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We present a classical molecular-spin dynamics (MSD) methodology that enables accurate com-
putations of the temperature dependence of the magneto-crystalline anisotropy as well as magneto-
elastic properties of magnetic materials. The non-magnetic interactions are accounted for by a
SNAP machine-learned interatomic potential, whereas the magneto-elastic contributions are ac-
counted for using a combination of an extended Heisenberg Hamiltonian and a Néel pair interaction
model, representing both the exchange interaction and spin-orbit coupling effects, respectively. All
magneto-elastic potential components are parameterized using a combination of first-principles and
experimental data. Our framework is applied to the α-phase of iron. Initial testing of our MSD
model is done using a 0 K parameterization of the Néel interaction model. After this we exam-
ine how individual Néel parameters impact the B1 and B2 magnetostrictive coefficients using a
moment-independent delta sensitivity analysis. The results from this study are then used to ini-
tialize a genetic algorithm optimization which explores the Néel parameter phase space and tries
to minimize the error in the B1 and B2 magnetostrictive coefficients in the range of 0-1200K. Our
results show that while both the 0K and genetic algorithm optimized parameterization provide good
experimental agreement for B1 and B2 only the genetic algorithm optimized results can capture the
second peak in the B1 magnetosrictive coefficient which occurs near approx. 800K.

PACS numbers: 31.15.A-,75.50.Ww, 75.30.Gw, 07.05.Tp

I. INTRODUCTION

Building accurate magnetoelastic material models, re-
quires a two-way coupling between lattice deformations
and the orientation of the atomic magnetic moment vec-
tor [1]. For example a change of sample shape under a
magnetic field [2, 3], or a magnetization re-orientation
following an applied strain [4]. Applications leverag-
ing magnetoelastic and magnetostrictive effects are very
diverse, from microactuators and sonar transducers to
smart components [2, 5, 6] and spintronics [7–10]. Re-
cent studies successfully investigated the possibility of
coupling piezoelectric thin layers to single domain mag-
netoelastic elements to efficiently shift the magnetization
orientation [11]. Such designs could lead to magneto-
electric memory systems with very low energy consump-
tion [12]. The development of scalable numerical tools
that enable the construction of accurate material models
for such applications at the atomic scale is thus highly
desirable.

Coupling lattice deformations and magnetic moment
orientations in frameworks such as classical spin-lattice
dynamics [13] is also of theoretical interest. It allows
to represent effects arising from orbital magnetism, and
to perform a direct coupling between lattice and clas-
sical spins [14]. In their recent work, Ebert et al. il-
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lustrated how spin-lattice exchange coupling tensors can
be constructed from first-principle calculations and high-
lighted their potential use for coupled molecular-spin dy-
namics simulations [15, 16]. Such approaches are an im-
provement over the extended Heisenberg Hamiltonians,
or classical definitions of magnetic anisotropies. Alter-
nate improvements over the extended Heisenberg Hamil-
tonian have included the addition of biquadratic ex-
change interactions, which have shown to be relevant for
3-d transition ferromagnets [17, 18]. Using an inelastic
neutron scattering technique Strässle et al. illustrated
that for CsMn0.28Mg0.72Br3 the biquadratic exchange
interactions arise from the mechanism of exchange stric-
tion [19]. More recently Zivieri proved that for 1D and
2D ferromagnetic systems the biquadratic exchange cou-
pling leads to the absence of long-range order at finite-
temperatures [20].

Within the framework of the classical spin-lattice
methodology, Perera et al. [21] and Strungaru et al. [22]
also recently discussed the importance of angular mo-
mentum transfer between lattice and magnetic energy
reservoirs. Following the work of Beaujouan et al. [14],
they displayed that empirical models, such as the Néel
interaction, can represent those effects. More recently,
Nieves et al. showed that the Néel interaction can
be parametrized to represent zero-temperature magne-
tocrystalline anisotropy and anisotropic magnetostric-
tion in cubic crystals [23]. Recent first-principles studies
leveraged density functional theory accounting for the
spin-orbit coupling to compute such quantities [24, 25].
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For spin-dynamics (frozen lattice), Asselin et al. showed
that constrained Monte Carlo method can accurately and
efficiently extract the temperature dependence of mag-
netic anisotropy [26]. However, to the knowledge of the
authors, there is no classical atomistic methodology en-
abling the computation of the temperature dependence
of the magnetoelatic and magnetostrictive coefficients, as
well as the magnetocrystalline anisotropy coefficients.

