the NESS
by simulating the equations of motion for an additional
2 × 108 time steps, with measurements taken at every
2× 104 time-steps.

IV. ANALYTIC SOLUTION FOR THE
HARMONIC CHAIN

We first consider the steady-state properties of a driven
dissipative harmonic chain, for which the equations of
motion are given by Eqs. (12)-(14), with ν = 0. While
the steady-state transport properties of a harmonic chain
in contact with finite temperature reservoirs have been
extensively studied (see e.g., Refs. [1, 15, and 37]), the
boundary-driven dissipative case is less familiar. We first

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

ωd

j/
F
d
2

FIG. 3: Steady-state energy current j vs. driving frequency
ωd for the harmonic chain with ε = 1, η = 1, N = 50. The
energy current scales quadratically with the driving
amplitude Fd.

re-write the equations of motion compactly:

q̈ = −Kq −Dq̇ + f(t) , (37)

where q = (q1, · · · , qN )T , fj(t) = δj,1Fd cos(ωdt), Dij =
ηδi,j (δj,1 + δj,N ), and

Kij = (1 + 2ε)δi,j − εδi,j(δj,1 + δj,N )− εδ|i−j|,1 . (38)

The steady-state solution to Eq. (37) is straightfor-
wardly found by going to the Fourier domain:

q(t) =

∫ ∞
−∞

dω e−iωtg(ω)F{f}(ω)

= −=
[
g(ωd)F e

−iωdt
]

(39)

where the Green’s function g(ω) is given by

g(ω) =
(
K − ω2I − iωD

)−1
, (40)

and Fj = δj,1Fd. The steady-state solution is clearly pe-
riodic and is synchronized with the driving frequency ωd
for any system size N , as expected for a linear system.

From the above analytic solution, it is also straight-
forward to obtain the time-averaged steady-state energy
currents4

〈j1,L〉 =
F 2
dωd
2
< [g1,1(ωd)]− η

F 2
dω

2
d

2
|g1,1(ωd)|2

〈j`,`−1〉 =ε
F 2
dωd
2
=
[
g`,1(ωd)g

∗
`−1,1(ωd)

]
〈jR,N 〉 =η

F 2
dω

2
d

2
|gN,1(ωd)|2 , (42)

4 Here, we have used the fact that the steady-state solution is
periodic, so that time-averaged quantities equal those averaged
over a single driving period Ω:

〈A〉 = lim
T→∞

1

T

∫ T0+T

T0

A(t) = lim
n→∞

Ω

2πn

∫ 2πn
Ω

0
A(t) =

2π

Ω

∫ 2π
Ω

0
A(t).

(41)
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FIG. 4: Numerically obtained (a) power spectrum S(ω) and
(b) time-averaged mode spectrum 〈Ek〉 in the steady-state
of the boundary-driven dissipative harmonic chain with
ε = 1, η = 1, Fd = 10, ωd = 2, and N = 500. The
steady-state response is synchronized with the driving
frequency (dashed black line in (a)) and contains only the
resonant normal mode with quasimomentum k∗ ∼ 2π/3
(dashed black line in (b)) corresponding to ωk∗ ≈ ωd. (c)
The local canonical momentum distribution (shown here for
site ` = 245) matches the analytic prediction Eq. (45) (in
red) as does (d) the kurtosis, which equals 1.5 in the bulk.

for which one can show analytically that Eq. (26) holds.
For the harmonic chain, we thus find that the steady-
state energy current scales quadratically with the driv-
ing amplitude j ∝ F 2

d , independent of system size. In
Fig. 3, we plot the time-averaged steady-state energy
current j as a function of driving frequency ωd. As ex-
pected for the harmonic chain, there is no response for
driving frequencies which lie outside the band. For driv-
ing frequencies within the band, the observed multi-
resonances result from the resonances that occur when-
ever the driving frequency approaches the eigenfrequen-
cies of the harmonic chain, which take values in the
range ωk ∈ [1,

√
1 + 4ε]5. We thus see that the steady-

state solution for the boundary-driven dissipative har-
monic chain corresponds to a periodic solution synchro-
nized with the driving frequency ωd and where only the
normal mode with eigenfrequency ωk∗ ≈ ωd survives in

5 For strong (resp. weak) dissipation, one can show [38] that the
resonant frequencies correspond to the eigenfrequencies of the
matrix K (38) for system size N − 2 (resp. N)

the long time limit. This is also confirmed numerically,
as shown in Fig. 4 (note that S(−ω) = S(ω)).

The steady-state solution for the harmonic chain allows
us to analytically compute the kurtosis (28) as well: one
can show that

〈p2`〉 =
F 2
dω

2
d

2
|g`,1(ωd)|2 , 〈p4`〉 =

3F 4
dω

4
d

8
|g`,1(ωd)|4 ,

(43)
so that

Kurt` = 1.5 ∀ ` ∈ [1, N ] (44)

is uniform across the chain and is independent of the driv-
ing parameters as well as the system size. This value of
the kurtosis reveals that the non-equilibrium steady state
for the boundary-driven dissipative harmonic chain is
non-thermal i.e., local observables are not distributed ac-
cording to the Maxwell-Boltzmann distribution. In fact,
we can analytically extract the probability distribution
for the momentum from the exact steady-state:

P (p`) =
1

π (F 2
dω

2
d|g`,1|2 − p2`)

1/2
, (45)

which corresponds to the bimodal arcsine distribution.
As shown in Figs. 4(c) and 4(d), there is excellent agree-
ment between the numerically obtained steady-state and
predictions for the exact steady-state.

For a harmonic chain with boundary couplings to ther-
mal reservoirs at different temperatures, the steady-state
reaches thermal equilibrium with a temperature that is
uniform in the bulk and the model exhibits ballistic en-
ergy transport i.e., the energy current j is independent
of system size, in violation of Fourier’s law [39, 40]. Sim-
ilarly, we find that the energy current in the boundary-
driven dissipative harmonic chain is independent of sys-
tem size: j ∼ N0, consistent with ballistic transport.
However, the NESS in this case (for driving frequen-
cies within the harmonic band) is a non-ergodic, non-
thermal energy-transporting steady-state that is driven
far from equilibrium and, in the thermodynamic limit,
corresponds to a single resonant normal mode synchro-
nized with the driving frequency.

V. DYNAMICAL REGIMES OF THE
DISCRETE KLEIN-GORDON CHAIN

We now turn to the more interesting case of the dis-
crete nonlinear Klein-Gordon chain whose Hamiltonian
is given by Eq. (16) with ν = 1. Previous works have
studied the onset of thermalization and equipartition in
the closed Klein-Gordon Hamiltonian as a consequence of
the nonlinear interactions between normal modes of the
discrete lattice [41, 42]. When this nonlinear system is
coupled at its two ends to thermal reservoirs at different
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FIG. 5: Numerically obtained steady-state energy current j
as a function of driving frequency ωd for the anharmonic
chain with N = 500 and three distinct driving amplitudes.

temperatures, it relaxes6 to a current-carrying thermal
NESS with an average steady-state current that scales
with system size as ∼ 1/N , in accordance with Fourier’s
law [45–47]. Transport in this system is generically ex-
pected to be diffusive and, in the limit of low bath tem-
peratures, the temperature profile in the NESS displays
a linear gradient ∼ 1/T across the bulk of the chain [21].

While the effect of coupling discrete nonlinear chains
to incoherent thermal reservoirs has been extensively in-
vestigated, periodically driven nonlinear chains—where
energy is injected coherently into the system—have
been less explored. Studies in this direction typically
consider the limit of weak anharmonicity and bulk
driving/dissipation, where translation invariance is re-
stored [48–53]. Here, we instead study the boundary-
driven dissipative discrete nonlinear Klein-Gordon chain,
where the periodic drive explicitly breaks translation in-
variance, and do not restrict ourselves to the limit of weak
driving (equivalently, weak anharmonicity). The equa-
tions of motion are given by Eqs. (12)-(14) with ν = 1.
In what follows, we set ε = 1, η = 1, and focus on the
NESS resulting from in-band driving i.e., on frequencies
ωd that lie within the harmonic band ωk ∈ [1,

√
1 + 4ε].

