
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Kondo effect in defect-bound quantum dots coupled to
math

xmlns="http://www.w3.org/1998/Math/MathML">msub>mi
>NbSe/mi>mn>2/mn>/msub>/math>
T. R. Devidas, Tom Dvir, Enrico Rossi, and Hadar Steinberg

Phys. Rev. B 107, 094502 — Published  6 March 2023
DOI: 10.1103/PhysRevB.107.094502

https://dx.doi.org/10.1103/PhysRevB.107.094502


APS/123-QED

Kondo Effect in Defect-bound Quantum Dots Coupled to NbSe2

T. R. Devidas,1 Tom Dvir,1 Enrico Rossi,2 and Hadar Steinberg1, ∗

1The Racah Institute of Physics, The Center for Nanoscience and Nanotechnology,

The Hebrew University, Jerusalem 91904, Israel

2Department of Physics, William & Mary, Williamsburg, VA 23187, USA

1



Abstract

We report the fabrication of a van der Waals tunneling device hosting a defect-

bound quantum dot coupled to NbSe2. We find that upon application of magnetic

field, the device exhibits a zero-bias conductance peak. The peak, which splits at

higher fields, is associated with a Kondo effect. At the same time, the junction retains

conventional quasiparticle tunneling features at finite bias. Such coexistence of a su-

perconducting gap and a Kondo effect are unusual, and are explained by noting the

two-gap nature of the superconducting state of NbSe2, where a magnetic field sup-

presses the low energy gap associated with the Se band. Our data shows that van der

Waals architectures, and defect-bound dots in them, can serve as a novel and effec-

tive platform for investigating the interplay of Kondo screening and superconducting

pairing in unconventional superconductors.

I. Introduction

The Kondo effect [1] is responsible for the low temperature resistivity upturn in metals

with dilute magnetic impurities [2], and is a paradigmatic problem in Condensed Matter

Physics. In the Kondo effect, the coupling of a single spin to a metallic environment causes

the formation of a magnetic screening cloud. It embodies the complexity arising when a

single particle interacts with a many-body environment, and was studied extensively using

electronic transport through GaAs quantum dots (QDs) [3], and later carbon nanotubes [4]

and single molecules [5]. In these systems, the effect manifests itself as an enhancement of

the electronic conductance due to correlations between the source and drain mediated by

an unpaired spin localized within the QD.

A natural extension of the Kondo problem involves coupling a QD to one or two su-

perconducting leads. The first experimental study where a QD in the Kondo regime was

coupled to superconducting (S) source and drain electrodes was reported by Buitelaar et

al. [6]. In this ‘S-QD-S’ geometry, the electron number in the impurity level was tuned to

an odd value via electronic gating. The SU(2) Kondo signature – zero-energy state - was
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observed whenever the Kondo temperature TK became the dominant energy scale in the

system. Such an observation falls in line with the theory of many-body singlet state for the

Kondo ground state, which can create a Kondo signature whenever the binding energy of

the Kondo singlet exceeds the superconducting energy gap ∆ [7].

Later studies have shown that even when the zero-bias Kondo feature is suppressed, an

applied source-drain bias VSD = ∆ reveals the formation of a Kondo resonance within the QD

- the strength of which appears to follow a scaling law defined by the competition between

∆ and kBTK [7, 8], where kB is the Boltzmann constant. This competition underlies a rich

set of physical phenomena involving the Andreev reflection at the QD-S interface and the

Kondo singlet formation at the QD-N (normal) interface [7, 9, 10]. Theoretical studies have

suggested that adopting a hybrid N-QD-S geometry would allow a more rigorous approach

in studying these dynamics [7, 11–13].

Experimental realizations of N-QD-S devices typically rely on clean semiconductor

nanowires (GaAs, InAs) [14], coupled to superconductor materials that could be evapo-

rated as electrodes (Pb, Nb, Al, MoRe). The advent of van der Waals (vdW) materials now

enables the study of a whole library of materials with diverse ground states [15]. Specifically,

the Transition Metal Dichalcogenides (TMD) family contains candidate 2D superconductors

(NbSe2, NbS2, PdTe2) that exhibit superconductivity from the bulk regime to the monolayer

limit [16]. Insulators such as MoS2, WSe2, and hexagonal Boron Nitride (hBN) have been

successfully implemented as barriers in tunnel junctions [17–19] and have been shown to

host atomic defects [20–22] which could be used as QDs [23–25].

