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Abstract

We present an inelastic neutron scattering study of liquid and solid hydrogen carried out using

the wide Angular Range Chopper Spectrometer at Oak Ridge National Laboratory. From the

observed dynamic structure factor, we obtained empirical estimates of the molecular mean-squared

displacement and average translational kinetic energy. We find that the former quantity increases

with temperature, indicating that a combination of thermal and quantum effects are important

near the liquid-solid phase transition, contrary to previous measurements. We also find that the

kinetic energy drops dramatically upon melting of the crystals, a consequence of the large increase

in molar volume together with the Heisenberg indeterminacy principle. Our results are compared

with quantum Monte Carlo simulations based upon different model potentials. In general, there is

good agreement between our findings and theoretical predictions based upon the Silvera-Goldman

and Buck potentials.

I. INTRODUCTION

The condensed phases of molecular hydrogen are systems of fundamental interest to

quantum many-body physics. Due to their light mass, the zero-point motion of hydrogen

molecules makes a significant contribution to the atomic-scale structure and dynamics of liq-

uid and solid hydrogen. The importance of quantum-mechanical effects places the condensed

phases of molecular hydrogen in a position between classical substances, on the one hand,

and highly degenerate quantum fluids and solids, on the other[1]. Current scientific interest

in hydrogen encompasses a broad range of topics, including molecular superfluidity[2–4],

hydrogen storage materials [5], planetary science [6], and thermonuclear fusion [7, 8]. More

generally, nuclear quantum effects are significant in materials comprised of light atoms [9]

and in hydrogen-bonding substances [10, 11].

Despite its basic role in condensed hydrogen, the molecular momentum distribution is

not fully understood at present. Several groups have carried out inelastic neutron scattering

measurements of the average molecular kinetic energy 〈EK〉 of liquid para-hydrogen [12–16].

Unfortunately, experiments performed with the TOSCA [13, 14] and MARI [15] spectrom-
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eters yield conflicting values for average kinetic energy in the liquid state. In particular, at

16.5 K, the former groups finds that 〈EK〉 is 60.3(6) K, whereas the latter group obtains a

value of 67.8(3) K. Recent quantum Monte Carlo simulations of liquid para-hydrogen, built

upon different model pair potentials, yield similarly conflicting predictions for 〈EK〉 [17].

The discrepancy between the empirical estimates of 〈EK〉 makes the choice between avail-

able microscopic models of the liquid an ambiguous one. This situation sharply contrasts

with 4He, where the momentum distribution can be predicted to a high degree of accuracy

[18].

Another area of significant disagreement between inelastic neutron scattering experiments

and quantum Monte Carlo simulations concerns the relative importance of quantum and

thermal effects in the liquid-solid phase transition of hydrogen [19, 20]. Fernandez-Alonso

et al. examined the lowest rotational transition of solid hydrogen by means of the IN20

spectrometer. They obtained a temperature independent value for the molecular mean-

squared displacement 〈u2〉 of 0.56 Å
2
. On that basis, they concluded that thermal effects

play a negligible role in the hcp solid and that its properties are wholly dominated by

quantum-mechanical effects. In contrast, quantum Monte Carlo calculations predict that

〈u2〉 increases from 0.519(2) Å
2

to 0.622(2) Å
2

as the temperature is increased from 4 K to

13.8 K. This suggests that a combination of quantum and thermal effects is at play near the

liquid-solid phase transition.

In this paper, we present an inelastic neutron scattering study of liquid and solid hydro-

gen under saturated vapor pressure. In particular, we report high-precision measurements of

the molecular mean-squared displacement and average translational kinetic energy. The ex-

periment was performed using the wide Angular Range Chopper Spectrometer at Oak Ridge

National Laboratory. Empirical estimates of the molecular mean-squared displacement were

obtained from the wavevector dependence of the first rotational state transition. The mo-

mentum distribution of the hydrogen molecules was inferred from recoil scattering via the

Impulse Approximation. As shown in detail below, we find good agreement between the

new observations and quantum Monte Carlo simulations based upon the Silvera-Goldman

and Buck potentials.

For convenience, we introduce the following notation to refer to transitions between the

rotational states of molecular hydrogen. We write (J, J ′) to refer to a transition where J

and J ′ are the initial and final rotational quantum numbers, respectively. Throughout, the
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hydrogen molecules remain in their electronic and vibrational ground states.