The steady-state frequency response curve for the sys-
tem is shown in Fig. 5 for three different driving ampli-
tudes Fd, where we see that the nonlinearity smooths
out the multi-resonant behavior observed in the har-
monic case. In marked contrast with the the harmonic
case, we observe a non-vanishing energy current at driv-
ing frequencies which lie outside the harmonic band,
a phenomenon referred to as “nonlinear supratransmis-
sion” [54, 55]. In particular, besides a non-vanishing re-
sponse at driving frequencies below the lower band edge
(ωk = 1), we find that the anharmonicity also effectively

6 For such anharmonic chains, convergence to the NESS, when it
can be established, only follows a stretched exponential due to
the presence of breathers [43, 44].
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FIG. 6: (a) Numerically obtained steady-state energy
current j as a function of driving amplitude Fd for the
anharmonic chain with ωd = 1.5 and N = 100, 500. The
inset shows small driving amplitudes and the dashed red line
indicates the expected behavior within the single nonlinear
phonon approximation (see Sec. V A).(b) For fixed system
size (N = 500 here), the width of the intervening plateau
region (where j ∼ F 0

d ) is sensitive to the driving frequency.
To enable a direct comparison, the current is normalized by
its maximum value as a function of Fd.

extends the upper band edge up to a value that depends
nonlinearly on the driving amplitude. While we do not
have an analytic expression for the effective upper band
edge, we numerically observe that it increases monoton-
ically with the driving amplitude.

From Fig. 5, it is also evident that the energy current
no longer behaves simply as j ∼ F 2

d ; instead, the cur-
rent decreases when the driving amplitude is increased
from Fd = 3 to Fd = 10. For driving frequencies within
the harmonic band, the characteristic behavior of the en-
ergy current as a function of the driving amplitude is
illustrated in Figs. 6(a) and 6(b), which show four qual-
itatively distinct dynamical steady-state regimes:

(A) For low driving amplitudes (equivalently, weak non-
linearity), the energy current scales as j ∼ F 2

d ,
which corresponds to the weakly perturbed quasi-
linear regime where a single nonlinear phonon is
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resonantly driven. The dynamical properties of this
non-ergodic regime with ballistic transport are dis-
cussed in Sec. V A.

(B) As shown in the inset of Fig. 6(a), the quasilin-
ear approximation breaks down at some driving
strength and the current displays a steeper depen-
dence on the driving amplitude: j ∼ Fαd , with
α > 2. This increase indicates that higher order
nonlinear effects must be accounted for and lead to
multiphonon resonances. See Sec. V B for details on
this regime, which is in local thermal equilibrium
and displays super-diffusive energy transport. For
all parameters we have studied, the crossover from
region (A) to (B) occurs smoothly.

(C) Above a certain threshold Fc1, the current satu-
rates to a constant value that is independent of Fd
and N , but is a function of ωd. This corresponds
to the resonant nonlinear wave regime, which sup-
ports ballistic transport and which we discuss in
Sec. V C.

(D) Above a second threshold Fc2, the resonant non-
linear wave is destabilized and the energy current
abruptly drops, decaying as j ∼ 1/F 2

d . As we dis-
cuss in Sec. V D, this regime of low transmission
corresponds to an unusual steady-state with diffu-
sive transport, in which only a certain spatial region
of the chain is in local thermal equilibrium, while
the rest is not in local thermal equilibrium.

Similar to what we find here, a transition between a
non-ergodic region (A) where the current grows with
the driving strength to a chaotic steady-state (D) where
the current decreases with stronger driving has been re-
ported numerically [7] and observed experimentally [3, 4]
in driven-dissipative circuit QED arrays working in the
semiclassical regime of large photon number. However,
to our knowledge, the intermediate regimes (B and C)
that we find here have not previously been discussed in
discrete driven-dissipative classical or quantum systems7.

Before elaborating on the properties of the dynami-
cal regimes described above, we briefly discuss the de-
pendence of the thresholds Fc1 and Fc2 on the driving
frequency ωd and system size N . For in-band driving, we
observe only a weak dependence of the first threshold Fc1
on ωd and N (see Fig. 6). However, the second threshold
Fc2 is strongly dependent on ωd and N . As illustrated
in Fig. 6(b), for fixed system size, Fc2 monotonically de-
creases as ωd is tuned from the lower band edge to the
upper band edge of the harmonic lattice; for driving fre-
quencies above the upper harmonic band edge, there is

7 We remark though that the appearance of a linearly stable spa-
tial pattern preceding the onset of chaos in the boundary-driven
dissipative anharmonic chain is similar to the bulk-driven dis-
sipative FPUT lattice [51], where stable patterns appear before
the transition to chaos.
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FIG. 7: Scaling of the steady-state energy current j with
system size N for different values of driving amplitude Fd at
fixed driving frequency ωd = 1.5. Markers denote numerical
data points and the dashed red line indicates the
corresponding fit.

no intermediate region (C) for any system size and the
dynamics transitions directly from (B) to (D) at a critical
driving amplitude that depends on the driving frequency
ωd and system size N . Since we are only considering in-
band driving, this direct transition is beyond the scope
of this work.

Fig. 6(a) also illustrates the system-size dependence of
the second threshold Fc2, which we find decreases with
increasing N . We observe a power-law relation but since
the exponent is sensitive to the driving frequency ωd as
well, we are unable to find a quantitative characteriza-
tion. Based on this observation, we expect that the inter-
vening region (C) will be absent in the thermodynamic
limit, where the dynamics will transition directly from
(B) to (D).

We further characterize the system-size dependence in
Fig. 7, which displays the NESS averaged steady-state
current j as a function of N for various large driving am-
plitudes Fd. For short chains j ∼ N0, which indicates
ballistic transport and (for Fd > Fc1) corresponds to
the resonant nonlinear wave regime (C). However, above
a certain chain length Nc the energy current abruptly
drops and decays as j ∼ N−1, indicating diffusive trans-
port and an onset of chaos. In Sec. V C, we argue that the
resonant nonlinear wave is linearly stable, which shows
that this crossover from ballistic to diffusive transport
is a consequence of a bulk nonlinear instability, which is
not captured by linear response. Fig. 7 also shows that Nc
depends on the driving amplitude Fd, such that stronger
driving induces this instability at smaller system sizes,
consistent with the fact that stronger driving corresponds
to stronger nonlinearity in our model. We also find that
Nc decreases as the driving frequency is increased from
the lower harmonic band edge to the upper harmonic
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FIG. 8: For an anharmonic chain of N = 5 oscillators, the
perturbative harmonic balance condition Eq. (46) (solid
lines) accurately captures the numerically observed
nonlinear response of the boundary-driven dissipative
Klein-Gordon chain (red markers) up to the onset of
multi-valued response at Fd ≈ 0.5.

band edge. However, even more extensive numerical sim-
ulations are required to find the exact relation between
Nc and the driving parameters (ωd, Fd).

Based on the above observations, we conclude that the
intermediate dynamical regime (C) is absent in the ther-
modynamic limit, where transport will generally be dif-
fusive (or possibly super-diffusive [56]) away from the
weakly perturbed quasilinear regime, which shows bal-
listic transport. However, since circuit QED experiments
typically operate at a fixed system size and study the
steady-state dynamics as a function of the external driv-
ing parameters, our results suggest that the resonant non-
linear wave will appear as a distinct dynamical regime at
system sizes accessible to current experiments.

We now discuss each of the regimes (A)-(D) and
the distinct dynamical features of their current-carrying
NESS in detail, followed by results on the non-local Lya-
punov exponent.

A. Weakly Perturbed Quasilinear Regime

In the perturbative regime of weak driving (equiva-
lently, weak nonlinearity), the boundary-driven dissipa-
tive Klein-Gordon chain exhibits a many-body version of
the “foldover” effect familiar from the theory of nonlin-
ear resonance in few-body anharmonic oscillators, such as
the Duffing oscillator. We can capture this approximately
through the harmonic-balance approximation, applied to
the nonlinear chain Eq. (14), which yields the system(
−ω2

dδij + iωdDij +Kij + 3|ai|2δij
)
aj = (Fd/2)δi,1

(46)
of N coupled nonlinear equations for the steady-state re-
sponse qj = aje

iωdt + a∗je
−iωdt at the driving frequency.