In this work we demonstrate that a Kondo effect can also be realized by coupling a QD to

a layered superconductor. To place a QD in close proximity to a layered superconductor, we

make use of naturally-occurring defects in a TMD semiconductor tunnel barrier placed on

top of the superconductor NbSe2. As we have shown in previous studies, such defect-bound

dots may couple strongly to the SC, giving rise to Andreev bound state (ABS) sub-gap

conductance features [21]. Conversely, when the QD is weakly coupled, it can serve as a

sensitive spectral [22] or compressibility [25] probe. In the present case, we find a tell-

tale zero-bias conductance peak which sets in at finite in-plane and out-of-plane magnetic

field. The peak splits at higher magnetic fields, consistent with a Kondo feature. In NbSe2,

tunneling measurements resolve two gaps [17, 26]. Here we find that the Kondo feature

is correlated with a suppression in the spectral signature of the lower of these two energy
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gaps, associated with the Se band. The correlation of the peak value with the suppression

of the second gap tunneling feature suggests that the Kondo effect is mediated by carriers

belonging to the Se-derived band, which turns normal at a low magnetic field, while the

larger Nb-derived gap remains stable. Our results suggest that defect-bound QDs can be

used to study the Kondo effect in unconventional, van der Waals, layered superconductors.

II. Experimental Details

The schematic of the MoS2-graphene-NbSe2 vdW heterostructure is shown in Figure 1(a)

and the optical image of the measured device reported in this work is shown in Figure

1(b). MoS2, graphene and NbSe2 are exfoliated independently on Si/SiO2 (285 nm oxide)

substrates. The desired flakes of 3-4 layers MoS2 (tunnel barrier), monolayer graphene

and bulk NbSe2 are chosen by optical contrast. The MoS2 barrier flake is first picked up

using the polycarbonate (PC) technique. Graphene is subsequently picked up using the van

der Waals interaction between MoS2 and graphene. The picked up heterostructure is then

transferred on to a 25 nm thick bulk NbSe2 flake. The process is carried out in a glovebox

under an Argon atmosphere. Standard e-beam lithographic techniques are used to pattern

tunnel electrodes and ohmic contacts on MoS2 and NbSe2 respectively. Ti/Au electrodes

are evaporated using an e-beam evaporator with an additional Argon ion milling step prior

to the ohmic contact deposition step, so as to obtain better contact on the NbSe2 flake. No

contacts are made to the graphene flake.

III. Results

The tunneling differential conductance (dI/dV ) of the MoS2-graphene-NbSe2 stack at

28 mK and B = 0 T, is shown on the left y-axis of Figure 1(c). The spectrum exhibits

well-defined quasiparticle peaks and a hard gap - manifest in a ratio of over 100 between

the conductance outside the gap (GN) and zero-bias conductance (G0). Such a hard gap,

seen in our earlier studies on NbSe2 tunneling devices [17, 18], attests to the quality of the

tunnel junction, which suppresses two-particle tunneling contributions. The 2nd derivative

of the tunneling current (d2I/dV 2), plotted in the right y-axis of Figure 1(c) shows a clear

separation between two distinct features marked by black dashed lines. These two features
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FIG. 1. (a) Schematic of the device measured in the current work; (b) Optical image of the

measured device. NbSe2, graphene and MoS2 flakes are outlined and labelled in different colours for

easier identification. S and D indicate the source and drain electrodes respectively. (c) Left y-axis -

Differential conductance (dI/dV ) spectrum of the NbSe2-graphene-MoS2 tunnel junction depicted

in (b), Right y-axis - Derivative of the differential conductance (d2I/dV 2) spectrum measured at

28 mK. The black dashed lines track the two NbSe2 gaps present in the spectrum at 0.6 mV and

1.25 mV; (d) and (e) show the evolution of the tunneling spectrum as a function of parallel (B||)

and perpendicular magnetic field (B⊥) respectively, for low magnetic field values.

correspond to the higher energy gap, ∆1 = 1.25 mV, and the lower energy gap ∆2 = 0.6 mV.