II. EXPERIMENTAL APPROACH

A. Wide Angular Range Chopper Spectrometer

We carried out an inelastic neutron scattering study of liquid and solid hydrogen under

saturated vapor pressure using the wide Angular Range Chopper Spectrometer (ARCS) at

the Spallation Neutron Source[21, 22]. This instrument is a direct geometry, time-of-flight

spectrometer. Incident neutron energies between 15 meV and 5000 meV are available from

the decoupled poisoned water moderator. A T0 chopper blocks prompt radiation released

by the target during spallation. The incident neutron energy is chosen via time-of-flight

by a Fermi chopper located before the sample. The secondary spectrometer consists of

a cylindrical bank of 920 position sensitive 3He detectors spanning -28◦ to +135◦ in the

horizontal plane. There are two low efficiency beam monitors, one located after the Fermi

chopper and another located just before the beam stop. The beam profile observed at these

monitors is used to determine the incident neutron energy Ei and moderator emission time.

Measurements were carried out at each experimental condition using 30 meV (λ =

1.65 Å
−1

) and 500 meV (λ = 0.404 Å
−1

) incident neutrons. The 30 meV data sets re-

ported in this paper were acquired with either 834 µA ·hrs or 1668 µA ·hrs of proton charge

delivered to the target, whereas the 500 meV data sets correspond to 3330 µA · hrs. For

the Ei = 30 meV measurements, we ran a Fermi chopper that nominally possessed 1.52 mm

slit thickness, 0.35 slat thickness, a 50 mm radius, and a blade curvature of 0.580 m. This

Fermi chopper was set to a frequency of 300 Hz, and the T0 chopper was operated at 90 Hz.

For the Ei = 500 meV measurements, we employed a Fermi chopper with nominal 0.51 mm

slit thickness, 0.35 mm slat thickness, a 50 mm radius, and a blade curvature of 1.535 m.

However, as the slit package for the 500 meV measurements is rather tight, manufacturing

uncertainties imply the effective slit thickness is finer than designed. Ray-tracing Monte

Carlo simulations, discussed further in the next section, suggest that the effective slit width

is 0.192 mm. This chopper frequency was set to 480 Hz, while the T0 frequency was set to

120 Hz. The chopper frequencies were chosen to maximize the incident neutron flux at the

desired incident energies.
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The sample environment chosen for this experiment was a closed-cycle refrigerator with

aluminum tails. Research-grade hydrogen was loaded in situ to the sample cell from a

gas handling system. This system includes a refrigerated vessel containing a chromium

oxide catalyst, allowing cooled gas to undergo ortho to para conversion before being loaded.

We employed an aluminum plate cell that was oriented at thirty degrees relative to the

incident beam. The sample space was 71 mm wide, 50 mm tall, and 0.508 mm deep. A

pocket below the sample space contained a Cr(II) oxide catalyst[23], and this catalyst was in

continuous contact with the condensed hydrogen during the experiment. The temperature

of the condensed hydrogen sample was inferred from the observed vapor pressure using the

expression given by Souers et al [24].

The history of the condensed hydrogen sample is as follows. Immediately after loading

hydrogen to the cell, we cooled the sample to 5.0 K and conducted neutron scattering

measurements. We found that the initial mole fraction of para-hydrogen within the sample

was 89.41(6)%. We subsequently melted the hydrogen sample and allowed it to equilibrate

with the chromium oxide catalyst contained in the sample cell for approximately thirteen

hours. The resulting para-hydrogen concentration was 99.70(2)%. These concentrations

were inferred from the relative intensities of the (0, 1) and (1, 0) peaks, as described below.

Measurements were then carried out in the following order: 12.7 K, 10.0 K, 8.4 K, 5.0 K, and

16.5 K. Both incident energies were employed before changing temperature. The scattering

from the empty cell and sample environment was measured at 15 K.

The double-differential scattering cross section was transformed to the dynamic structure

factor by means of Mantid[25] and the Data Analysis and Visualization Environment[26].