For sufficiently weak driving, which corresponds to weak

nonlinearity (see Eq. (15)), the onsite positive-frequency
response aj(ωd) at the driving frequency is single-valued
and the harmonic-balance equation Eq. (46) can be
solved by numerical iteration, yielding foldover of each
single-phonon resonance that is qualitatively similar to
what is seen in the Duffing oscillator and quantitatively
matches direct numerical simulations of the anharmonic
chain, as depicted in Fig. 8. Beyond the perturbative
regime, the frequency response predicted by Eq. (46) be-
comes multi-valued, and the iterative solution no longer
converges.

Nevertheless, we can further characterize this regime
by looking for solutions qj(t) = Fd cos(kj − ωdt), which
correspond to extended quasiharmonic waves i.e., non-
linear phonons. Within the rotating wave approximation
and ignoring the boundary dissipation, we can approxi-
mate the nonlinear dispersion relation as [55]

ω̃k(Fd) =

√
1 + 4ε sin2

(
k

2

)
+

3

4
F 2
d , (47)

with quasimomentum k ∈ [0, π). If we make the sin-
gle nonlinear phonon approximation, within which only
those resonant phonons are excited whose quasimomenta
satisfy ω̃k(Fd) = ωd, we find that the energy current
j ∝ F 2

d . For very small driving amplitudes, this simple
analysis is in agreement with our numerical results (see
inset of Fig. 6(a)). In the weakly perturbed quasilinear
regime, the NESS thus corresponds to a single nonlin-
ear phonon resonant with the driving frequency. Con-
sequently, the dynamics in this regime are qualitatively
indistinguishable from the regular, non-chaotic dynamics
of the harmonic system, with a negative Lyapunov expo-
nent and a uniform kurtosis Kurt` = 1.5 that is consistent
with a non-thermal NESS.

B. Thermal Regime with Super-diffusive Transport

On increasing the driving strength, the quasilinear ap-
proximation (which describes a single resonant quasi-
momentum synchronized with the drive) breaks down
and, as shown in Fig. 6(a), the observed energy current
displays a steeper increase with Fd. This is consistent
with the expectation that increasing the driving strength,
which corresponds to increasing the nonlinearity, should
lead to multiphoton resonances and an increase in the
steady-state averaged energy current. For driving fre-
quencies ωd within the harmonic band and for driving
strengths 0.5 ≤ Fd < Fc1, we find steady states with
qualitatively similar features8; we thus focus on these re-
gions of parameter space in what follows and show that
they correspond to the thermal regime of this model.

8 For Fd < 0.5 but large enough that the quasilinear approxima-
tion is invalid, we do not find uniform behavior of the NESS. We
leave a detailed investigation of this crossover from ballistic to
super-diffusive transport to future work.
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FIG. 9: Temperature profiles for the anharmonic chain with
ωd = 1.8, Fd = 1. The temperature profile clearly displays a
gradient across the bulk of the system. Inset: the
steady-state energy current decays with system size as
∼ N−0.40, indicating that transport is super-diffusive in this
regime. Markers denote numerical data points and the
dashed red line indicates the corresponding fit.

We show the NESS averaged local temperature profile
for different chain lengths in Fig. 9 for a representative
set of driving parameters corresponding to this regime
(ωd = 1.8, Fd = 1.0). Away from the boundaries, the
NESS displays a non-trivial temperature gradient across
the chain which resembles that of steady-states of an-
harmonic chains driven by thermal reservoirs at differ-
ent temperatures [21]. We note that a similar temper-
ature profile was also observed in the discrete nonlin-
ear Schrödinger equation subject to a constant boundary
forcing [57]. The inset in Fig. 9 shows that the steady-
state averaged energy current j scales with chain length
N as j ∼ N−0.40, which indicates anomalous super-
diffusive transport, in violation of Fourier’s law. We ob-
serve only a weak dependence of the exponent on the
driving parameters for NESS within this regime.

We probe this super-diffusive regime further by com-
puting its power spectrum S(ω) and time-averaged mode
spectrum 〈Ek〉 in the NESS, which are displayed in
Fig. 10. In contrast with the synchronized response of the
quasilinear regime, the emission spectrum here shows a
broadband response that is non-trivial for all frequencies
that lie within the harmonic band (indicated by dashed
red lines) and vanishes otherwise. Similarly, 〈Ek〉 displays
multiphoton resonances as well as ergodicity in the space
of normal modes. This is expected since the boundary
drive breaks translation symmetry and drives all nor-
mal modes of the harmonic lattice (albeit with varying
strength). Along with the broadband emission spectrum,
this reveals a chaotic current-carrying non-equilibrium
steady state.

Surprisingly, we find that the local canonical momen-
tum distributions in the bulk are Maxwell-Boltzmann
distributed, with a temperature set by the local temper-
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FIG. 10: Numerically obtained (a) power spectrum S(ω) and
(b) time-averaged mode spectrum 〈Ek〉 in the steady-state
of the boundary-driven dissipative anharmonic chain with
Fd = 1, ωd = 1.8, and N = 500. The ergodicity of the NESS
in this regime is reflected in the broadband emission
spectrum and multi-phonon resonances. Dashed red lines in
(a) indicate the harmonic-band edges, while dashed black
lines in (a), (b) indicate the driving frequency ωd and the
quasimomentum corresponding to ωk∗ ≈ ωd. (c) The local
canonical momentum distribution (shown here for site
` = 305) matches the Maxwell-Boltzmann distribution
Eq. (29) (in red) with temperature set by the local
temperature T`. (d) Away from the externally driven left
boundary, the kurtosis shows good agreement with the
thermal expectation value (red dashed line).

ature T` at site `. This is shown in Fig. 10(c), where
the dashed red line corresponds to Eq. 29 with T = T`
and no fitting parameter is involved. For sites away
from the left boundary, which is being driven, the kur-
tosis is narrowly distributed around the thermal expec-
tation value Kurt` = 3, which demonstrates that the
stationary state is locally equilibrated with respect to
the thermal Maxwell-Boltzmann distribution. Hence, as
the driving strength is increased away from the quasilin-
ear regime, the anharmonic chain enters a regime that
supports super-diffusive transport and a locally thermal,
current-carrying NESS. The fact that the system is lo-
cally equilibrated indicates that the observed superdiffu-
sion is a genuine hydrodynamic effect, that arises from
strong interactions between normal modes rather than
proximity to the harmonic chain.

We leave a detailed discussion of the appropriate hy-
drodynamic model for this anomalous heat conduction to
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future studies, and restrict ourselves here to some spec-
ulative remarks on the origin of this phenomenon. We
first note that at non-zero temperature, the bulk model
is expected to have no local conserved charges beyond
the energy density. The näıve expectation for single-mode
hydrodynamics in one dimension is normal diffusion, and
indeed this is the conclusion of a perturbative calculation
in the classical Klein-Gordon chain [45]. The latter cal-
culation predicts a thermal conductivity κ ∝ 1/T 2 at low
temperatures, which implies nonlinear diffusion of heat.
A weaker divergence as T → 0 would be consistent with
superdiffusion of heat, and precisely this scenario has
been argued to arise in one-dimensional metals [58]. How-
ever, the predicted 1/T 2 divergence of the thermal con-
ductivity, combined with the expectation that the bulk
energy density recovers the classical phonon gas result
h ∝ T at low temperatures, implies that the nonlinear
diffusion model ceases to be well-posed as T → 0 (see
Ref. [58] and references therein). This suggests that a
different theoretical approach is needed, since the right-
most edge of our system is always at zero temperature.

Another possibility is that the system has additional
slow modes in addition to the energy density. This sce-
nario is suggested by the fact that the super-diffusive
regime succumbs at stronger driving to a dynamical
regime with approximately conserved U(1) phase differ-
ences (see Sec. V C below), which might lead to hydro-
dynamic momentum-like modes associated with this con-
servation law. In the discrete nonlinear Schrödinger chain
at low temperature, such modes are known to give rise
to super-diffusive energy transport [59], and it is possible
that a similar mechanism is at work here. In such cases,
energy transport can be modelled as a Lévy walk, leading
to the prediction that steady-state temperature profiles
are described by the fractional diffusion equation [60].