These were identified in the past as related to the two superconducting bands in NbSe2 – the

2D-like niobium d-orbitals bands around the Γ, K points, associated with ∆1, and selenium-

derived p-orbitals which form a small 3D Fermi surface around the Γ-point, associated with

∆2 [17, 18, 26, 27].

Interestingly, the tunneling spectrum does not reveal any signature which can be asso-

ciated with the graphene layer. This can be understood considering that only for a small

range of twist angles graphene’s Fermi pockets can have some overlap with the Fermi pockets

of a TMD like NbSe2 [28]. As a result, the graphene spectrum may be decoupled from the

NbSe2.

Figure 1(d) shows the evolution of the tunneling spectra as a function of in-plane magnetic

field (B‖) applied parallel to the sample plane. The observed spectra evolve in a way which

5



is not characteristic of NbSe2 devices measured in the past [17]: First, we find that the

superconducting gap is filled even by the application of a very low field. Second, a zero-bias

conductance peak (ZBCP) develops at B‖ = 0.275 T. In what follows, we discuss possible

mechanisms for these features.

Zero-bias spectral features are rather common in proximity superconducting devices, and

may have a number of possible origins. They could be associated with Andreev bound

states (ABS) residing on the surface of a d-wave superconductor [29], or with constructive

superposition of bound states formed by reflectionless tunneling at diffusive N-S junctions

[30, 31].

Zero-bias states may appear when a QD, proximity-coupled to a superconductor, forms a

local Andreev bound state which undergoes a singlet-doublet transition [32, 33]. Conversely,

when the QD is weakly coupled to both SC (ΓSC) and normal (ΓN) leads, i.e. ΓSC,N << ∆,

QD-SC transport is dominated by single electron resonant tunneling. In this regime, the

spectrum exhibits sharp conductance peaks, but these can appear both above the gap and

below it, when the density of states (DOS) is not zero. In a recent publication [22] we have

reported the use of such a weakly-coupled QD as a sensitive spectrometer.

The zero-bias conductance peak also appears as a response to out-of-plane magnetic field

B⊥ as seen in Figure 1(e). To further study the nature of this peak, we track it’s evolution

as magnetic fields are applied in directions parallel and perpendicular to the sample plane.

Figure 2(a) represents a color scale map of the tunneling spectra vs. B‖ extending to 9 T.

Following the evolution of the zero-energy state that switches on at 0.275 T (Figure 1(d)),

the peak persists at the same energy until a magnetic field induced splitting of the state into

two distinct features is observed at 1 T. The splitting is symmetrical in VSD with respect to

zero.

Although such linear dispersions are regularly observed in ABS, here we argue that these

features are unlikely to be related with ABS, on two grounds. First, ABS features in NbSe2

usually appear at finite bias, and may converge to zero at finite field. They are observed

starting at zero magnetic field and do not require a finite field to be visible. Second, ABS

features in NbSe2 tunnel devices are observed only in very thin flakes. In any flake thicker

than a few layers, the in-plane magnetic field introduces a sub-gap tunneling signal which

obscures them [21].

We are thus led to propose that the observed feature - the zero-bias conductance peak at

6



FIG. 2. Color map of the dI/dV spectrum in (a) in-plane magnetic field (B||) and (b) out-of-plane

magnetic field (B⊥). The black arrows in (a) and (b) indicate the Zeeman split features.

a finite field, is associated with a Kondo origin.

The split states are separated by 2EZ [3, 34], EZ = ±gµBB being the Zeeman energy,

with a Landé g-factor (1.67±0.04). A similar trend is observed in the evolution of the

spectrum in B⊥ with a field induced splitting appearing at 0.6 T, shown in Figure 2(b). The

value of Landé g-factor obtained from out-of-plane data is 1.94±0.04. We note that similar

values have been seen in the past for atomic defect QDs [21, 22].