When a magnetic cubic crystal is strained, its energy
can be decomposed into two components. The first one
is a purely elastic (magnetization-independent) contribu-
tion:

Eel =
1

2
c11

(
ε2xx + ε2yy + ε2zz

)
+

1

2
c44

(
ε2xy + ε2yz + ε2zx

)
+c12 (εxxεyy + εyyεzz + εxxεzz) (1)

with εij the components of the strain tensor and cij the
elastic constants, and the second one a magneto-elastic
contribution:

Eme = B0 (εxx + εyy + εzz) +B1

(
α2
xεxx + α2

yεyy + α2
zεzz

)
+B2 (αxαyεxy + αyαzεyz + αxαzεxz) (2)

which couples the strain tensor components with the
the magnetization orientations αi, given by αx =
sin(θ)cos(φ), αy = sin(θ)sin(φ), αz = cos(θ), where
φ lays in the x-y plane and is measured with respect
to the x-axis. B0 is related to the volume magneto-
elasticity [27], and does not depends on the magnetiza-
tion direction.

In this study, we focus on the five remaining coefficients
(c11, c12, c44, B1, and B2) and the magneto-crystalline
anisotropy. While c11, c12, c44 are largely determined
by the interatomic SNAP potential B1, B2, and the
magneto-crystalline anisotropy are set by the Néel inter-
action coefficients. Initially, we parameterize the Néel in-
teraction coefficients to reproduce the zero-temperature
magnetocrystalline anisotropy, which is done using the
method described in Ref. [23]. The corresponding magne-
tocrystalline energy surfaces and associated changes with
strain at 0K are examined. Using the zero-temperature
Néel parameterization we then gauge how the magnetoe-
lastic response changes up to 1200K. After this we deploy
a global sensitivity analysis in order to gauge how dif-
ferent Néel interaction parameters impact the expected
values of B1 and B2 at different temperatures. The re-
sults from this study are used to initialize a genetic algo-
rithm which attempts to minimize the errors in B1 and
B2 in the range of 0-1200K (α-phase of iron). Our find-
ings show that within a single framework that leverages
classical spin-lattice dynamics and an interatomic poten-
tial accounting for magneto-elastic effects, the tempera-
ture dependence of B1 and B2 can be reproduced rela-
tively well. Using both elastic coefficients we then also
compute the temperature dependence of the two magne-
tostriction coefficients (λ100 and λ111). In the first sec-
tion, we present the methodology used in this work and
describe the magneto-elastic interatomic potential gen-
erated by combining a machine-learned SNAP potential

with a spin Hamiltonian. Additional details regarding
magnetoelastic calculations and sensitivity analysis are
also provided within the Supplemental Material [28].

II. METHODS

All calculations are performed leveraging the SPIN
package of LAMMPS [29, 30] and following the classi-
cal spin-lattice dynamics approach, as described in Ma
et al. [13]. The interactions between the atoms and the
spins are accounted for through the following spin-lattice
Hamiltonian:

Hsl(r,p, s) =

N∑
i=1

|pi|2

2mi
+

N∑
i,j=1

VSNAP (rij)

+Hex(r, s) +HNéel(r, s)

(3)

where ri, pi, si, and mi stand for the position, momen-
tum, normalized magnetic moment and mass for each
atom i in the system, respectively. The first term in the
right-hand side of eq. 3 is the kinetic energy of the atoms.
The second one is a machine-learned SNAP interatomic
potential representing the purely mechanical interactions
in the system [31], whereas the magneto-elastic interac-
tions are accounted for through the combination of the
exchange interaction, Hex(r, s) and a Néel pair model,
HNéel(r, s). The exchange interaction Hex(r, s) is de-
scribed by an extended Heisenberg Hamiltonian param-
eterized from first-principles spin-spiral calculations [32–
34]. The Néel pair model used in this work follows the
approach described in Nieves et al. [23]. Additional in-
formation for these two pair styles is provided in Ap-
pendix A.

The SNAP potential was trained on a database of
first-principles configurations (generated leveraging den-
sity functional theory as implemented in the VASP pack-
age [35]). The first-principles training set is described
in the Methods section of Nikolov et al. [34]. This
dataset consists of spin polarized non-collinear VASP
calculations for BCC, HCP, and liquid iron. These
calculations were performed in the range of <20GPa
and <2000K. To parameterize the extended Heisenberg
Hamiltonian (exchange interactions), we rely on spin-
spiral data gathered at different degrees of lattice com-
pression [34]. The exchange interaction fitting is done af-
ter the Néel contributions to the forces/energies/stresses
have been subtracted out from the DFT spin-spiral train-
ing data. After this the Néel and spin-exchange con-
tributions to the forces/energies/stresses are subtracted
out from the remaining DFT training data, leaving only
the non-magnetic potential energy surface. This non-
magnetic potential energy surface is then fitted using
a SNAP machine-learned interatomic potential. The
training/fitting was performed leveraging the genetic al-
gorithm of the Dakota optimization package [36], and
results were converged until the mean-absolute error



3

Anisotropy energy, μeV

b)

a)