B. Instrumental Resolution

In order to obtain accurate empirical estimates of 〈EK〉, it is necessary to account for the

effects of instrumental resolution upon the observed dynamic structure factor. At a spallation

neutron source, the resolution function of a Fermi chopper spectrometer is determined by the

velocity-time distribution of the source and the response functions of the various instrument

components, and consequently it may assume an asymmetric form[27]. In this case, the

observed peaks are significantly broader than the instrumental resolution function, making

the detailed lineshape of the latter unimportant for present purposes.
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Therefore, for the Ei = 500 meV measurements, we adopt a Gaussian approximation,

according to which the moderator pulse width, Fermi chopper pulse width, and detector

time uncertainty combine in quadrature to determine the energy resolution [28, 29]. We

obtained a moderator pulse width of 3.095 µs from Monte Carlo N-Particle Transport Code

System (MCNPX) simulations of the decoupled water moderator [30]. The observed profile

width in the first beam monitor, namely 3.19 µs, was taken as an estimate of chopper pulse

width. The detector time uncertainty is given by the width of a detector divided by the

neutron final velocity. The calculated resolution width decreases from 15.5 meV at E = 0

meV to 4.8 meV at E = 400 meV.

We performed a ray-tracing Monte Carlo simulation of the ARCS instrument with the

McStas software suite[31–33]. For Ei = 30 meV, we found excellent agreement between the

simulated and observed monitor spectra with no modification of the instrument parameters

from their nominal values. We furthermore found the simulation correctly reproduced the

elastic resolution function determined by measurements of a vanadium plate. For Ei =

500 meV, excellent agreement between simulated and observed monitor spectra was found

after refining the value of the effective Fermi chopper slit width. Because the primary

spectrometer functions analogously to a pinhole camera, where the Fermi chopper acts as

the pinhole, the second monitor is especially sensitive to the description of the moderator.

Thus, the outcome of the simulations confirms that the MCNPX description of the moderator

is valid, and that the moderator pulse width used in our resolution calculations is correct.

C. Multiple Scattering

The sample geometry was chosen to minimize the amount of multiple scattering. Ideally,

one would like each neutron to interact once with the sample before reaching the detector.

However, in practice, neutrons can undergo several scattering events within the sample, and,

for these neutrons, the simple relationship between the double-differential scattering cross

section and the dynamic structure factor is lost.

Multiple scattering is expected to be negligible here given the macroscopic scattering

cross section of the condensed hydrogen and the geometry of the sample cell. The total

neutron scattering cross section of liquid hydrogen at Ei = 500 meV is approximately 44

barns/molecule [34]. At 16.5 K, the number density of liquid hydrogen is 0.0223 Å
−3

[7].
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Accordingly, the macroscopic scattering cross section is 0.981 cm−1 and the neutron mean

free path is 1.019 cm. Given that the plate cell had a thickness of 0.508 mm and was oriented

at 30◦ relative to the incident beam, the fraction of scattered neutrons is approximately 5.6%.

III. RESULTS

A. Dynamic Structure Factor

We first consider the dynamic structure factor obtained with a 30 meV incident neutron

energy. Figure 1 (a) illustrates S(Q,E) of the initial solid hydrogen sample. Along the elastic

line (E = 0), one observes elastic incoherent scattering from ortho-hydrogen as well as Bragg

reflections of the hcp crystal. We did not employ a radial collimator in this experiment, and

so there is imperfect subtraction of the background signal originating from the aluminum

tails of the closed-cycle refrigerator. Between 0 meV and +15 meV, one observes the phonon

density of states, which peaks near +5 meV[35]. The (0, 1) transition appears as a sharp peak

near +15 meV. Beyond the rotational transition, there are combinations of this transition

with lattice vibrations, and these exhibit a local maximum near +20 meV. At -15 meV,

one sees upscattering due to the (1, 0) rotational transition. Lastly, combinations of that

rotational transition with lattice vibrations peak near -10 meV.

In Figure 1 (b), we display the dynamic structure of the hydrogen sample after equili-

bration with the catalyst contained in the sample cell. The upscattering signal and elastic

incoherent scattering have nearly, though not completely, disappeared. Along the elastic

line, the (110), (101), (110), (201), and (004) Bragg reflections are clearly seen. The (002),

(102), (200), and (112) peaks are expected to have low intensity, and they are not found.

The (103) peak is expected to be observed, but it appears to be obscured by the back-

ground. We cannot judge whether the sample is polycrystalline or a “true” powder on the

basis of the diffraction pattern. In panel (a), the observed signal from the phonon density of

states consists of incoherent inelastic scattering from ortho-hydrogen and coherent inelastic

scattering from para-hydrogen. In panel (b), the signal originates from coherent inelastic

scattering from para-hydrogen alone.