The Kondo effect sets in below a Kondo temperature TK which can be obtained through

temperature dependence or through the profile of the zero-bias conductance peak. Tem-

perature dependence measurements of the zero-bias conductance peak (B⊥ = 25 mT) are

carried out from 28 mK to 419 mK, beyond which the peak is no longer detectable above

the background. A selection of these plots is shown in Figure 3(a). The maximal zero-bias

conductance at 28 mK is 11.1 µS = 0.14 e2/h. Figure 3(b) shows a semi-log plot of zero-

bias conductance peak heights as a function of temperature, where peak height values are

obtained after suitable background subtraction. The data is fit to an empirical equation

(1) derived from the numerical renormalization group (NRG) theory for the Kondo ground

state [3, 6].

G(T ) =
Gmax[

1 +

(
21/s − 1

)(
T
TK

)2]s (1)

Where Gmax is the maximum conductance at the lowest temperature measured, TK is the

Kondo temperature and s is a dimensionless value related to the spin-state of the electron
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FIG. 3. Evolution of the sub-gap conductance (dI/dV ) spectra as a function of temperature in

the QD-NbSe2 junction (a) Scans at select temperatures; (b) Kondo peak heights as a function

of temperature, after suitable background subtraction, fitted (red solid line) to the NRG derived

empirical equation [3, 6]; (c) The zero-bias conductance peak at 28 mK, fit to the Fano function

[35] to extract the value of HWHM which defines TK [36]; (d) The zero-bias conductance peak at

28 mK, fit to the equation derived by Kretinin et al. [37] to different values of TK and s.

in the QD. The best fit to the data (solid red line) yields Gmax = 0.0695±0.003 e2/h; TK =

153±6 mK (13.2 µeV) and s = 1.4±0.3.

Clearly, the exponent s deviates from the value s = 0.22, expected for a spin 1/2 system

at the Kondo regime [3, 6]. Values removed from 0.22 could indicate that the QD is in the

mixed-valence regime, which is seen when it’s energy is close to resonance, or, alternatively,

that the spin is not 1/2. However, there are a few reasons we think this is unlikely in our

case - (i) For S>1/2, the Kondo temperature (TK) can be lower than the values that we can

extract from our measurements; (ii) The temperature dependence of the ZBCP might have

contributions arising from processes extrinsic to Kondo screening and, as we show below,

an analysis that effectively takes into account the effect of such processes returns a value of

s ≈ 0.22.

It is also possible to evaluate TK from the conductance feature line-shape. In a N-QD-S

system, the half-width at half maximum (HWHM) of the peak at the lowest temperature is
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directly related to TK [36]. Since the Kondo state involves an interaction between a discrete

state (QD) and continuum (N lead), we use the Fano function [35] to extract the HWHM

(Figure 3(c)). The function is defined as

G(VSD) = A
(ε+ q)2

(1 + ε2)
+B; ε =

(VSD − ε0)
Γd

(2)

Where ε0 is the resonance energy (0 eV in the present data), A and B are constants, Γd

is the HWHM, and q is a phenomenological dimensionless shape parameter. The HWHM

obtained is Γd = 25.8±6 µeV which corresponds to TK = 300±70 mK. The other parameters

obtained from the fit are A = -5.5±0.7 µS, B = 0.11±0.06 µS, q = 0.10±0.05.

The ambiguity in the extracted Kondo temperature has been observed earlier on N-QD-N

devices too [37, 38]. Kretinin et al. [37] improved on the earlier NRG formula by suggesting

that analysing the zero energy state at the lowest temperature as a function of a normalised

energy scale ν ≡ eVSD/(kBTK) is a more reliable method to extract the correct Kondo

temperature of the system. It was based on the argument that temperature dependence

data might have additional features arising from non-Kondo origin incorporated in the zero-

energy state as a result of which the extracted TK would not define the Kondo state alone.

The argument might hold for the anomaly in the value of s parameter we obtained using

the empirical formula fit.

Using the equation derived by Kretinin et al.:

G(T = 0, ν) =
Gmax[

1 +

(
21/s − 1

)
ν2

π

]s (3)

and assuming our base temperature is close to the condition T = 0, we plot our 28 mK data

(Figure 3(d)) along with two curves generated using Equation (3). We notice that the curve

generated by the TK and s values obtained from the temperature dependence fit (blue dash

dot) doesn’t replicate the behaviour of the measured data. However, for the values TK =

270 mK (23.26 µeV) and s = 0.22 (red dash dot), the curve closely follows the measured

data.