FIG. 1: a) Anisotropy energy surfaces obtained by applying volume-conserving tetragonal strains to the crystal cell.
Negative strain denotes tension and positive strain denotes compression along the z-direction. Under tension the
magnetic anisotropy transitions to a lower order easy-plane uniaxial configuration. Similarly, for compression the
anisotropy changes to a lower order easy-axis uniaxial equilibrium state. b) At 0K, shearing the sample attenuates
the anisotropy peaks near the obtuse angles of the cell. With increasing shear strain the peaks near the obtuse

angles are eliminated and the magneto-crystalline anisotropy energy surfaces switches to an easy-plane configuration.
This easy-plane configuration is aligned along the cell diagonal that connects the two acute angle corners of the cell.

dropped below 100 meV/atom. To obtain good agree-
ment with the c11, c12, and c44 elastic constants at tem-
peratures above 0K, finite-temperature objective func-
tions were integrated into the Dakota training procedure.
Additional details regarding the SNAP/Dakota imple-
mentation are provided in section B of the Appendix.

For all MSD calculations we use 16k atom cells
(20x20x20 BCC cells). Before carrying out any mea-
surements we initially equilibrate each cell for 50 ps
(0.1 fs timestep) using the pressure-controlled and
magnetization-controlled conditions (PCMCC) scheme,
which allows us to relax the pressure and control the
magnetization of the system, as detailed in Nikolov et
al. [34]. To control the magnetization, we follow the ap-
proach developed by Evans et al. [37], where we introduce
a re-scaling between spin and lattice temperatures. The
functional form of this rescaling is detailed in eq. 4-5
below.

Ts(Tl) = fsw(Tl − 471.6) + 576fsw (Tl/1045)
2.73 (4)

fsw =
1

2
[1 + tanh (10(Tl − 1045))] (5)

Here Ts and Tl are the spin and lattice thermostat tem-
peratures and fsw is a switching function which ensures
that the spin temperature changes smoothly at the Curie
temperature. Additional details regarding this temper-
ature rescaling implementation into our molecular-spin
dynamics framework is included in Nikolov et al. [34].
This is a fundamental step, as former studies showed
that an accurate control of the magnetization disorder
is necessary in order to capture the experimentally ob-
served changes in the magnetization and thereby recover
the correct temperature-dependent elastic properties in
spin-lattice calculations [34, 37]. Assuming cubic sym-
metry, the relation between the elastic coefficients and
stress/strain is illustrated in eq. 6 [38].

σi =
∑
j

cijεj (6)
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By applying strain profile shown in eq. 7, where
η = 0.02L and L is the simulation box length (L =
20V (T )1/3) the elastic coefficients c11(T ), c12(T ), and
c44(T ) can be determined as shown in eq. 8-10

ε(η) =

 η η/2 0.0
η/2 0.0 0.0
0.0 0.0 0.0

 (7)

dσxx(T )

dη
= c11(T ) (8)

dσyy(T )

dη
= c12(T ) (9)

dσxy(T )

dη
= c44(T ) (10)

After deforming the simulation cell the system is
relaxed for 3 ps. Once this is done, the stresses
(σxx, σyy, σxy) are averaged for 2 ps using a sampling fre-
quency of 0.001 ps. This procedure is repeated using 10
different random seeds in the lattice/spin thermostats.
The reported values in Figs. 3.b and 4.b reflect these
sample averages.

SNAP Exp/DFT Units Error %

V0 22.67 22.67 Å3 0.03%

c11 254.61 239.55 GPa 6.29%

c12 135.65 138.1 GPa 2.68%

c44 106.14 120.75 GPa 13.76%

K1 53.0 55.0 MJ/m3 3.63%

B1 -3.73 -3.74 MJ/m3 0.17%

B2 10.18 11.2 MJ/m3 9.11%

TABLE I: Zero-Kelvin properties obtained with our
magneto-elastic ML-IAP following the DAKOTA

optimization[34] with ground truth values taken from
DFT calculations or experiments[39, 40].

To extract the magnetoelastic constants (B1 and B2)
each 16k atom cell is first equilibrated at the appropriate
magnetization. Once this is done, we extract 10 atomic
configurations from each cell. Freezing the atoms in each
of these configurations we then rotate the spins 90◦ in
the x− z plane, in 5◦ increments, without disturbing the
relative orientation between neighboring spins. This al-
lows us to map the angular dependence of the magneto-
crystalline anisotropy energy, and to compute its max-
imum. Supplemental Figure 1 (SF.1) in the SI shows
how the magnetic energy varies with the rotation angle

of the spins [28]. We note that the frozen configurations
are equilibrated to the correct temperature and magne-
tization at approx. 0 GPa, thereby retaining the correct
atomic and magnetic disorder.

As illustrated in Table I the interatomic SNAP poten-
tial reproduces the c11, c12, and c44 elastic coefficients
and the DFT equilibrium volume well. In additional the
zero-temperature parameterization of the Néel potential
successfully recovers the experimentally observedK1, B1,
and B2 values.