The dynamic structure factor of the liquid at 16.5 K is shown in Figure 1. Here one

observes coherent quasi-elastic scattering and the collective excitations of the liquid state[36,
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37]. The (0, 1) transition is no longer sharply defined, but instead blends smoothly and

continuously with the multi-phonon spectrum. It is apparently broadened by translational

diffusion, which has a quasi-elastic width on the order of a few meV[38].

We now turn to measurements obtained with 500 meV incident neutrons. Figure 2 (a)

displays the dynamic structure factor of solid hydrogen at 5 K. Panel (b) shows the same

data on a logarithmic intensity scale, where the superimposed dashed line represents free

molecular recoil: ER = ~2Q2/2m. The recoil line is split by the internal rotational transitions

of the molecule. Most prominent in the spectrum are the (0, 1), (0, 3), (0, 5) transitions.

B. Ortho-Para Concentrations

The concentration Xp of para-hydrogen within the sample may be inferred from the

relative intensities of the (0, 1) and (1, 0) transitions. To first order, the integrated intensities

of these peaks are given by the following expressions[39–41]:

A01 = Np · 3σij21(Qa)e−2Wp

A10 = No ·
1

3
σij

2
1(Qa)e−2Wo

Here Np and No are the number of para-hydrogen and ortho-hydrogen molecules; σi is the

incoherent scattering cross section of atomic hydrogen; jn is a spherical Bessel function of

order n; a = 0.3707 Å is the radius of gyration of the hydrogen molecule; and e−2Wp and

e−2Wo are the Debye-Waller factors of para- and ortho- hydrogen. If one assumes that the

Debye-Waller factors for the two species are identical, then it follows that the concentration

of para-hydrogen is the following:

Xp =
Np

Np +No

=
A01

A01 + 9A10

(1)

To extract the peak intensities, A01 and A01, we first integrated the dynamic structure factor

over Q to obtain the inelastic scattering function S(E). Figure 3 compares the observed

S(E) of the sample immediately after condensation and of the sample after equilibration

with the catalyst. To obtain the integrated intensities of the (0, 1) and (1, 0) peaks, we

represented them by an asymmetric double sigmoidal function f(E), and the remaining

scattering by a Gaussian:

f(E) = fS ·
1

1 + e−(E−Ec)/w

(
1− 1

1 + e−(E−Ec)/w′

)
(2)
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Here fS is a scale factor, EC is the “center” of the peak, and w and w′ are constants that

control the shape of the peak. After obtaining this parameterized description of the peak, we

obtained their intensities by numerical integration, as we have not found a closed, analytic

expression for an integral over this peak shape.

IV. DISCUSSION

A. Empirical Estimates of 〈u2〉

We now consider the molecular mean-squared displacement of our solid hydrogen sample.

As discussed in the preceding section, the integrated intensity of the first rotational transition

is proportional to the product of a rotational form factor and a Debye-Waller factor. Here

we retain the series expansion of the form factor up to fifth order[39, 40]:

A01(Q) = S ′ ·
(
3j21(Qa) + 7j23(Qa) + 11j25(Qa)

)
exp

[
−Q

2〈u2〉
3

(
1− αQ2

)]
(3)

S ′ is an overall scale factor and α is an anharmonic coefficient. When fitting the integrated

intensity versus Q, the adjustable parameters are: S ′, 〈u2〉, and α.

If the crystal were perfectly harmonic, then the molecular displacements would follow a

Gaussian distribution. The Debye-Waller factor would be Gaussian in Q and the coefficient

α would be identically zero. However, solid hydrogen is strongly anharmonic as
√
〈u2〉 is a

significant fraction of the nearest-neighbor distance. In this case, the Debye-Waller factor

can be represented via a cumulant expansion, and we have retained terms up to O(Q4).

The values of 〈u2〉 and α in the solid phase were obtained from the first rotational transi-

tion as follows. Figure 4 (a) plots S(Q,E) at Q = 2.5 Å
−1

and T = 12.7 K. The scattering

has been fit to the asymmetric double sigmoidal function, given in Equation 2, and a cubic

polynomial. Figure 4 (b) plots the integrated intensities as a function of wavevector for this

same temperature. To obtain empirical estimates of 〈u2〉 and α, we first carried out a non-

linear least-squares fit of A(Q) according to Equation 3. Unfortunately, all three adjustable

parameters are strongly correlated with one another. We then employed the differential

evolution algorithm[42] with a 5% χ2-tolerance, and took the respective pointwise errors to

represent the uncertainties on the adjustable parameters.