IV. Discussion

The results presented so far suggest that the zero-bias conductance peak we observe is

indeed associated with a Kondo feature. Yet the larger gap ∆1 = 1.25 mV is far greater
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than kBTK , regardless of the method we choose to evaluate TK . Although theoretical models

do suggest that such a co-existence is possible, with a zero-bias feature retained even when

kBTK � ∆ [7, 11, 39, 40], most experiments carried out so far on N-QD-S and S-QD-S

systems by various groups [6, 8–10, 36, 41–43] do not observe Kondo features at this limit.

Here we suggest that the co-existence between the Kondo effect and superconductivity is

a consequence of the 2-gap nature of NbSe2. Since we observe the Kondo zero-energy state

even at fields far from critical fields of bulk 2H-NbSe2, H
⊥
c2 ≈ 4 T, H

‖
c2 ≈ 17 T [44], the

normal electrons must be associated with a superconducting band that turns normal even

at such low fields. As discussed previously, bulk NbSe2 has two superconducting gaps - one

associated with niobium based bands around the Γ and K points and a second proximitized

inner gap from the small selenium based bands around the Γ point [17, 27] whose signatures

are observed at 1.25 mV and 0.6 mV respectively.

To elucidate the role of the Se-derived band in mediating the Kondo effect, we examine

the correlation between the appearance of a zero-energy state and the second band in out-

of-plane magnetic field (Figure 4). The out-of-plane magnetic field is chosen since the inner

gap exhibits stronger response to its onset [18]. Figure 4(a) shows the zero-bias conductance

as a function of B⊥ as it is swept in the positive direction (indicated by the red arrow).

A complete dataset tracing the zero-bias conductance G0 from negative to positive fields is

shown in Supplementary Figure 1 [45]. The conductance reaches the lowest value of 0.16 µS

at B⊥ = -0.2 mT, where the tunneling spectrum reaches a sub-gap conductance typical of a

hard-gap NbSe2 junction [17]. At this limit, there is no indication of a zero-bias conductance

peak.

As B⊥ is increased, G0 increases in discrete steps of ≈ 1 µS, observed at 1.0 mT, 2.2 mT

and 3.1 mT. As B⊥ is further increased, the G0 increase becomes continuous. Tunneling

spectra are measured for fields that mark a discrete increase in G0 (Figure 4(b)) and also

at two higher fields. The second derivative of tunneling current as a function of magnetic

field is plotted in Figure 4(c). The data in Figure 4(b)-(c) are offset along the y-axis for

clarity. We observe that the first signature of a distinct zero-bias peak appears at a field of

3.1 mT and persists at higher fields. Simultaneously, the feature at 0.6 mV corresponding

to the Se derived superconducting bands loses prominence until it is difficult to resolve from

its background.

Figure 4(d) shows the evolution of the zero-bias conductance peak height (left y-axis)
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FIG. 4. (a) Differential conductance at zero-bias (G0) as a function of B⊥ at mT resolution. The

red arrow indicates the sweep direction of the B⊥; (b) sub-gap tunneling spectra at various field

values indicated by the coloured dotted lines in (a); (c) second derivative of the tunneling current

at field values indicated by dotted lines in (a); (d) zero-bias conductance peak height (left y-axis)

and height of the feature at 0.6 mV in second derivative of tunneling current (right y-axis) as a

function of B⊥

and the height of the feature in the second derivative of tunneling current (right y-axis)

corresponding to the inner Se superconducting band at 0.6 mV. An inverse correlation is

evident from the data: The peak at 0.6 mV is the strongest at -0.2 mT where the con-

ductance at zero-bias reaches the lowest value. With reduction in height of the feature in

magnetic field, the zero-bias conductance feature grows in strength. The reduced height of

the zero-bias conductance peak at higher fields can be attributed to the higher background

conductance with magnetic field. Supplementary Figure 2 [45] shows the individual sub-gap

tunneling spectra shown in Figure 4(b) with their background conductance. The discrete

jumps (≈ 1µS) in the zero-bias conductance with magnetic field can be associated with the