III. RESULTS & DISCUSSION

Figure 1 illustrates the magneto-crystalline anisotropy
energy surfaces which the zero-temperature Néel param-
eterization produces. In Figure 1.a) the changes in
the magneto-crystalline anisotropy energy surfaces with
uniaxial strain are illustrated, where positive values of
strain denote compression and negative values denote
tension. Meanwhile the images in Figure 1.b) illus-
trate the changes in the magneto-crystalline anisotropy
energy surface with shear strain. The x values un-
derneath each graphic denotes the maximum magneto-
crystalline anisotropy energy (in units of µeV ) for that
surface. In all cases it can be seen that deforma-
tions increase the magneto-crystalline anisotropy en-
ergy. We note that the zero-temperature parameteri-
zation produces the expected cubic anisotropy at 0K.
For uniaxial strains, compression causes the magneto-
crystalline anisotropy energy surface to switch to an easy-
axis configuration, whereas tension causes the magneto-
crystalline anisotropy energy surface to transition to an
easy-plane configuration. In shear, interestingly, the en-
ergy peaks near the obtuse angles of the deformed cell be-
come attenuated whereas the energy peaks at the acute
angles of the cell are amplified. For large shear strains, ul-
timately, the magneto-crystalline anisotropy energy sur-
faces switches to an easy-plane configuration which is
aligned along the cell diagonal. Figure 1 highlights the
unique magneto-crystalline coupling that the Néel inter-
actions enable. As will be illustrated in the paragraphs
that follow, measurements for B1 and B2 are performed
by tracking how the magneto-crystalline anisotropy en-
ergy surface changes with strain locally (at 45◦ for B1

and 0◦ for B2 in the x− z plane).
Fig. 2 displays our first set of obtained measurements.

The PCMCC approach described in Nikolov et al. [34] en-
ables a precise control of the pressure and magnetization
at a given temperature. This step is crucial, as former
studies showed that thermo-elastic properties cannot be
accurately computed without a good control of the mag-
netization, which needs to closely follow the experimen-
tal values [34]. Fig. 2.a) shows the obtained magnetiza-
tion versus temperature trend, where excellent agreement
with experimental data is observed.

The MSD simulations account for thermal expansion,
thus allowing the cell volume to expand/contract with
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FIG. 2: On top (a), average magnetization norm as a
function of temperature in the pressure- and

magnetization-controlled conditions (PCMCC) as
defined in Nikolov et al. [34]. In the middle (b),

per-atom volume as a function of temperature. On the
bottom (c), measurement of the magnetic anisotropy

constant. Experimental data are extracted from
refs. [41–43].

temperature, as displayed by Fig. 2.b). Our model
predicts excellent thermal expansion coefficient up to
750K approximately. When the system’s temperature
approaches the Curie transition (here between 750K and
1045K), our model shows a departure from experimental
volume expansion trends. This seems to indicate that
the magnetic component of the pressure, generated by
the magnetic disorder of the system, is amplified in the
current MSD model.

Controlling both the magnetization and pressure of
the system allows us to compute the temperature depen-
dence for the first magneto-crystalline anisotropy coeffi-
cient [23]. Its value is obtained by measuring the changes
in energy when the spins are rotated in the x− z plane.
Fig. 2.c) displays the obtained averaged values. Excellent
agreement is recovered with experimental measurements
and with the empirical Callen law [44].

FIG. 3: a) The top plot (a), displays temperature
dependence of the first magnetoelastic coefficient B1.
The middle (b) plot shows the evolution of the first
shear constant, (c11 − c12)/2. The bottom plot (c)
displays changes in magnetostriction coefficient λ100

with temperature.

To evaluate the magneto-elastic coefficient, B1, as well
as the corresponding magnetostriction coefficient λ100 we
apply a series of volume-conserving tetragonal deforma-
tions (εxx = εyy = −εzz/2), following the approach de-
scribed in Marchant et al. [24]. We vary εzz between
approx. -1% and 1% of the simulation box. For each
deformation the spins are rotated 90◦ (in 5◦ increments)
in the x− z plane and the associated energy fluctuations
are measured. The magnetic torque, corresponding to
−dEme/dθ, can then be computed at an angle of 45◦

(here corresponding to a [101] orientation of the magne-
tization). This process allows us measure the variation of
the torque at 45◦ as a function of lattice strain. Examples
of torque versus strain plots are provided in SF.2 of the
SI. As shown in Figure SF.2, for a given temperature, the
corresponding slope (−dEme/dθ vs strain) is constant,
and its value provides us with the first magneto-elastic
coefficient B1.
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Fig. 3.a) displays the temperature dependence of B1 as
obtained by the MSD model using the zero-temperature
Néel parameterization. Finite-temperature measure-
ments of the elastic constants are carried out following
the approach detailed in the Methods section. Fig. 3.b)
shows the obtained values for (c11 − c12)/2. The first
magnetostriction coefficient is defined as:

λ100 = −2

3

B1

c11 − c12
(11)

and can thus be evaluated from the former results.
Fig. 3.c) displays the obtained λ100 temperature depen-
dence results.