Table I compiles our empirical estimates of 〈u2〉 and α. We find that molecular mobility

and anharmonicity grow with increasing temperature. Moreover, both quantities are the

9



same for the initial and equilibriated solid samples, at least within experimental precision.

No values could be obtained for the liquid phase because the (0, 1) transition does not appear

as a sharp peak, but instead merges continuously with the multiphonon spectrum.

Theoretical and experimental values for 〈u2〉 of solid hydrogen under saturated vapor pres-

sure are shown in Figure 5. The ARCS data set stands in excellent agreement with the previ-

ous triple-axis measurement of Nielsen[43] and with values inferred from the phonon density

of states[35]. On the other hand, our results are at variance with the IN20 experiment[19],

where 〈u2〉 was found to possess a temperature independent value of 0.56 Å
2
. Quantum

Monte Carlo simulations[20] are in semi-quantitative agreement with experiment: the the-

ory predicts the correct behavior with temperature, although there is an overall shift to

larger values of 〈u2〉.

We here define the Lindemann ratio δ =
√
〈u2〉/a, where a is the so-named lattice

parameter of the hcp unit cell. This quantity characterizes molecular mobility relative to

the size of the crystal unit cell. Employing the lattice parameters found by Krupskii et

al [44], we find that δ increases from 0.183 to 0.193 as the temperature is increased from 5 K

to 12.7 K. This suggests that both thermal and quantum effects play roles in the liquid-solid

phase transition of molecular hydrogen.

B. Empirical Estimates of 〈EK〉

At high energies, the dynamic structure factor of liquid and solid hydrogen consists of

the molecular recoil dispersion, though split by internal rotational transitions[12]. This can

be seen in Figures 2 and 6. Ideally, one would like to determine the position, intensity, and

lineshapes of the peaks contained in the spectrum wholly empirically. Despite the quality of

the data (< 2% statistical noise and < 15 meV energy resolution), this cannot be done, as

the peaks are broad and overlapping. Therefore, it is necessary to adopt a priori assumptions

in the data analysis, and our empirical estimates of the average molecular kinetic energy

will be valid to the extent that these assumptions are valid.

We make the following assumptions: (1) the molecular momentum distribution is Gaus-

sian; (2) the incoherent approximation is valid; (3) the impulse approximation is valid;

(4) the rotational transitions in the liquid and solid states occur at the same energies as

their counterparts in the gaseous phase; and (5) the scattering from ortho-hydrogen is neg-
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ligible. The first and last assumptions are adopted for simplicity and, ultimately, their

justification turns on their adequacy in describing the observed scattering. The second as-

sumption is appropriate since the static structure factor is S(Q) ≈ 1 for Q ≥ 5 Å
−1

[45].

Our third assumption cannot be given a firm foundation, as there is currently no theory of

final state effects in condensed hydrogen available. We offer the qualitative argument that

the asymmetrical broadening produced by final state interactions should be small when the

momentum distribution is broad, as is the case in hydrogen. For (4), we appeal to Raman

spectroscopy measurements of condensed hydrogen[46]. In the liquid state, the energy of

the (0, 2) transition is reduced by 170 µeV from its value in the gaseous state. In the solid,

this transition is split into a triplet with a spacing of 250 µeV between the sub-levels. These

perturbations are far too small to observe via ARCS.

On the basis of these assumptions, we suppose that the intrinsic S(Q,E), at a given Q,

consists of a series of peaks whose positions are shifted from the recoil energy by the relevant

rotational transition energies, and whose lineshapes are determined by the momentum dis-

tribution of the molecules. In particular, the dynamic structure factor is a sum of Gaussian

peaks whose intrinsic widths are proportional to the average molecular kinetic energy:

S(Q,E) =
5∑

J=1

AJ(Q)√
2πσ2

J

exp

[
−E − EJ − ER

2σ2
J

]
(4)

AJ(Q), EJ , and σ2
J are the integrated intensity, transition energy, and the observed second

moment of the J th peak, respectively. For EJ , we use the values reported in Ref[47]. The

intrinsic width of the peak combines in quadrature with the inelastic energy resolution to

yield the observed width: σ2
J = σ2 + σ2

R. At a particular value of Q, all of the peaks in the

spectrum share a common value of σ. Thus, there are up to six adjustable parameters in

the model S(Q,E): the integrated intensities AJ(Q) and the intrinsic second moment σ2.