Distinguishing conclusively between the two scenarios
outlined above requires further simulations beyond the
scope of this work; one diagnostic would be the scaling
of the effective finite-size thermal conductivity κ(N,T ),
which will increase with the system size N if additional
slow modes are responsible for the observed phenomenon.

C. Resonant Nonlinear Wave Regime

As the nonlinearity and driving strength are increased
away from the weak-coupling limit, the näıve expectation
in a generic system is that the dynamics becomes chaotic,
yielding a broadband frequency response and good mode-
sharing between the normal modes of the linear spec-
trum. For the boundary-driven dissipative Klein-Gordon
chain, these expectations are met as the drive amplitude
is increased past the weak-coupling limit, as discussed in
the previous section. Similarly, at sufficiently high driv-
ing amplitudes, the steady-state dynamics is also ergodic,
which we discuss in the next section. Intriguingly how-
ever, for finite system sizes at intermediate driving am-
plitudes Fc1 < Fd < Fc2, we find that this model sup-
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FIG. 11: Temperature profiles for the anharmonic chain with
ωd = 1.5, Fd = 10. The temperature is flat and displays no
gradient across the bulk of the system. Inset: the current is
independent of system size j ∼ N0, which demonstrates
ballistic transport in the resonant nonlinear wave regime.

ports a “resonant nonlinear wave” regime, which corre-
sponds to the plateau region in Fig. 6(a). This far-from-
equilibrium steady-state is characterized by several un-
usual properties, including a non-thermal NESS with a
frequency response that is predominantly peaked about
the driving frequency, emergent translation invariance,
non-ergodicity in the space of Fourier modes, and ballis-
tic transport. We note that while our numerics suggest a
sharp transition from (B) to (C), a more detailed analysis
is required to verify if this is indeed the case.

In Fig. 11, we show the temperature and current profile
for driving parameters (ωd = 1.5, Fd = 10) for which the
NESS belongs to the resonant nonlinear wave regime. For
system sizes below some critical value N < Nc (which de-
pends on ωd and Fd), we observe a flat temperature pro-
file in the bulk as well as a current that is independent
of system size, which shows that transport in this regime
is ballistic. These features are unexpected since they are
characteristic of the harmonic chain and, more generally,
of integrable systems, such as the Toda lattice, connected
to thermal reservoirs [61–64]. That such a regime ap-
pears at any N is surprising since the driving and the
dissipation explicitly break translation symmetry, yet we
observe a NESS with emergent translation invariance in
the bulk, as evident from the temperature profile. How-
ever, upon fixing the drive parameters and varying the
system size, this behavior is modified for longer chains
(N > Nc), beyond which the system becomes chaotic
and develops a temperature gradient (see Sec. V D for
details on this regime). As such, the system resembles
an unusual diffusive system with a very long (extensive)
mean-free path.

The resonant nonlinear wave can be further charac-
terized by its power spectrum S(ω) and time-averaged
mode spectrum 〈Ek〉 in the non-equilibrium stationary
state, which are shown in Fig. 12. The power spectrum
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FIG. 12: Numerically obtained (a) power spectrum S(ω) and
(b) time-averaged mode spectrum 〈Ek〉 in the steady-state
of the anharmonic chain with Fd = 10, ωd = 1.5, and
N = 500. The steady-state response shows a dominant peak
at the driving frequency as well as a secondary peak at 3ωd
(dashed black lines in (a)). Only the normal mode with
quasimomentum k ≈ 0 survives in the steady-state. The
dashed black line in (b) indicates the quasimomentum k∗

with ωk∗ ≈ ωd. The (c) bimodal local canonical momentum
distribution (shown here for site ` = 245) and (d) kurtosis
imply a non-ergodic, non-thermal NESS but are distinct
from those of the harmonic chain (dashed red lines).

in this regime shows a clear peak at the driving frequency
but, in contrast with the harmonic chain, also displays a
secondary peak at ω = 3ωd. This sub-dominant super-
harmonic response is a consequence of the cubic non-
linearity and, given that the linear system cannot gen-
erate higher-order harmonics, provides a crisp signature
distinguishing the anharmonic chain in this regime from
a harmonic chain. The approximate translation invari-
ance of the NESS in this regime is also evident in the
time-averaged spectrum of mode energies 〈Ek〉, which is
sharply peaked close to k = 0 rather than at the quasimo-
mentum k∗ corresponding to ωk∗ ≈ ωd, which would be
resonant in the harmonic chain. The bimodal local canon-
ical momentum distributions and kurtosis show that the
NESS is non-thermal, but also differ from the analytic
solutions obtained for the harmonic chain, as depicted in
Fig. 12. Together, these diagnostics reveal that the res-
onant nonlinear wave displays ballistic transport with a
non-ergodic, non-thermal current-carrying NESS that is
distinct from the steady-state for the linear system.

Based on these numerical observations, we expect that

the dominant behavior of the steady-state in this regime
is well-approximated by a solution that is synchronized
with the drive frequency (hence “resonant”) and has
most of its spectral weight localized around quasimo-
mentum k ≈ 0. To model the observed features of
the resonant nonlinear wave, we solve for resonant so-
lutions to the bulk Klein-Gordon dynamics (i.e. an in-
finite chain), which oscillate at the driving frequency,
qj(t) = aje

iωdt + a∗je
−iωdt. The bulk harmonic-balance

condition is given by

(−ω2
d + 1 + 3|aj |2)aj + ε(2aj − aj+1 − aj−1) = 0. (48)

Provided the driving frequency ωd > 1, this equation has
a translation invariant solution given by

aj ≡
√
ω2
d − 1

3
. (49)

As shown in Fig. 13(a), this solution is a good approxi-
mation to the numerically obtained steady-state solution
for parameter values which correspond to this dynamical
regime.

We note that this solution cannot be exact since it
implies a vanishing bulk current and a kurtosis of 1.5,
which contradicts numerics. From our numerical results,
we expect that leading-order corrections to this trans-
lation invariant solution (with spectral weight concen-
trated entirely at k = 0) correspond to higher-harmonic
terms which shift the spectral weight away from k = 0
to a small but finite value k∗ and are also responsible for
the observed deviation of the kurtosis. In fact, we can
improve our ansatz by allowing for a non-zero k as fol-
lows [65]: aj → αeijk

∗
, where k∗ ≡ k∗(ωd) depends on

the driving frequency. Using this ansatz, we find

aj = eijk
∗

√
ω2
d − 1− 2 (1− cos(k))

3
, (50)

which describes a non-chaotic nonlinear wave solution
with the same amplitude on each site but with a phase
that varies linearly across the chain, resulting in a con-
stant U(1) phase difference between neighboring sites.
The steady-state current associated with this solution
can also be calculated and is given by j = 2α2ωd sin(k),
which closely matches the numerically obtained steady-
state current. We also see numerically that the argu-
ment arg(aj) in the steady state exhibits a near-constant
shift modulo 2π as j 7→ j + 1, which provides strong
further evidence in favour of Eq. (50) (see Fig. 13(b)).
This emergent near-conservation of phase differences is
strongly reminiscent of the physics of the discrete non-
linear Schrödinger equation at low temperature [59, 66].

We dub this solution a “resonant nonlinear wave” be-
cause it is analogous to the nonlinear wave solutions that
are known to arise in other chaotic classical lattice mod-
els in the absence of driving. However, for such models,
which include the discrete nonlinear Schrödinger equa-
tion [67] and the classical XXZ chain [68], the nonlinear
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FIG. 13: (a) The harmonic-balance solution Eq. (49) (red
dashed line) provides a good approximation to the
numerically obtained amplitude aj (markers) in the bulk of
the chain for parameter values that correspond to the
resonant nonlinear wave regime. Here j = 280, ωd = 1.5, and
N = 500. (b) The phase difference ∆θ(x) is approximately
constant across the bulk of the chain. Inset: The phase θ(x)
varies linearly in the bulk. Here, ωd = 1.5, Fd = 10, N = 500.

wave is an exact solution. Although for the Klein-Gordon
chain, our nonlinear wave solution Eq. (50) is only an ap-
proximate solution to the bulk dynamics (because it in-
vokes the harmonic balance approximation), the robust-
ness of our numerical observations suggests that Eq. (50)
may be close to an exact periodic orbit of the bulk Klein-
Gordon system. It for this reason that we refer to the
solution Eq. (50) as a “resonant nonlinear wave”. To the
best of our knowledge, this phenomenon has not been
reported before in anharmonic chains, though it is akin
to the nonlinear normal modes that can arise in Fermi-
Pasta-Ulam-Tsingou (FPUT) chains without driving and
dissipation [69, 70].