As can be observed on Figs. 3.a) and 3.c), using the
zero-temperature Néel parameterization we recover good
agreement with experiments up to 500 K. However, the
the zero-temperature parameterization is not able to cap-
ture the well-known anomaly of B1 and λ100, i.e. the
second maximum occurring around 800 K [42]. In their
recent work Marchant et al. showed that ab-initio cal-
culations within the disordered local moment picture for
BCC Fe can correctly reproduce the second peak at high
temperature of B1 (T ' 800K) for some particular val-
ues of the lattice parameter [24]. This seems to indicate
that part of the physical mechanism responsible for the
second peak is present in the ab-initio formalism, but
absent from the 0K Néel implementation. H.B. Callen
and E.R. Callen indicated that this second peak might
be related to the existence of an asymmetry in the ex-
citation of the magnon spectrum, that could be caused
by dipolar spin interactions [42]. Future investigation
could consider more sophisticated anisotropic exchange
Hamiltonians [45, 46], as well as overlaying long-range
dipole-dipole interactions to our model.

We also evaluate the ability of our model to compute
the second magneto-elastic coefficient B2, as well as the
corresponding magnetostriction coefficient λ111. To do
so, we develop a simple procedure analogous to the one
presented by Marchant et al. [24], but applied to shear
deformation. For an applied strain in the x − z plane,
the magneto-elastic energy as a function of magnetization
orientation and shear deformation can be written as:

Eme =
B2

2
εxzsin(2θ) (12)

We vary εxz between -1 to 1% of the simulation box. The
same spin rotations (as described for the B1 calculation
above) are applied, also within the x − z plane. For a
given temperature, the second magneto-elastic coefficient
can be computed by evaluating the magnetic torque at
a 0◦ angle as a function of lattice strain, as described by
the following equation:

T (θ = 0) = B2εxz. (13)

Fig. 4.a) displays our obtained B2 measurements as
a function of temperature. Despite recovering the cor-
rect sign and initial value, the zero-temperature param-
eterization does not capture the curvature of the ex-
perimental B2 trend [43], which follows the power law

FIG. 4: a) The top plot (a), displays temperature
dependence of the second magnetoelastic coefficient B2.
The middle (b) plot shows the evolution of the second

shear constant, c44. The bottom plot (c) displays
changes in magnetostriction coefficient λ111 with

temperature.

B2(T )/B2(0) = [M(T )/M(0)]14. Following the approach
detailed in the Methods section, the shear elastic con-
stant c44 is evaluated and displayed on Fig. 3.b). The
second magnetostriction coefficient is defined as:

λ111 = −1

3

B2

c44
(14)

The corresponding results for λ111 are displayed on
Fig. 3.c). The trend of λ111 follows B2: its sign as well
as initial and final values are in agreement with experi-
ments, but the approach to zero is delayed until approx.
600K, compared to approx. 200K in experiments.

A detailed analysis of the 0K parameterization of the
Néel potential (and underlying assumptions) is shown in
the work of Nieves et al. [23]. In order to better un-
derstand how the different Néel parameters impact the
B1 and B2 magnetoelastic coefficients at finite tempera-
ture we carry out delta moment-independent sensitivity
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FIG. 5: a-b) The total delta (moment-independent) sensitivities for B1 and B2. c-d) First order delta sensitivities
for B1 and B2. Error bars are based on 95% confidence intervals.

analysis using the SALib python library [47]. The delta
moment-independent sensitivity analysis examines how
different Néel parameters impact the probability density
functions for B1 and B2 coefficients [48–50]. A schematic
illustrating the sensitivity analysis calculations is shown
in SF.4 and additional details regarding the calculations
are also provided in Appendix C. The sensitivity anal-
ysis study conducted here, used approximately 32,000
sample points. The delta coefficients for both the to-
tal sensitivities and first order sensitivities are shown
in Fig.5. The plot in Fig.5.a shows that the impact of
rcut and lδ on the B1 coefficient increases significantly
at higher temperatures. The parameters rcut and lδ are
both distances, where in the 0K parameterization lδ is
the nearest-neighbor distance.

At finite temperatures, a small increase in the impact
of qa, qb, and qc is also observed. The first order sensi-
tivities make up a small portion of the total delta sensi-
tivity indicating that higher order interactions between
different Néel parameters dominate. For the first order
sensitivity of B1 (Fig.5.c), rcut is the only dominant pa-
rameter near 0K. At higher temperatures the B1 prob-
ability distribution becomes more sensitive to the lγ and
lδ parameters.

