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Recently, Floquet systems have attracted a great deal of interest as they offer unprecedented ability
to engineer topological states through the tuning of an external time-periodic drive. Consequentially,
seeking new driving protocols that allow for more exotic topological phases and transitions becomes
imperative for the Floquet engineer. In this paper, we study the Su-Schrieffer-Heeger model driven
by two time-dependent periodic sources with commensurate frequencies and an amplitude modula-
tion. Imposing more than one driving frequency allows us to realize even more exotic topological
phases resulting from new couplings appearing in the Fourier space representation. Moreover, we
find an experimentally practical method for sweeping the system through a topological phase tran-
sition by varying the amplitude mixture of the commensurate sources. We employ the local Chern
marker, a real space representation of the Chern number, to simulate topological phase diagrams of
the two-drive Floquet Hamiltonian in a variety of driving cases.

I. INTRODUCTION

Topology has signaled a shift in modern condensed
matter research since the emergence of the quantum Hall
effect [1]. Many systems with desirable physical behav-
iors are now known to have an underlying nontrivial topo-
logical classification [2–5]. These systems are promising
platforms to potentially revolutionize technology as we
approach the limit of traditional semi-conductor based
devices [6]. One idea is to design electronics using the
robust conducting edge states of topological insulators
[7, 8] that could replace standard transistor-based switch-
ing components. Another idea is to leverage topolog-
ically protected spin-locked states as a basis for mem-
ory in spin-tronics [9]. Finally, topological insulators and
superconductors [10] have been proposed as a basis for
quantum computing [11]. With all of these possible ap-
plications at stake, it is clearly imperative that we maxi-
mize our ability to design and control topological phases
of matter.

Consequently Floquet engineering [12], where systems
are governed by a Hamiltonian possessing dynamic pe-
riodicity, has emerged as a promising candidate for pre-
cise tuning of topology through the laser-matter inter-
action. Floquet engineering has already been used to
both emulate the Thouless pump with quantized energy
as opposed to charge [13, 14], and as a method to cre-
ate novel topological phases from initially trivial phases
[15–20]. The recent growth in this field is owed to ad-
vances in experimental capabilities and theoretical un-
derstanding [21–25] in the field of laser-driven quantum
mechanics. Much work has been done, particularly in
1D systems to observe non-trivial phases and transitions
of Floquet engineering [26–32] One powerful theoretical
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tool in the field of driven lattice systems [33], establishes
a mapping of the dynamic D-dimensional system to a
static D+1-dimensional system, in which the modes of
the Fourier expansion play the role of lattice points in
the new direction. An intriguing feature of the mapping
is the emergence of a frequency-dependent field along the
new frequency space direction - arising uniquely from the
time derivative in the Schrödinger equation. This field
dictates the method of solution to be employed. In the
case of adiabatic driving where the driving frequency is
small as the period T → ∞, the frequency-dependent
field is negligible or perturbative, and translational in-
variance along the frequency direction is assumed. For
example, an adiabatically-driven 1D Hamiltonian may be
mapped to a 2D static representation, where the Floquet-
Bloch [33] formalism allows for standard calculations of
the Chern number [34, 35] to classify the topology. Alter-
natively in the high-frequency regime, couplings between
neighboring Fourier modes become perturbative with the
unperturbed Hamiltonian being time-derivative operator
[36]. In the intermediate-frequency region, because the
energy scales of the new field and the static Hamiltonian
are comparable, approaches beyond perturbation theory
should be employed.

In this paper, we study the topological properties of a
system driven by two distinct frequencies in the adiabatic
and intermediate frequency regimes. Floquet engineer-
ing is often employed for a single frequency drive, with
multi-frequency (MF) cases being studied more recently
[14, 37–39]. Broadly speaking, there are two options
within the MF formalism: frequencies with (i) commen-
surate [40] and (ii) incommensurate [41] relationships.
The formalism of incommensurate multi-frequency driv-
ing demands the introduction of a Fourier manifold for
each additional drive [41], which has yielded useful ap-
plication for 0-dimensional qubit frequency mixers [42].
However, this formalism and computation could be cum-
bersome for two dimensional systems and above. More-
over, the results in Floquet formalism rely on truncation
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of the typically infinite-dimensional Fourier mode space.
Two competing truncation methods for a two-tone in-
commensurate drive may cause complications. Commen-
surate driving on the other hand, has already been em-
ployed in a variety of situations with great experimental
impact. Topology of 1D lattice systems under commen-
surate driving has been studied before to examine topol-
ogy, the quality of localization in edge-modes, and phase
transitions [14, 37, 38, 43]. Another example is com-
mensurate frequency driving being used to create quan-
tum destructive interference in a Fermi-Hubbard model
to suppress heating effects [44], which is a prevalent prob-
lem in all of Floquet engineering. Finally two-tone drives
have been used to engineer non-trivial band structures
[45, 46].