We now consider linear (modulational) stability of the
solution Eq. (50), by considering time-dependent pertur-
bations of the form qj(t) = (aj + bj(t))e

iωdt + (a∗j +

b∗j (t))e
−iωdt, with |bj | � aj and |ḃj | � ωd|bj |. Within

the rotating wave approximation, this yields

2iωdḃj = (1− ω2
d)(bj + b∗j )− ε(2bj − bj+1 − bj−1). (51)

Solving for normal modes bj = uje
λt + v∗j e

λ∗t of this

equation and Fourier transforming in space, we find that
the exponents λ(Q) at wavenumber Q satisfy

λ(Q)2 = −2ε sin2Q/2

ω2
d

(
2ε sin2Q/2 + ω2

d − 1
)
< 0 (52)

for ωd > 1, implying that the resonant nonlinear wave
solution is stable to weak modulations. The above ana-
lytical prediction of linear stability is consistent with the
numerical observation of vanishing Lyapunov exponents
in this regime (see Sec. V E).

Despite its linear stability, we find numerically that, at
fixed system size, the resonant nonlinear wave undergoes
a nonlinear instability as the driving force is increased
past a certain threshold Fc2, as shown in Fig. 6(a). Past
this threshold (which depends on the drive frequency ωd),
the single-mode single-frequency approximation breaks
down due to the broadening of the k ≈ 0 peak and the
system enters a chaotic regime, which we discuss in the
following section. We also observe numerically that for
fixed driving parameters, the resonant nonlinear wave
decays in real space in sufficiently long chains, at a wave-
length Q−1 ∝ N (see Fig. 7). We attribute this break-
down to a bulk nonlinear instability that is not captured
by linear response. While our results indicate that the
resonant nonlinear wave will disappear in the thermody-
namic limit, it should nevertheless appear as a distinct
dynamical regime at system sizes accessible to current
circuit QED experiments operating near the semiclassi-
cal limit.

D. Spatial Ballistic-to-Diffusive Crossover with
Diffusive Transport

The final dynamical regime that we find for the
boundary-driven dissipative discrete anharmonic chain is
obtained once the driving amplitude is increased past the
second threshold Fd > Fc2 with N fixed or when the
chain length is increased past Nc for a fixed drive. As
discussed in the previous section, the resonant nonlinear
wave is linearly stable and so the onset of this instability
is most likely due to a bulk nonlinear instability, which
should be visible as a broadening of the k ≈ 0 peak ob-
served in the time-averaged mode spectrum 〈Ek〉. While
we do not have an analytic understanding of this onset, it
is likely that the nonlinear interactions between the res-
onant nonlinear wave solution Eq. (49) and the phonon
modes of the underlying harmonic lattice are responsible
for this broadening, which causes the resonant nonlin-
ear wave to decay [71]. As we now discuss, this strongly
driven regime corresponds to a highly unusual NESS that
is only locally thermalized over part of the chain and
is not locally thermal elsewhere, seeming to resemble a
ballistic-to-diffusive crossover occurring in space, rather
than time.

The NESS averaged temperature profile for driving pa-
rameters corresponding to this regime (ωd = 2.0, Fd =
10.0) is shown in Fig. 14 for various system sizes. For
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FIG. 14: Temperature profiles for the anharmonic chain with
ωd = 2.0, Fd = 10. The steady-state in this regime is
spatially inhomogeneous, with a temperature profile that is
initially flat but then develops a gradient further along the
chain. Upper inset: the steady-state energy current decays
with system size as ∼ N−1, indicating that transport is
diffusive in this regime. Markers denote numerical data
points and the dashed red line indicates the corresponding
fit. Lower inset: the spatial extent over which the system
displays a temperature gradient increases with the drive
amplitude Fd, which shows that this is not merely a
boundary effect (here N = 500).

system sizes above Nc (below which we observe a reso-
nant nonlinear wave), the temperature profile is highly
nonlinear, with a temperature gradient that vanishes for
an extensive number of sites on the left part of the chain
(closer to the driven boundary), but is non-trivial for an
extensive number of sites on the right part of the chain
(closer to the undriven boundary). Näıvely, one would ex-
pect a profile similar to the thermal regime (see Sec. V B),
where the entire bulk of the chain supports a thermal gra-
dient, but the interplay between inhomogeneous driving,
dissipation, and nonlinearity here results in an atypical
steady state in which energy is predominantly localized
in the initial section of the chain.

We emphasize that the presence of a non-trivial gradi-
ent along the latter part of the chain cannot be regarded
as a boundary or “skin” effect. Firstly, as evident from
Fig. 14, the spatial extent of this region increases with
system size N and is thus extensive, in contrast with a
boundary layer which should possess a depth that re-
mains finite as N → ∞. Secondly, the lower inset of
Fig. 14 illustrates that the width of this region grows
with the driving strength, which further suggests that
the observed features are not merely a boundary effect.
While we did not obtain a convergent NESS for larger
driving amplitudes than those displayed for N = 500,
based on these results it is reasonable to expect that as
Fd is increased even further, the entire chain will eventu-
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FIG. 15: Numerically obtained (a) power spectrum S(ω) and
(b) time-averaged mode spectrum 〈Ek〉 in the steady-state
of the boundary-driven dissipative anharmonic chain with
Fd = 10, ωd = 2.0, and N = 500. The emission spectrum is
broadband and extends outside the upper harmonic band
edge, while the mode spectrum shows a broadening around
the translation invariant quasimomentum k ≈ 0. Dashed red
lines in (a) indicate the harmonic-band edges, while dashed
black lines in (a), (b) indicate the driving frequency ωd and
the quasimomentum corresponding to ωk∗ ≈ ωd. (c) The
local canonical momentum distribution (shown for ` = 480)
matches the Maxwell-Boltzmann distribution Eq. (29) (in
red) with temperature set by the local temperature T` for
sites ` & 415. (d) The kurtosis matches the thermal
expectation value (red dashed line) only for sites ` & 415.

ally develop a temperature gradient9. Finally, we observe
normal diffusive transport in this regime (see upper inset
of Fig. 14 and also Fig. 7), which is consistent with this
being a bulk phenomenon; were it a boundary effect, we
would have observed ballistic transport associated with
the flat temperature profile displayed by the resonant
nonlinear wave.

We can characterize this dynamical regime further
through the probes defined in Sec. III, namely the power
spectrum S(ω) and the time-averaged mode spectrum

9 We note however that in the limit Fd →∞, the first driven site
will become dynamically decoupled from the rest of the chain,
leading to a vanishing energy current and trivial dynamics for
all other sites. However, we do not discuss this regime here as
our numerics did not converge to a stationary state for N = 500
beyond Fd ≈ 25.
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〈E(k)〉 in the steady-state (see Fig. 15). While the emis-
sion spectrum is broadband as in the thermal regime,
here we also observe a non-trivial response for frequen-
cies above the upper harmonic band edge, which demon-
strates that this spectrum is a consequence of nonlin-
ear effects beyond multiply-excited normal modes. As
expected, the bulk nonlinear instability of the resonant
nonlinear wave solution appears as a broadening of the
k ≈ 0 peak in the mode spectrum. As Fd is increased,
we find that the growth in the spatial extent of the chain
with a temperature gradient is reflected in the excitation
of higher k-modes, indicating that full ergodicity in the
space of normal modes is restored once the entire chain
develops a temperature gradient.