The average kinetic energy is: 〈EK〉 = (3m/2~2) (σ/Q)2.

Figure 6 plots representative fits to the scattering data at T = 12.7 K. In the solid

phase, the dynamic structure factor was fit using Equation 4 at wavevectors within the range

5.0 Å
−1 ≤ Q ≤ 10.0 Å

−1
and energies within the range −100 meV ≤ E ≤ +300 meV. In the

liquid state, we modeled a narrower range, with 5.0 Å
−1 ≤ Q ≤ 8.0 Å

−1
and −100 meV ≤

E ≤ +200 meV. The model provides a good, though not perfect, description of the data.

For example, in the 12.7 K data set, typical values of χ2 fall between one and ten. However,

for Q < 7 Å
−1

, χ2 reaches as high as twenty. We attribute this to two distinct factors. First,
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the number of neutron counts at low Q is apparently sufficiently high that systematic effects

(such as the definition of the energy scale, details of the peak lineshape, or the Gaussian

approximation of the resolution function) begin to impose a statistical penalty. Second, the

scattering above 200 meV is relatively flat, and the model does not fully capture this aspect

of the data.

Figure 7 illustrates the kinetic energies extracted from S(Q,E) as a function of Q at two

different temperatures. As expected, the observed kinetic energy is constant with Q. We

histogrammed the observed values, adopting the mean as the best estimate of the kinetic

energy and the standard deviation as its uncertainty.

Our empirical estimates of 〈EK〉 as a function of temperature are listed in Table I and

illustrated in Figure 8. We find that the average molecular kinetic energy is approximately

70 K in the solid state and 62 K in the liquid state. We contend that the discontinuity in

〈EK〉 at the liquid-solid phase transition is a consequence of the Heisenberg indeterminacy

principle[48] together with the large change in molar volume at the transition. According to

classical statistical mechanics, the average molecular kinetic energy of a substance is directly

proportional to the absolute temperature, and it is furthermore independent of density or

structure. However, in a quantum fluid or solid, there is a reciprocal relationship between

the amount of zero-point motion and the spatial localization of the molecules. For example,

in condensed 3He, the application of pressure increases the observed value of 〈EK〉, even

at constant temperature[49]. At the triple-point, solid hydrogen possess a molar volume

of 23.31 cc/mole, wheras the liquid has a molar volume of 26.18 cc/mole[7]. Given the

predominance of zero-point motion, one expects a larger value of 〈EK〉 in the solid state

than in the liquid state, and this is what we observe.

In Figure 8, we compare the present measurements of 〈EK〉 with several previous ex-

periments. Our empirical estimates of 〈EK〉 stand in good agreement with the findings of

the TOSCA group[13, 14]. From the phonon density of states, Colognesi et al estimate

that 〈EK〉 is 68.3(1) K at 13.3 K[35], slightly below current values. In contrast, our results

are inconsistent with the outcome of the MARI experiment, from which a kinetic energy of

≈ 68 K at 16.5 K was found[15].

Figure 8 also compiles quantum Monte Carlo predictions based upon several differ-

ent model potentials[17, 20, 50]. This includes the Silvera-Goldman[51], Buck[52], and

Patkowski[53, 54] potentials. All of these models treat interactions between hydrogen
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molecules as static, isotropic, and pairwise, but they differ in their descriptions of the

repulsive core and potential well. They are empirically supported by equation of state

measurements, molecular beam scattering experiments, and gas phase transport studies,

respectively. Not shown in Figure 8 is the prediction stemming from the Diep-Johnson

potential[55], as this model yields an identical prediction to the Patkowski potential at 16.5

K. There is excellent agreement between the ARCS measurements and simulations based

upon the Silvera-Goldman and Buck potentials.

C. Peak Intensities

The theory of neutron scattering from molecular hydrogen has been discussed by Sears[39,

40] and by Young and Koppel[41]. In particular, the latter developed a model for the

total neutron scattering cross section of hydrogen, beginning with the assumption that the

translational, rotational, and vibrational motions of the molecules are decoupled from one

another. This assumption is motivated by the empirical fact that the rotational states are

only weakly perturbed in the liquid and solid states[1, 7, 46]. Their theory offers an explicit

expression for the integrated intensities of the rotational transitions observed in the present

experiment:

A
(Y K)
J (Q) ∝ (2J + 1)|aJ(Q)|2σJ (5)

aJ(Q) =

∫ +1

−1
exp

(
−1

2

ER(Q)

Evib

µ2 + iQaµ

)
PJ(µ)dµ (6)

Here σJ is the cross section for the (0, J) channel, and it is equal to the coherent (incoherent)

scattering cross section of atomic hydrogen when J is even (odd); Evib is the first excited

vibrational level; and PJ is the J th Legendre polynomial. When ER(Q) � Evib, A
(Y K)
J (Q)

reduces to the rotational form factors given above.