For the B2 coefficient (Fig.5.b) the total delta sensi-
tivity of the different Néel parameters does not change
significantly with temperature. The parameters rcut and
lδ are found to be dominant throughout the entire 0-
1000K range. The first-order sensitivity of B2, (Fig.5.d)
is more sensitive to temperature. At higher temperatures
for both rcut and lδ a significant increase in the first-order
sensitivity is observed. For B2 the impact of higher-order
interactions between parameters is also lessened at higher
temperatures, as first-order interactions make up a larger
portion of the total sensitivity. The B1 and B2 first or-
der sensitivities do not appear to be impacted strongly
by the lα, qα, qγ , qδ parameters. In general, once the to-
tal delta sensitivity at finite temperatures begins to vary
significantly we begin reaching the limits of the 0 K pa-
rameterization. Thus, from Figure 6 one would expect
B1 to benefit most from a finite-temperature parameter-
ization, whereas a reparameterization at higher tempera-
tures may not yield significant improvements for B2 over
the 0-1200 K range.

We utilize the moment-independent sensitivity analysis
data to initialize a genetic algorithm (using Dakota soft-
ware) that tries to satisfy objective functions for B1(Tl),
B2(Tl), and K1(0K), which are calculated based on rota-
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FIG. 6: a-b) The total delta (moment-independent)
sensitivities for B1 and B2. c-d) First order delta

sensitivities for B1 and B2. Error bars are based on
95% confidence intervals for the 0K and genetic

algorithm (GA) datasets.

tions in the x−z plane. For the genetic algorithm search
we employ a population size of 300 candidates. The ge-
netic algorithm search is carried out over the same pa-
rameter space spanned in the sensitivity analysis, which
is shown in Table II. Results for genetic algorithm opti-
mized potential after 1,000 iterations are shown in Fig.6,
which shows results for both λ100 and λ111. The results
for λ100 match experiments very closely up to approx.
300K. At higher temperatures we no longer observed
the monotonic decrease which was seen in Fig.3.c. Hence,
we are importantly able to capture the high temperature
peak of λ100 which occurs near 800K. The peak value
of λ100 is overestimated by approx 30% however. The
genetic algorithm optimized potential also improves the
results for λ111 slightly. By comparing to the data in
Fig.4.c we can see that λ111 now monotonically increases
towards the Curie temperature, and we no longer ob-
serve a slight decrease in λ100 in the range of 0-500K.
The curvature of the MSD data however still deviates
from experiments, where again λ111 does not begin to
significantly change until approx. 600K. The value of
K1(0K) for the genetic algorithm optimized potential is
found to be 44 MJ/m3 which represents a deviation of
approx. 20% from the experimental value of 55 MJ/m3.

Parameter Lower bound Upper bound

Rc 2.0 3.2

l(rij)α 1×10−4 8×10−4

l(rij)γ 0.1 3.5

l(rij)δ 0.1 7.0

q(rij)α 5×10−6 8×10−5

q(rij)γ 0.05 3.5

q(rij)δ 0.1 7.0

TABLE II: Néel parameters space explored by genetic
algorithm and delta moment independent sensitivity

analysis

IV. CONCLUSION

We presented a molecular-spin dynamics framework
that features a two-way coupling between the orientation
of the magnetic moment vector and lattice strain. As
shown, this coupling scheme, represented by the Néel in-
teraction model, enables us to naturally capture changes
in the magnetocrystalline energy surfaces with strain
(Fig. 2). To gauge our ability to reproduce experimental
λ100 and λ111 coefficients we utilized a quantum-accurate
SNAP interatomic potential which was trained to repro-
duce the c11, c12, and c44 elastic constants within the 0-
1200K range using the PCMCC framework [34]. Initially,
we applied a 0K parameterization of the Néel interaction
parameters following the procedure outlined in Nieves et
al. [23]. Doing this we observed that both λ100 and λ111

are captured very well at 0K. At finite temperatures the
λ100 coefficient was captured well up to ∼500K, but the
second peak in λ100 which occurred near 800K however
could not be reproduced. The λ111 calculations agreed
with experiments up to ∼250K.

Applying a delta moment-independent sensitivity anal-
ysis [48] we examined how the different Néel parameters
impact the probability density functions for B1 and B2

coefficients, where we found that the total delta sensi-
tivity of B1 to be more significantly impacted at higher
temperatures, compared to B2 which showed negligible
sensitivity to temperature. Using the dataset from the
sensitivity analysis we then initiated a genetic algorithm
search over the Néel interaction parameters in order to
minimize the error in the B1 and B2 coefficients at higher
temperatures. This finite-temperature parameterization
allowed us reproduce the second peak in the λ100 coeffi-
cient, highlighting that the Néel model can indeed repro-
duce some of the high temperature non-monotonic mag-
netoelastic behavior of iron. The genetic algorithm pa-
rameterization however only mildly improved the agree-
ment in the λ111 coefficient. The fact that the total delta
sensitivity for B2 did not significantly change at higher
temperatures (like B1) perhaps explains why the results
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for the genetic algorithm and 0K parameterization did
not vary as drastically.