Figs. 15(c) and 15(d) also show the canonical local mo-
mentum distribution (for site ` = 480 in an N = 500 site
chain) and the steady-state averaged kurtosis across the
chain respectively. The latter diagnostic reveals that only
sites located within the spatial region with a non-trivial
temperature gradient are in thermal equilibrium. Closer
inspection of the local momentum distributions reveals a
real-space crossover from the bimodal behavior observed
in the resonant nonlinear wave to a Maxwell-Boltzmann
distribution consistent with local thermalization. In other
words, the chain displays partial thermalization in real
space, by which we mean a crossover in real-space from a
region that is not in local thermal equilibrium to a region
that is in local thermal equilibrium. We note that these
features are markedly different from those of the discrete
Klein-Gordon chain in contact with thermal reservoirs,
which supports diffusive transport but a NESS that is
fully thermalized in the bulk.

E. Non-local Lyapunov exponent

We now turn to the non-local Lyapunov exponent in-
troduced in Sec. III, which provides a measure of chaos
at short and intermediate time-scales, and study this
quantity for the different non-equilibrium steady states of
the boundary-driven dissipative Klein-Gordon chain. We
note first that the NESS in all of the distinct regimes dis-
cussed above is bounded in space and in momentum; this
is most clearly seen from the local canonical momentum
distributions. Thus for any small perturbation strength
δ (equivalently, φ) the deviation δqj(t) between the per-
turbed and unperturbed trajectories will eventually satu-
rate, such that λj(t) ∼ 1/t at late-times. Nonetheless, we
find that the intermediate time behavior of λN (t) pro-
vides a sharp measure of chaos (or its absence) in the
NESS.

Fig. 16 shows the non-local Lyapunov exponent for the
different dynamical regimes discussed in preceding sec-
tions. In each case, we prepare two copies of the system in
identical initial states picked randomly from the steady-
state distribution and add an infinitesimal phase shift φ
to the external drive in one copy. As discussed in Sec. III,
after a short time this results in a deviation δ between the

positions q
(A)
1 and q

(B)
1 of the first oscillator in the two

copies; we set the time at which this occurs to be t = 0.
The two copies are then allowed to evolve independently
and an average over the steady-state distribution is taken
in order to calculate λN from Eqs. (35)-(36).

For the harmonic chain and in the quasilinear regime
of the anharmonic chain (A), which both display regu-
lar, non-chaotic dynamics, λN (t) < 0 ∀ t and λN (t) ∼ 1/t
for large t, as shown in Fig. 16(a). Similarly, λN (t) in the
resonant nonlinear wave regime (C) is also negative at all
times and approaches zero from below as 1/t. In either
case, we do not observe any dependence on the pertur-
bation strength δ. The lack of any region of exponential
growth supports our earlier conclusion that the dynamics
in these regimes is regular and non-chaotic. Thus λN (t)
does not qualitatively differentiate between these dynam-
ically distinct regimes, but does reveal their shared non-
ergodicity and similarity with integrable systems [40].

The results for the thermal regime (B), which displays
ergodicity in the space of normal modes, are shown in
Figs. 16(b)-16(d). After an early-time decrease, δq1(t)

shows power-law growth until a time t
(0)
1 , after which it

grows exponentially starting from a value ≈ δ and even-
tually saturates to q∗1 . We similarly observe in Fig. 16(b)
that δqj(t) displays a clear region of exponential growth
between time tj(0) and t∗j . The former is the time it

takes the initial perturbation to reach the jth site i.e.,

δqj(t
(0)
j ) = δ while the latter is the (δ dependent) sat-

uration time. We note that the saturation value q∗j is
site-dependent and, as we discuss shortly, is set by the
local temperature Tj .

Consistent with chaotic behavior, we observe ballistic
propagation of the perturbation, which reaches site j at

a time t
(0)
j = t

(0)
1 + j/vb. Fig. 16(c) shows a plot of t

(0)
j

versus j, with the dashed black line indicating the best
linear fit. From the inverse slope, we find that the butter-
fly velocity, or the speed of chaos propagation, is given by
vb = 0.582. We have verified that this value is indepen-
dent of the strength of the initial perturbation δ (equiva-
lently φ). Fig. 16(c) also shows that the saturation value
q∗j , normalized by the square root of the local tempera-
ture Tj , is approximately uniform across the bulk of the
chain. This confirms that “boundedness” of the dynamics
in this driven system is a consequence of its tending to
a state of local thermal equilibrium. The latter property
implies that at sufficiently long times, the characteristic
fluctuations of qj and pj at a given site are set by the

scale ∼
√
T j of thermal fluctuations at that site.

Finally, in Fig. 16(d) we plot the deviation on the last
site (averaged over the steady-state distribution) for dif-
ferent values of the initial perturbation δ. Once the initial

perturbation on this site grows to δ at time t
(0)
N , δqN (t)

shows a clear region of exponential growth at intermedi-
ate times. As expected, the saturation time grows with
decreasing δ and, consequently, so does the time scale
over which exponential increase is visible. We find re-
markably good agreement between the numerical results
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FIG. 16: (a) The non-local Lyapunov exponent λN (t) Eq. (35) is negative λ(t) < 0 ∀ t for the harmonic chain (in blue;
Fd = 10, ωd = 2.0) and for the anharmonic chain in the resonant nonlinear wave regime (in red; Fd = 10, ωd = 1.5). In each
case, λ(t) ∼ 1/t at late-times as shown on a log-log scale in the inset (the harmonic case is omitted for clarity). In the thermal
regime of the anharmonic chain (Fd = 1, ωd = 1.8), (b) the deviation < δqj(t) >s (on a log scale) at different sites displays a

region of exponential growth at intermediate times. (c) The numerically obtained time t
(0)
j at which the perturbation reaches

site j (red dots) agrees with the ballistic spread expected for a chaotic system. The dashed black line is the best linear fit.
The saturation value q∗j at each site is set by the local temperature Tj , as indicated by the blue data points. (d) The

steady-state averaged deviation < ln(δqN (t)) >s on the last site grows exponentially from time t
(0)
N until it saturates to its

maximum value δq∗N . The numerical results show excellent agreement with the behavior expected for a bounded chaotic
system (see Eq. (36)). The best fits (black lines) yield a non-local Lyapunov exponent λN ≈ 0.037, independent of the initial
perturbation δ. For all cases shown, N = 500 and averaging is performed over 100 initial conditions drawn from the respective
steady-state distributions. The perturbation strength is δ = 10−8 for (a), (b), and (c).

and the expected behavior Eq. (36) in this regime, from
which we can extract the non-local Lyapunov exponent
λN for the NESS. From the best linear fits, shown in
Fig. (16(d)), we find λN = 0.037 with no significant de-
pendence on δ. We likewise find a positive non-local Lya-

punov exponent in the partially thermalized regime (D)
(not shown here).

Thus, the non-local Lyapunov exponent λN (t) provides
a clear and unambiguous non-local measure of chaos in
the NESS: for regular, non-chaotic dynamics, we find that
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λN (t) ≤ 0∀ t while chaotic systems display exponential
growth at intermediate times from which we can obtain
a positive exponent λN . We emphasize that this quan-
tity is not intended to distinguish between different non-
ergodic regimes or to differentiate the thermal regime
with anomalous transport from the partially thermalized
regime with diffusive transport; rather, its purpose is to
diagnose chaos in the bulk of the system through a mea-
surement that only probes its boundaries.

VI. CONCLUSIONS

We have investigated the classical dynamics of
boundary-driven, dissipative, discrete Klein-Gordon
chains and revealed that they support multiple physically
distinct non-equilibrium stationary states. In contrast
to the oft-studied scenario of anharmonic chains driven
stochastically at their boundaries by thermal reservoirs,
for which the NESS is typically locally thermal and dis-
plays diffusive transport, we find that a coherent, peri-
odic drive allows a much wider range of possibilities for
the long-time dynamics. Specifically, we have shown that
for a fixed chain length, varying the driving parameters
can lead to a NESS that is either non-thermal or is in
local thermal equilibrium (either along part of the chain
or along the entire chain), with energy transport that can
be either ballistic, diffusive, or anomalous depending on
the state under consideration.