discrete entry of vortices in the tunnel junction area of NbSe2 [18]. This correlation thus

supports the interpretation that the Se band turning normal could assist in the spin-flip

co-tunneling event, as depicted in the schematic Figure 5(a). Interestingly, we have shown
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FIG. 5. (a) Schematic of spin-flip co-tunneling event – (above) prohibited at zero applied magnetic

field due to absence of states within the superconducting gap, (below) allowed via filled second

band in NbSe2 in an applied magnetic field; (b) Sub-gap density of states of NbSe2 as a function

of B||, obtained via a large N expansion with a broadening δ = 0.04 meV. The inset shows the

experimental differential tunneling conductance data for the same values of B||.

in a previous work that in the weak coupling limit, a defect-bound QD favors coupling to

the Se-band over coupling to the Nb-bands [22].

To better understand the origin of the observed zero-bias conductance peak we study

a Kondo model in which we treat the weakly coupled QD as an impurity, with magnetic

moment S, placed at position R. The Hamiltonian for the electrons in NbSe2 can be written

as H = H0 +HJ , where H0 is the Hamiltonian when no QD is present, and HJ describes the

coupling of the QD to the electrons in NbSe2. In the Kondo limitHJ = J
∑

σσ′ c
†
Rστσσ′cRσ′ ·S,

where J > 0 is the antiferromagnetic coupling between the QD and NbSe2 electronic states, τi

are the Pauli matrices in spin space, c†Rσ and cRσ are the creation and annihilation operators,

respectively, for an electron at position R with spin σ. To treat the interaction between S and

the electrons we use the large-N expansion [46, 47]. The large-N expansion has been shown to

give accurate results, in agreement with other methods such as the numerical renormalization
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group [48, 49], when the impurity is isolated and the Kondo problem has only one channel.

The electrons’ density of states ρ(ε) is the key property that determines the features of the

Kondo effect. Here, instead of assuming a constant ρ(ε), or a prescribed form [50–52], we use

the density of states extracted for different values of the magnetic field from spectroscopic

measurements on few-layer superconducting NbSe2 [17]. One important aspect of using the

experimentally obtained ρ(ε) is that it allows us to correctly capture the effect of B on it,

and therefore the unusual evolution of the Kondo peak with B. In the large-N expansion S is

expressed in terms of auxiliary creation (annihilation) fermionic operators f †σ (fσ) satisfying

the constraint nf =
∑

σ f
†
σfσ = 1, with σ = 1, . . . , N , so that HJ = J

∑
k,k′,σ,σ′ c

†
kσck′σ′f †σ′fσ,

with c†kσ (ckσ) the creation (annihilation) operators for an electron with momentum k and

spin σ. In the remainder we assume |S| = 1/2 and therefore set N = 2. We decouple the

quartic interaction term HJ via the mean-field m ∼
∑

k,σ〈f̂ †σ ĉkσ〉.

The constrain |S| = 1/2 implies nf = 1 and this is enforced via a Lagrange multiplier,

µf , which plays the role of the chemical potential of the f -electrons. By minimizing the

effective action corresponding to H = H0 +HJ , within the saddle-point approximation, we

obtain [47]

∑
σ=±1

∫ D

−D
dεnF (ε)

ρ(ε)(ε− µf + hσ)

(ε− µf + hσ)2 + [πρ(ε)m2]2
+

2

J
= 0; (4)

∑
σ=±1

∫ D

−D
dεnF (ε)

ρ(ε)m2

(ε− µf + hσ)2 + [πρ(ε)m2]2
− 1 = 0 (5)

where nF (ε) is the Fermi function, D is the electrons’ bandwidth, and h ≈ (1/2)gfµBB,

describes the Zeeman effect, with gf the effective g-factor for the QD extracted from the

experimentally observed Zeeman splitting. Equations (4), (5) can be inverted to find m2

and µf for a given value of J and B.

From Eqs. (4), (5) we obtain the values of m and µf in the limit of T → 0 (we set

T = 6×10−4 K). For ε� ∆1, ρ(ε), to very good approximation, can be taken to be constant.