The Young-Koppel theory has previously been compared to experiment in the gaseous

and condensed phases of hydrogen. While the theory successfully predicts the integrated

intensities AJ(Q) of the gas phase[56], there remain discrepancies in the condensed phases, at

both the level of the peak intensities[12] and the total neutron scattering cross section[34].

As shown above, the Sears/Young-Koppel form factors correctly describe the integrated

intensity of the (0, 1) transition at low energies. Moreover, in Ref [38], it was found that

the (1, 1) transition in liquid normal -hydrogen exhibits the appropriate Sears/Young-Koppel

form factor.
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The validity of the Young-Koppel theory at higher energies will now be considered. We

first combine the Young-Koppel theory with quantum Monte Carlo calculations. This com-

bination is obtained from Equation 4 by setting the integrated intensities equal to those

predicted by the Young-Koppel theory and by setting the intrinsic peak width equal to that

predicted by the simulations. Figure 9 illustrates a representative comparison in the solid

phase at two different values of Q. There are no adjustable parameters in this comparison,

apart from the intensity scale which has been fixed so that the maximum occurs at 100 units

in each panel. As can be seen, the combined theory is only qualitatively correct: although

the peak widths are faithfully reproduced, the peak intensities are not.

In Figure 10, we return to the outcome of the fits to Equation 4 where the integrated

intensities are treated as free parameters. Panel (a) shows that the Young-Koppel theory

is in semi-quantitative agreement with the observed intensities for transitions to odd-J

states. The deviations are consistent with those first reported by Langel et al [12]. Panel

(b) compares the predictions of the Young-Koppel theory with the observed intensities for

transitions to the even-J states. Here there are more striking, and perhaps more surprising,

differences between theory and experiment. In previous studies[12–15], transitions to even-J

were not considered in the data analysis, either because they were thought to have negligible

intensity or because the available energy resolution was too coarse to observe them. The

present study was carried out with an energy resolution three times sharper than that of Ref

[12], apparently allowing for the contribution of the even-J states to the neutron scattering

spectrum to be observed.

V. CONCLUSIONS

In this paper, we presented an inelastic neutron scattering study of liquid and solid

hydrogen under saturated vapor pressure. We obtained high-precision empirical estimates

of the molecular mean-squared displacement and the average translational kinetic energy.

Both quantities are largely shaped by quantum-mechanical zero-point motion. In the solid

state, the mean-squared displacement increases from 0.479(5) Å
2

at 5.0 K to 0.536(5) Å
2

at

12.7 K, an increase of ≈ 12%. Across the same temperature range, the average kinetic energy

of the hydrogen molecules is, to within current precision, constant. It drops precipitously in

the liquid state, going from 71.0± 1.3 K at 12.7 K to 61.5± 1.5 K at 16.5 K. The reduction
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in 〈EK〉 is a consequence of the indeterminacy principle together with the large increase in

the molar volume of the substance upon melting.

The results of the present study may be compared with both theoretical predictions and

with previous experiments. In general, we find good agreement between our measurements of

the molecular mean-squared displacement and average kinetic energy with quantum Monte

Carlo simulations based upon the Silvera-Goldman and Buck potentials. Simulations pro-

ceeding from the Patkowski potential overestimate the average kinetic energy in both the

liquid and solid states by ≈ 10%. Our results provide independent confirmation of the

empirical estimates of the kinetic energy obtained from TOSCA, whereas they offer discon-

firmation of the IN20 and MARI studies.

In our view, the outcome of this experiment sheds new light upon the liquid-solid phase

transition of molecular hydrogen, and upon the reliability of numerical models of condensed

hydrogen built upon currently available model potentials.
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TABLE I. Summary of present results.