Besides these bulk probes, we have also discussed how
two experimentally relevant quantities—the power spec-
tral density S(ω) and the non-local Lyapunov exponent
λN (t)—provide clear probes of thermalization and chaos
in this system. Important questions remain for the spe-
cific model considered here: firstly, a more thorough anal-
ysis is required to reveal whether there are any sharp
transitions in this model as a function of varying drive
amplitude (at fixed system size and drive frequency) or
if these are instead smooth crossovers. While our numer-
ics suggest a transition between the resonant nonlinear
wave and the partially thermalized regime, it remains un-
clear whether this transition is sharp in the appropriate
large-system limit.

Similarly, the physics that controls the instability of
the resonant nonlinear wave solution to the partially ther-
malized regime remains to be understood. In order to iso-
late the effects of the periodic drive, we set the reservoir
temperatures to zero throughout this paper—it would
be interesting to investigate whether there is a range of
bath temperatures over which the non-thermal behavior
induced by the periodic drive remains stable. The reso-
nant nonlinear wave solution in particular is expected to
be unstable to the incoherent driving induced by thermal
reservoirs, but there likely exists a crossover region at low
bath temperatures where this solution is approximately
valid.

Our work invites further study of classical systems with
periodic driving and dissipation that are spatially local-

ized at the boundaries. For instance, while integrable sys-
tems coupled at their boundaries to thermal reservoirs
typically exhibit ballistic transport [40], the effect of a
coherent boundary drive on these systems is largely unex-
plored. Along these lines, it would be interesting to study
whether approximately integrable systems such as the
FPUT chain at low energies, which are known to display
slow relaxation towards equipartition of energy amongst
normal modes [42, 72], harbor non-equilibrium stationary
states with anomalous dynamics in the boundary-driven
dissipative setting. Given that many nonlinear classical
systems can be realized within the framework of nonlin-
ear electric transmission networks [73], our work also pro-
vides motivation for the experimental study of boundary-
driven dissipative classical arrays.

Returning to the primary motivation for this study,
a natural question is whether our results can provide in-
sight into the dynamics of interacting circuit QED arrays.
Specifically, the classical system considered here recovers
the phenomenology of driven-dissipative quantum chains,
which display a transition from a transmitting regime at
low driving amplitudes to a non-transmitting regime at
higher driving strengths [3, 4]. That a similar transition
is found (albeit with additional intervening regimes) in
our classical model suggests that the experimentally ob-
served transition is operating in the semiclassical regime
of large photon number where quantum fluctuations are
strongly suppressed.

A more thorough analysis of the corresponding theo-
retical models is thus required to shed light on the role
of quantum effects in the experimentally observed transi-
tion. For circuit QED experiments that operate near the
semiclassical limit, our results also suggest the possibil-
ity of tuning between truly far-from-equilibrium steady
states and those close to local thermal equilibrium as a
function of the driving strength. While experiments on
large arrays do not currently have access to individual
lattice sites in the bulk, signatures of these distinct dy-
namical regimes can nevertheless be probed through ap-
propriate modifications of the diagnostics discussed here.
Meanwhile, understanding the dynamics of driven, dis-
sipative quantum systems away from the semiclassical
limit continues to pose an exciting scientific challenge.
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Appendix A: Generalized Langevin Equations for
the System

In this Appendix, we derive the generalized Langevin
equations describing a many-body system of anharmonic
oscillators which is driven at one end and experiences dis-
sipation at its boundaries. Specifically, we start from the
microscopic system-bath Hamiltonian discussed in Sec. II
and discuss the various approximations under which the
system undergoes Markovian dynamics after the bath is
eliminated.

In what follows, we will assume that the system is un-
coupled from the baths at some early time t0 (with the
initial conditions of the system and baths specified at
t = t0) and that the driving force is switched off for
t < t0. In particular, we assume here that all system and
bath oscillators are initially at rest: qj(t0) = pj(t0) = 0
and qj,α(t0) = pj,α(t0) = 0. At time t0, the system and
reservoirs are coupled and the driving force is switched
on, such that the evolution of the system plus reservoirs
is governed by the total Hamiltonian Eq. (1). We will
also require a continuous distribution of bath modes i.e.,
Nα → ∞ which is necessary in order to avoid Poincaré
recurrences [12, 74] and to accurately capture dissipa-
tive effects, where energy flows irreversibly from the sys-
tem into the bath modes. Since we are interested in the
steady-state properties of the system, we will also take
the limit t0 → −∞. Finally, since we are interested here
in understanding the effects of Markovian dissipation on
the system of interest, we will take the continuum string
limit for the harmonic chain, resulting in an Ohmic spec-
tral density.

To proceed, it will be convenient to work in the normal
mode basis of bath modes. We re-write the bath Hamil-

tonians as

HB,α =
1

2
pTαM

−1
α pα +

1

2
qTαKαqα , (A1)

with qα = (q1,α, · · · , qNα,α)
T

, pα = (p1,α, · · · , pNα,α)
T

,
the mass matrix Mα = mαI, and Kα are the tri-diagonal
inter-particle coupling matrices. We can then transform
to the normal mode coordinates and momenta

Qα =
√
mαΛαqα, Pα =

1
√
mα

Λαpα , (A2)

where Λα is an orthogonal matrix which diagonalizes the
bath Hamiltonian: ΛαKαΛ

T
α = mαΩ

2
α. The elements of

the diagonal matrix Ω2
α give the normal mode frequencies

of the bath: (Ω2
α)ij = ω2

j,αδj,j(j = 1, · · · , Nα). Hence, the
bath Hamiltonians are re-expressed as

HB,α =
1

2

Nα∑
j=1

[
P 2
j,α + ω2

j,αQ
2
j,α

]
, (A3)

while the system-bath couplings become

Hc,L = − κLq1√
mL

NL∑
j=1

(ΛL)j,NLQj,L = −κLq1
NL∑
j=1

Cj,LQj,L ,

(A4)

Hc,R = −κRqN√
mR

NR∑
j=1

(ΛR)j,1Qj,L = −κRqN
NR∑
j=1

Cj,RQj,R ,

(A5)

where Cj,L = 1√
mL

(ΛL)j,NL and Cj,R = 1√
mR

(ΛR)j,1.

Finally, we can express the external driving in terms of
normal modes:

Hd(t) = −F (t)

NL∑
j=1

Dj.LQj,L , (A6)

with Dj,L = 1√
mL

(ΛL)j,1.

We now derive the generalized Langevin equations gov-
erning the dynamics of the system. The equations of mo-
tion for the system are given by

ṗ1 = −κLq1 + κL

NL∑
j=1

Cj,LQj,L − U ′(q1) + V ′(q2 − q1) ,

(A7)

ṗj = −U ′(qj) + V ′(qj+1 − qj)− V ′(qj − qj−1) , (A8)

ṗN = −κRqN + κR

NR∑
j=1

Cj,RQj,R − U ′(qN )− V ′(qN − qN−1) ,

(A9)

where f ′(r) denotes the derivative of f(r) with respect
to the argument r and pj = mq̇j . For the reservoirs, we
have

Q̈j,L =− ω2
j,LQj,L + κLq1Cj,L + F (t)Dj,L , (A10)

Q̈j,R =− ω2
j,RQj,R + κRqNCj,R . (A11)
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The bath equations of motion are linear and can be
straightforwardly solved given the initial conditions for
the reservoir modes {Qj,α(t0), Pj,α(t0)} [12]:

Qj,L(t) = Q
(0)
j,L(t) + κL

Cj,L
ωj,L

∫ t

t0

ds sin (ωj,L(t− s)) q1(s)

+
Dj,L

ωj,L

∫ t

t0

ds sin (ωj,L(t− s))F (s) , (A12)

Qj,R(t) = Q
(0)
j,R(t) + κR

Cj,R
ωj,R

∫ t

t0

ds sin (ωj,R(t− s)) qN (s) ,

(A13)

where Q
(0)
j,α is the general solution of the homogeneous

equation Q̈j,α = −ω2
j,α

Q
(0)
j,α = Qj,α(t0) cos (ωj,α(t− t0))+

Pj,α(t0)

ωj,α
sin (ωj,α(t− t0)) .