Let ρ0 be the value of ρ(ε) for ε� ∆1. The value of ρ0 that enters Eqs. (4), (5) depends on

the effective spatial extension of the magnetic impurity, i.e., in our case, of the defect-bound

QD. ρ0 and J are very difficult to estimate, both theoretically and experimentally. On the

other hand, m and µf , depend mostly on the product ρ0J , and not on the separate values of

ρ0 and J . We studied the dependence of the Kondo peak on the product of ρ0J and found

the general result that the peak grows with magnetic field for ρ0J . 0.2 and decreases for
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ρ0J & 0.2. We find that the scaling of the Kondo peak with B observed experimentally is

best approximated when ρ0J ≈ 0.14. In the remainder we therefore set ρ0J = 0.14.

We obtain the electrons’ Green’s function at position R and energy ω, G(R,R, ω), renor-

malized by the coupling to the effective magnetic impurity, via the equations

G(R,R, ω) = G0(R,R, ω) +m2G0(R,R, ω)F (ω)G0(R,R, ω), (6)

F (ω) = [(ω + iδ − µf −m2G0(R,R, ω))τ0 − (1/2)gµBBτz]
−1, (7)

whereG0(R,R, ω) = −i(π/2)ρ(ω)τ0, is the electrons’ bare local Green’s function, F (ω) is the

Green’s function for the effective fermionic degrees of freedom f , and δ is a small broadening

that we introduce to take into account the effect on the spectra of thermal fluctuations and

non-magnetic disorder. The local DOS at the position of the QD, at energy ω, ρtot(ω) is

then obtained as ρtot(ω) = −Im[Tr(G)]/π.

Figure 5 (b) shows ρtot(ω) for different values of B obtained via the large-N expansion

assuming δ = 0.04 meV. We see that for B = 0, given the vanishing of the DOS as ε → 0

for superconducting NbSe2, no peak for ε ≈ 0 is present in ρtot(ω), indicating the absence of

Kondo screening. NRG results [53] show that when N(ε) ∼ |ε|a with a > 1/2, and perfect

particle-hole symmetry is present, no Kondo effect can be realized. In superconducting

NbSe2 the presence of a magnetic field B induces a finite density of states at low energies.

This makes possible the establishment of a Kondo cloud, and, when B is not too large,

dominates over the suppression of TK due to the polarization of S induced by the magnetic

field. For B & 0.25 T a peak develops: the softening, at low energies, of the superconducting

gap allows the establishment of Kondo screening. At larger B the Kondo peak splits, as

expected [54].

V. Summary

Our work shows that defect-bound QDs can be used as platforms to probe the interplay

between the energy scales associated with the Kondo effect and with superconductivity. This

opens a number of interesting future possibilities. First, as discussed above, NbSe2 is a 2-gap

superconductor - offering a richer phase space involving both order parameters. Interestingly,

NbSe2 is expected to develop a triplet order parameter at high B‖ [55]. This could give rise

to a field-driven transition in the type of Kondo effect. Finally, it is interesting to consider
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coupling QDs to unconventional SCs such as FeTe0.55Se0.45 [56], which can be produced using

exfoliation, or even to the superconducting states appearing in twisted graphene systems [57].

VI. Methods

The tunneling measurements are performed using standard low frequency lockin tech-

niques in a BlueFors dilution cryostat with a base temperature of 20 mK. An AC excitation

of 30µV is applied across the device between the tunneling electrodes and the ohmic drain

electrode using a Zurich instruments MFLI digital lock-in amplifier (LIA). The supercon-

ductor is tuned in and out of the superconducting gap by applying a DC bias voltage (VSD),

also obtained from the LIA. The tunneling current reaching the drain is fed into a FEMTO

current amplifier. The output of the current amplifier is then fed into a Keithley 2000 digital

multimeter to measure IDC and into the LIA input to measure the differential conductance

dI/dV as a function of VSD. The magnetic field measurements are performed with the 2

axis 9T-3T (Z-Y) superconducting magnet attached to the dilution. The magnet is powered

by the commercial power supply from American Magnetic Inc. (AMI), with a resolution of

1 mT (supplied). For resolutions smaller than that, the magnet is powered by a Keithley

2400 SMU in the current source mode. The applied field is evaluated from the current to

field ratio provided by AMI.
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