While the temperature dependence of magnetostric-
tion for localized magnetism has been well character-
ized theoretically [51], extending those efforts to itinerant
magnetic materials like BCC Fe is quite challenging. We
point out that the used spin-lattice model in this work
is based on the two-ion Hamiltonian and may be more
realistic for localized magnetism rather than for itiner-
ant magnetism, where a band-model could be more ap-
propriate. For example, Ohta and Shimizu [52] found
that B2 seems to be more sensitive to details of band
structure than B1 for BCC Fe, which is consistent with
the stronger temperature dependence of B2 as compared
with that of B1. This fact might also explain why the
genetic algorithm parameterization reproduced the tem-
perature dependence of B1 better than B2. We do also
note that in the current effort we assumed that all spins
have a fixed magnetic moment (2.2 Bohr-magnetons). In
reality the magnetic moment of each atom will fluctu-
ate with pressure. Hence, at each temperature there will
be an associated distribution of magnetic moments. As
the temperature increases the magnetic moment distri-
bution will widen and the behavior of the system will
deviate more and more from the fixed-magnetic moment
assumption. Gauging the impact of longitudinal spin
fluctuations and exploring more sophisticated anisotropy
models is something we hope to examine in our future
work. Lastly, we do note that the theoretical approach
described in Nieves et al. [23] is orders of magnitude faster
than the genetic algorithm optimization, which requires

significantly higher computational resources. Hence, the
genetic algorithm optimization is more suited for high-
temperature regimes where the ground state (0K) ap-
proach in Ref. [23] may struggle.
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Appendix A: Magneto-elastic Hamiltonian

The magnetic component of the spin-lattice Hamilto-
nian (eq. 3) contains two magneto-elastic contributions,
the exchange interaction and a Néel model.

Former studies discussed the improved accuracy in
representing magnetic excitation in 3-d transition ferro-
magnets by adding a biquadratic term to the standard
Heisenberg Hamiltonian [32, 53]. Our exchange interac-
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tion model follows those approaches:

Hex = −
N∑
i 6=j

J (rij) [si · sj − 1]

−
N∑
i 6=j

K (rij)
[
(si · sj)2 − 1

]
(A1)

where si and sj are classical atomic spins of unit length
located on atoms i and j, J (rij) and K (rij) (in eV) are
magnetic exchange functions, and rij is the interatomic
distance between magnetic atoms i and j. The two terms
in eq. A1 are offset by subtracting the spin ground state
(corresponding to a purely ferromagnetic situation), as
detailed in Ma et al. [54]. Although this offset of the ex-
change energy does not affect the precession dynamics of
the spins, it allows to offset the corresponding mechan-
ical forces. Without this additional term, the magnetic
contribution to the forces and the pressure are not zero
at the energy ground state. Details about this exchange
model and its parametrization on first-principles results
can be found in the Methods section of Nikolov et al. [34].

The second magneto-elastic contribution to our model
aims at representing effects arising from the spin-orbit
coupling. We use a biquadratic Néel pair interaction de-
fined as follows:

HNéel = −1

2

N∑
i,j=1,i6=j

l1(rij)
[
(eij · si)(eij · sj)−

si · sj
3

]
+ q1(rij)

[
(eij · si)2 − si · sj

3

] [
(eij · sj)2 − si · sj

3

]
+ q2(rij)

[
(eij · si)(eij · sj)3 + (eij · sj)(eij · si)3

]
,

(A2)
where eij = rij/rij , and l1(rij), q1(rij) and q2(rij) are
three functions defining the magnitude and fluctuations
of the interaction. The dot products between spins and
lattice vectors eij provides the model with a direct cou-
pling between magnetic energy and direction of magneti-
zation. A collinear spin approximation allows to express
the three functions in terms of two functions only:

l1(rij) = l(rij) +
12

35
q(rij),

q1(rij) =
9

5
q(rij),

q2(rij) = −2

5
q(rij).

(A3)

This leaves us with four functions of the interatomic
distance rij : J (rij), K (rij), l(rij), and q(rij). A Bethe-
Slater form is chosen for their lattice dependence [55, 56]:

f (r) = 4α
(r
δ

)2
(

1− γ
(r
δ

)2
)
e−( rδ )

2

Θ (Rc − r) (A4)

where α denotes the interaction energy, δ the interac-
tion decay length, γ a dimensionless curvature parameter,
r = rij is the radial distance between atoms i and j, and

Θ (Rc − r) a Heaviside step function for the radial cut-
off Rc. This assumes that the interaction decays rapidly
with the interatomic distance, consistent with former cal-
culations [32, 57].

Type α (eV) γ δ (Å) Rc (Å)

Exchange J(rij) 0.2827 -4.747 0.781 5.0

Exchange K(rij) -0.03619 -2.973 0.5273 5.0

Ref. [23] l(rij) 3.773×10−4 0.7898 2.4511 2.6

Ref. [23] q(rij) 2.997×10−5 1.0496 2.4511 2.6

GA l(rij) 6.007×10−4 1.0436 1.1967 3.09

GA q(rij) 4.163×10−5 2.1784 5.8348 3.09

TABLE III: Exchange and Néel parameters of
interaction model.