(A14)
Integrating the second term in Eqs. (A12) and (A13) by
parts and accounting for the initial conditions of the sys-
tem qj(t0) = 0, we get

Qj,L(t) = Q
(0)
j,L(t)− κL

Cj,L
ω2
j,L

∫ t

t0

ds cos (ωj,L(t− s)) q̇1(s)

+ κL
Cj,L
ω2
j,L

q1(t) +
Dj,L

ωj,L

∫ t

t0

ds sin (ωj,L(t− s))F (s) ,

(A15)

Qj,R(t) = Q
(0)
j,R(t)− κR

Cj,R
ω2
j,R

∫ t

t0

ds cos (ωj,R(t− s)) q̇N (s)

+ κR
Cj,R
ω2
j,R

qN (t) . (A16)

We plug these into the equations of motion of the system:
while the “bulk” degrees of freedom (j = 2, · · · , N − 1)
are unaffected, the “boundary” equations Eqs. (A7) and
Eqs. (A9) become

ṗ1(t) = −U ′(q1) + V ′(q2 − q1)−
(
κL − κ2LγL(0)

)
q1(t)

+ ξL(t)−
∫ t

t0

dsγL(t− s)q̇1(s) +

∫ t

t0

dsλ(t− s)F (s) ,

(A17)

ṗN (t) = −U ′(qN )− V ′(qN − qN−1)−
(
κR − κ2RγR(0)

)
qN (t)

+ ξR(t)−
∫ t

t0

dsγR(t− s)q̇N (s) , (A18)

where the quantities

ξα(t) =

Nα∑
j=1

Cj,LQ
(0)
j,α(t) (A19)

γα(t) =κ2α

Nα∑
j=1

C2
j,α

ω2
j,α

cos (ωj,αt) , (A20)

λ(t) =κL

NL∑
j=1

Cj,LDj,L

ωj,L
sin (ωj,L) , (A21)

are entirely determined by the spectral properties of the
bath. Observing that

γL(0) =

NL∑
j=1

C2
j,L

ω2
j,L

= (K−1L )NL,NL = κ−1L ,

γR(0) =

NR∑
j=1

C2
j,R

ω2
j,R

= (K−1R )1,1 = κ−1R , (A22)

we can further simplify the equations of motion for the
system’s boundary oscillators,

ṗ1(t) = −U ′(q1) + V ′(q2 − q1) + ξL(t)

−
∫ t

−∞
dsγL(t− s)q̇1(s) +

∫ t

−∞
dsλ(t− s)F (s) ,

(A23)

ṗN (t) = −U ′(qN )− V ′(qN − qN−1) + ξR(t)

−
∫ t

−∞
dsγR(t− s)q̇N (s) , (A24)

where we have also taken the limit t0 → −∞ since we
will be interested in the steady-state properties of the
system.

We recognize Eqs. (A23) and (A24) as general-
ized Langevin equations governing the dynamics of the
boundary oscillators of the system: ξ(t) is the random
forcing term, which is determined by the initial condi-
tions of the reservoir modes; γ(t) is the damping kernel,
which accounts for the interaction between the system
and reservoirs; and λ(t) is the force delay kernel [75, 76],
which incorporates the effective driving mediated by the
bath, which is explicitly being driven. Both γ and λ are
time-retarded and, along with ξ, completely characterize
the spectral properties of the reservoir.

With the general form of Langevin equations estab-
lished, we now take the limit of infinite baths Nα → ∞
as well as the continuum string limit, which corresponds
to introducing a lattice spacing a and taking the limits
a → 0,mα → 0, εα → ∞ while keeping the mass density
µα = m/a and elastic modulus Yα = εαa finite. First, as
stated earlier, we assume that all oscillators in the reser-
voir are stationary, so that Qj,α(t0) = Pj,α(t0) = 0 and
consequently ξα(t) = 0, resulting in a vanishing random
force exerted by the baths. Typically, one assumes that
the reservoirs are in thermal equilibrium at some tem-
perature Tα, with the initial conditions drawn from the
Boltzmann distribution (see e.g., Ref. [14]). Here, how-
ever, we ignore finite temperature effects since we are
interested in the steady-states that result from the exter-
nal driving force.

In order to characterize the damping (or memory) ker-
nel γα(t), it is conventional to represent it as

γα(t) = 2κ2α

∫ ∞
0

dω

π

Jα(ω)

ω
cos(ωt) , (A25)
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where Jα(ω) is the spectral density of bath modes

Jα(ω) =
π

2

Nα∑
k=1

C2
k,α

ωk,α
δ(ω − ωk,α) . (A26)

In general, the lack of translation invariance in the bath
Hamiltonians HB,α makes an analytic calculation of the
spectral density somewhat involved. However, it conve-
niently turns out that the spectral properties of the bath
are independent of κα in the continuum limit in which
we are interested [13, 14, 77], so we set κα = εα, in which
case we can obtain the eigenfunctions and normal mode
frequencies of the bath Hamiltonians exactly:

(Λα)ij =

√
2

Nα + 1
sin

(
πij

Nα + 1

)
, (A27)

ωj,α = ω0,α sin

(
πj

2(Nα + 1)

)
, (A28)

where the Debye frequency ω0,α = 2
√
εα/mα sets the

bandwidth of the reservoirs. It is then straightforward to
show that

γα(t) =
mαω

2
0,α

2(Nα + 1)

Nα∑
j=1

[
cos2

(
πj

2(Nα + 1)

)

× cos

(
ω0,αt sin

(
πj

2(Nα + 1)

))]
.

(A29)

Taking the limit Nα →∞, this becomes

γα(t) =
mαω

2
0,α

2

∫ π

0

dk

π
cos2

(
k

2

)
cos

(
ω0,αt sin

(
k

2

))
=
mαω0,α

2

J1(ω0,αt)

t
, (A30)

with Jn,x the Bessel function of the first kind. Character-
istic of the Rubin model [10, 11], we see that the memory
kernel has a memory time ∼ 1/ω0,α set by the bandwidth
of the reservoir. In order to obtain a Markovian damping
kernel, with a vanishing memory time, we take the limit

in which the reservoir is a continuous string

γα(t) =
√
mαεα

J1(ω0,αt)

t
→ γ0,αδ(t) (A31)

where we have taken the limit mα → 0, εα → ∞ and
γ0,α =

√
µαYα. This corresponds to a bath with an

Ohmic spectral density Jα(ω) = γ0,αω. For the force de-
lay kernel λ(t), we similarly find that

λ(t) =
2εL

mLω0,L

4

NL + 1

NL∑
j=1

[
sin

(
πj

2(NL + 1)

)

× cos

(
πj

2(NL + 1)

)2

sin

(
ω0,Lt sin

(
πj

2(Nα + 1)

))]
(A32)

which, in the NL →∞ limit takes the integral form

λ(t) =
2εL

mLω0,L

∫ π

0

dk

π

sin (k)
2

sin
(
k
2

)2 sin

(
ω0,Lt sin

(
k

2

))
=

8εL
mLω2

0,L

J2(ω0,Lt)

t
. (A33)

In the limit of a continuous string, we again find that
the time-retardation vanishes and the force acts instan-
taneously on the system, such that

λ(t) = 2
J2(ω0,Lt)

t
→ 2δ(t) . (A34)

Thus, starting from a microscopic model of the reser-
voirs, we have derived the following Langevin equations
for the system’s degrees of freedom:

ṗ1 = −U ′(q1) + V ′(q2 − q1)− γ0,Lq̇1(t) + 2F (t) (A35)

ṗj = −U ′(qj) + V ′(qj+1 − qj)− V ′(qj − qj−1) (A36)

ṗN = −U ′(qN )− V ′(qN − qN−1)− γ0,Rq̇N (t) , (A37)

where we have taken the limit of semi-infinite reservoirs,
which are at zero temperature and are taken to be contin-
uous strings. We see that these are precisely the equations
of motion of a finite chain of anharmonic oscillators with
Hamiltonian dynamics governed by HS in Eq. (2), which
is driven by an external force F (t) at its left boundary
and experiences damping at both ends (see Fig. 2).
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