T [K] n [Å
−3

] 〈u2〉 [ Å
2
] α [×10−3 Å

2
] δ 〈EK〉 [K]

5.0 0.0261 0.479(5) 1.09(10) 0.183 70.9± 1.2

8.4 0.0261 0.495(5) 1.38(13) 0.186 70.4± 1.0

10.0 0.0260 0.505(5) 1.47(10) 0.188 70.5± 1.2

12.7 0.0259 0.536(5) 1.68(11) 0.193 71.0± 1.3

16.5 0.0223 – – – 61.5± 1.5

FIGURES AND TABLES
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FIG. 1. The dynamic structure factor of solid and liquid hydrogen obtained with a 30 meV incident

neutron energy: (a) the solid phase with Xpara = 89.41(6)% at T = 5 K; (b) the solid phase with

Xpara = 99.70(2)%; and (c) the liquid phase at 16.5 K.

20



FIG. 2. The dynamic structure factor of solid hydrogen obtained with a 500 meV incident neutron

energy. In panel (a), S(Q,E) is shown on a linear intensity scale for Xpara = 99.70(2)% at T = 5 K.

In panel (b), the same data is shown on a logarithmic intensity scale. The dashed line indicates the

molecular recoil dispersion, and the solid lines indicate the dispersions of the (0, 1), (0, 2), (0, 3),

(0, 4), (0, 5), and (0, 6) transitions.
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FIG. 3. The inelastic scattering function S(E) of solid hydrogen near the (a) (0, 1) transition and

the (b) (1, 0) transition. Data from the initial (final) sample is shown as closed (open) circles. Fits,

described in the text, are shown as solid curves. The data in both panels has been scaled so that

the maxima in panel (a) occur at 100 arbitrary units. Where not visible, error bars are smaller

than symbol sizes.
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FIG. 4. (a) The dynamic structure factor S(Q,E) of solid hydrogen at Q = 2.5 Å
−1

and T =

12.7 K. (b) The integrated intensity of the first rotational transition at the same temperature as

a function of wavevector transfer.
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FIG. 5. Theoretical and empirical estimates of the molecular mean-squared displacement of solid

para-hydrogen. Symbol designations: ARCS result forXpara = 99.70(2)% (closed circle); triple-axis

measurement[43] (open circle); phonon density of states[35] (open squares); IN20 measurement[19]

(open diamonds); quantum Monte Carlo simulation[20] (red triangles). Solid lines are guides to

the eye. The dashed vertical line indicates the liquid-solid phase transition at 13.8 K.
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FIG. 6. The dynamic structure factor of solid hydrogen at 12.7 K: experimental data (solid black

points); model fit (solid blue curve); and resolution-broadened Gaussian components of the model

(dashed red curves). Error bars are due to Poisson counting statistics and they represent one

standard deviation.
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FIG. 7. Experimental estimates of 〈EK〉 obtained from fitting the scattering to Equation 4 at 5.0

K (closed circles) and 16.5 K (open circles). The best estimate of 〈EK〉 at each temperature is

shown by a horizontal line.
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FIG. 8. The average molecular kinetic energy of para-hydrogen under, or near, saturated va-

por pressure. Experimental estimates: present ARCS study (closed circles); LRMECS[12] (open

diamonds); TOSCA[13, 14] (open circles); MARI[15] (open square). Quantum Monte Carlo

simulations[17, 20, 50] based upon the following model pair potentials: Silvera-Goldman (light

red triangles); Buck (orange triangles); and Patkowski (dark red triangles).
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FIG. 9. The dynamic structure factor of solid hydrogen at 12.7 K where (a) Q = 7.0 Å
−1

and (b)

Q = 9.0 Å
−1

. The solid lines are obtained from the Young-Koppel theory and quantum Monte

Carlo predictions for T = 12.2 K, for which 〈EK〉 = 70.9 K. Both the experimental data and the

theoretical curves have been scaled so that the maximum intensity in each panel is 100 arbitrary

units.
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FIG. 10. The integrated intensities AJ(Q) estimated by fitting Equation 4 to the 5.0 K data set.

One obtains the closed symbols when the kinetic energy is allowed to be an adjustable parameter,

whereas one obtains the open symbols when the kinetic energy is fixed to the quantum Monte

Carlo value. In panel (a), transitions to J = 1, 3, 5 are shown as circles, squares, and triangles,

respectively. In panel (b), transitions to J = 2, 4 are shown as circles and squares, respectively. In

both panels, the continuous lines are predictions from the Young-Koppel theory.
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