The two functions corresponding to the exchange inter-
action are parametrized to recover first-principles spin-
spiral results. The spin-spiral results were obtained lever-
aging the VASP package [35]. The approach and the as-
sociated results are detailed in the Methods section of
Nikolov et al. [34]. The parameters of the two Néel inter-
action functions, l(rij), and q(rij), are obtained using the
method described in Ref. [23]. They are parameterized to
recover the experimental values of the magnetocrystalline
anisotropy and the magneto-elastic coefficients. Table III
summarizes the obtained parameters and radius cutoffs
the four functions.

Appendix B: SNAP potential

This work utilized a quadratic model form of the SNAP
interatomic potential that was specifically parameterized
for the molecular-spin dynamics framework described
here. The SNAP potential utilizes the bispectrum de-
scriptors, developed by Bartok et al. [58, 59], to de-
scribe the local environment of each atom. As previously
shown, the quadratic SNAP implementation can be de-
rived by including an embedding energy term into the
linear SNAP energy expression [60]. Expressing this em-
bedding energy as a Taylor expansion allows us to extend
the linear SNAP energy expression to include all distinct
pairwise products of the bispectrum components Bi. The
SNAP energy of a given atom can then be represented as
a function of the K bispectrum components, as shown in
eq. B1.

EiSNAP (rN) = β ·Bi +
1

2
(Bi)

T ·α ·Bi (B1)

Here α is a symmetric KxK matrix consisting of con-
stant coefficients corresponding to products of descrip-
tors. Meanwhile, β is a vector of constant coefficients
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for the linear combination of descriptors. Both α and
β are determined during training, via linear regression
without sparsity or higher moment penalties in the loss
function. The bispectrum components can be expressed
as the Clebsch-Gordan product of 4D-hyperspherical har-
monics, Uj , as shown in eq. B2.

Bj1j2j = Uj1 ⊗
j
j1j2

Uj2 : U∗j (B2)

The forces on each atom can then be expressed as a
weighted sum of the bispectrum derivatives with respect
to rj as shown in eq. B3

F jSNAP = −∇j
N∑
i=1

EiSNAP = −β ·
N∑
i=1

∂Bi

∂rj
(B3)

Using linear regression to pin down both α and
β, one can then determine the corresponding ener-
gies/forces/stresses for each DFT configuration taken as
traning. Within the genetic algorithm implementation
of Dakota we also vary the energy/force/stress weights
for different training groups to provide extra flexibility
to training these models. The energy and force errors
serve as objective functions for each genetic algorithm
evaluation. In addition, we also introduce extra objec-
tive functions during optimization which gauge the finite-
temperature elastic properties as well as BCC/HCP lat-
tice constants and cohesive energies of different crys-
tal phases at 0K. Detailed information regarding how
the training groups and objective functions are setup
is included in Nikolov et al. [34]. The finalized po-
tential is available via https://github.com/FitSNAP/
fitsnap-datasets.git in the Fe_Quad directory, and
includes the α, β coefficients.

Appendix C: Delta Moment-Independent Sensitivity
Analysis

The delta sensitivity analysis applied here is a global
approach which examines how individual parameters al-
ter the probability distribution of a quantity of inter-
est, in this case B1/B2 . This approach is different

from variance-based approaches, like the Sobol sensitiv-
ity analysis, where the sensitivity of a particular moment
(the variance) is examined. In general, previous works
have shown that inputs which variance-based approaches
regard as important do not necessarily make a large im-
pact on the output uncertainty distribution [49]. Thus
to better understand how individual Néel parameters im-
pact the entire output distributions of B1/B2 we focus on
the delta moment-independent sensitivity analysis. By
understanding how temperature impacts the sensitivity
of B1/B2 to individual Néel parameters we can gauge
when a re-parameterization of the Néel model is appro-
priate. In the delta sensitivity analysis the importance
of a given input, Xl (Néel parameter) can be described
by eq. C1 shown below.

δl =
1

2
EXl [s(Xl)] (C1)

Here s(Xl) is given by eq. C2 where fY (y) is the den-
sity of the output and fY |Xl is the conditional density of
the output assuming that Xl is fixed constant at Xl = x.
The function s(Xl) then specifies the area between fY (y)
and fY |Xl .

s(Xl) =

∫
|fY (y)− fY |Xl(y)|dy (C2)

Knowing s(Xl) then EXl [s(Xl)] can be defined as
shown in eq. C3 below, where fXl(xl) is the density of
the input Xl.

EXl [s(Xl)] =

∫
fXl(xl)

[ ∫
|fY (y)...

− fY |Xl(y)|dy
]
dxl

(C3)

Additional details on the delta sensitivity analysis ap-
proach are included in the works of Borgonovo et al. [48–
50].