We employ the commensurate frequency framework
developed in [37] to express the MF Floquet formal-
ism using a single period, and apply this drive to The
Su-Schreiffer-Heeger (SSH) model. Note that single fre-
quency driven SSH variations have already generated
great interest in the field [29, 30, 47, 48]. In the adiabatic
driving scheme, we map the commensurate drives to the
frequency space, resulting in the emergence of new cou-
plings. Careful tuning of the frequencies would allow for
simulating non-trivial couplings. To demonstrate this,
we explore effects such as a next-nearest neighbor Flo-
quet hopping, and large-lattice hopping with two larger,
close by frequencies. The latter effect motivated our in-
terest in this study, as a potential temporal analogue to
the Moiré pattern observed in twisted bi-layer graphene
[49]. Finally, we demonstrate that the dual frequency
drive provides an experimentally appealing method for
creating a topological phase transition. The different
topological regions are simply reached through varying
the amplitude mixture.

In simulating the model, we find that standard com-
putational approaches to topology can be troublesome in
the presence of the frequency-dependent field originat-
ing in the intermediate frequency regime. We address
this by employing a real space variant of the Chern num-
ber, called the local Chern marker [50]. Additionally, the
Chern marker does not rely on the k-space formulation
for the Berry curvature, thus it is more appropriate than
neglecting the frequency-field and assuming non-physical
periodic boundaries along the fictitious Fourier manifold.
This method allows for visualization of the effect of open-
boundaries, disorder, and external electromagnetic fields
on the topology locally.

II. MODEL

A static Su-Schreiffer-Heeger (SSH) model is known
to possess a dimer type lattice with atoms A,B forming
the members of each dimer, and it is topologically non-
trivial provided that the inter-cell coupling is stronger
than the intra-cell coupling. To demonstrate the conse-
quences of multi-frequency driving, we consider a Floquet

FIG. 1. 2D Static Floquet SSH representation. In gray:
intra-cell hopping, purple: inter-cell hopping, green: near-
est neighbor Floquet (NNF) hopping, yellow: next-nearest
neighbor Floquet (NNNF) coupling. The basic couplings are
shown but the Hamiltonian allows for any combination, e.g.
NNNF+inter-cell off-diagonal element is present in H.

Su-Schreiffer-Heeger (FSSH) model with time varying,
two-frequency tunneling coefficients. The Hamiltonian
is kept similar to previous works [51, 52] to ensure that
upon relaxing the two-drive condition to a single drive,
we recover well-established results.

H(t) =

N∑
n

U1(t)ĉ†n,B(t)ĉn,A(t) + U2(t)ĉ†n+1,A(t)ĉn,B(t)

VA(t)ĉ†n+1,A(t)ĉn,A(t) + VB(t)ĉ†n+1,B(t)ĉn,B(t) + h.c.

(1)

In Eq. 1, U1(t), U2(t) are the intra-cell and inter-cell
tunneling strengths, respectively, which are periodic in
T . Additionally, we consider the next-nearest neighbor
coupling terms VA(t), VB(t). Pulse schemes such as these
may be realizable in the cold atom systems [28, 29, 53] as
noted by several authors [28, 30, 51, 52]. The real-space
coordinate can have a periodic boundary condition (N +
1 = 1) or an open boundary. The tunneling coefficients;

U1(t) = u(1 + 2(cos Ω1t+ α cos Ω2t))

U2(t) = u(1− 2(cos Ω2t+ α cos Ω2t))

VA(t) = v(cos (Ω1t+ θ) + α cos (Ω2t+ θ))

VB(t) = v(cos (Ω1t− θ) + α cos (Ω2t− θ))

are dynamical with driving frequencies Ω1,2 and tun-
neling amplitudes u, v for the nearest and next-nearest
neighbor hopping, respectively. The Ω2 driving factor
possess an ”offset” amplitude α, the consequences of
which will be discussed in the Results section.

A. Dual Frequency Driving

Here we outline the treatment of Eq. 1 in which the
sources are periodic in T1 and T2 and are subject to the
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following condition:

T1

T2
=
n2

n1
(2)

for {n1, n2} ε Z+ meaning that we may always find [37]
a period, T , such that

T = n1T1 = n2T2 (3)

which may be used to employ the Floquet theory. Note
that Ω1,2 = 2π

T1,2
. The Hamiltonian may be expressed in

terms of components for each period,

H(r, t) = H0 +HT1(r, t) +HT2(r, t) (4)

where the components have the following periodicity:
HT1(T2)(r, t + T1(+T2)) = HT1(T2)(r, t), and the system
has HT1(T2)(r, t+T ) = HT1(T2)(r, t). The H0 term is the
undriven Hamiltonian. It is important to note that the
period of the system is T and so Floquet theory is em-
ployed on T , not on either T1 or T2. Due to this condition,
the derivation of the Floquet Hamiltonian, K, is the same
as in the single frequency case. The single-frequency Flo-
quet Hamiltonian has been derived many times so we
refer the reader to Refs. [12, 54]. The general proce-
dure is as follows: from the time-dependent Schrödinger
equation H(t) |ψ(t)〉 = i~∂t |ψ(t)〉, with periodic Hamil-
tonian H(t) = H(t + T ), express the eigenstates as
Floquet states that are composed of a non-periodic
phase factor and a T−periodic function: |ψ(t+ T )〉 =
e−iεαt/~ |φα(t)〉. The factor εα are the so called quasi-
energies named in analogy to the quasi-momenta of the
familiar Bloch-theorem. Then expand the states using a
Fourier expansion which moves the time-dependence to
the phase: |φα(t)〉 =

∑
m e
−imΩt |φmα 〉. Note that the

|φmα 〉’s are Fourier coefficients which must be stacked up
to form the overall Floquet state (more detail in [55]).
The single frequency case diverges from the dual fre-
quency case as we take the expansion in terms of the
components of Eq. 4. The components are written in
Eq. 5.

K =
(
HT1(r, t) +HT2(r, t)

)
− i ∂

∂t
(5)

The Fourier expansion on the Floquet modes is then sub-
stituted into Eq. 5,

(
HT1(r, t) +HT2(r, t)

)∑
m

eimΩt |φmα 〉

+
∑
m

mΩeimΩt |φmα 〉 = εα
∑
m

eimΩt |φmα 〉

meaning that the matrix elements of Eq. 5, given by

the universal equation: 〈α, n| . . . |β,m〉 = 1/T
∫ T

0
dt . . .

may computed as in the usual way. However, we must
pay consideration to each new hopping term emerging

from each commensurate frequency;

∑
m,n

∫ T

0

dtHT1(r, t)eiΩt(m−n)+

∫ T

0

dtHT2(r, t)eiΩt(m−n) = εα −mΩδm,n

resulting in∑
m,n

(
HT1

(m−n) +HT2

(m−n)

)
|φmα 〉+mΩδm,n |φmα 〉 = εα |φnα〉

(6)

where H
T1(T2)
(m−n) = 1

T

∫ T
0

dtHT1(T2)(r, t)eiΩt(m−n), and the

εα eigenvalues are the quasi-energies of the system. Note
that the Fourier factor eiΩt(m−n) is left in Ω the frequency
of the system, not in either Ω1 or Ω2. The result of map-
ping our Hamiltonian to the static 2D version is shown
in Fig. 1. We now discuss the terms in Eq. 6. Note
the effective field mΩ appearing in the 2D representation
is a consequence of the time derivative in Eq. 5. This
field commonly denoted as the ”Stark field” [12, 55–57]
may be considered as a fictitious electric field emerging
along the Fourier manifold. The energy scale ~Ω often
dictates the solution. With adiabatic (slow, long-time)
driving (T →∞,Ω→ 0) the scale is set by the couplings

m~Ω� HT1,T2

m−n which emerge from new frequencies added
in the drive. The coupling factor in the Floquet Hamil-
tonian in Eq. 6 compared to the single-frequency case re-
veals that multi-mode theory with commensurate drives
allows for construction of new kinetic terms. One may ex-
pect a new coupling for each commensurate drive added.
Careful construction of these new frequencies may yield
exotic new physics, or open the route for Floquet systems
to mimic the physics of some experimentally intractable
static systems in condensed matter.

III. RESULTS

The Hamiltonian (Eq. 1) is constructed for atoms
A,B with 20 dimers, resulting in 40 real space matrix
elements. We set u = 1, v = 0.2, θ = 0.5π, α = 2, un-
less otherwise stated. We employ the multi-frequency
Floquet theory (Eq. 6) to map the time dependent 1D
system to the static 2D enlarged space (Fig. 1). Pro-

vided that the driving is adiabatic (m~Ω � HT1,T2

m−n ), it
is common [51, 52] to assume a periodic boundary con-
dition along the Fourier space and subsequently define a
Floquet quasi momentum kf . The frequency is taken as
small as possible to ensure adiabaticity, but large enough
for measurement [51]. However, we argue that the ap-
proximation is not ideal because (1) the driving frequency
cannot be neglected thus breaking Fourier-space transla-
tional invariance, and (2) that there is no physical opera-
tor connecting the largest and smallest cutoff frequencies
of the expansion. We therefore leave the system in the
real-space matrix form. While this matrix is technically
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FIG. 2. Two plots of the Chern marker in the case Ω →
0. Left is the Chern marker over the whole system, in two
dimensions, real space and Floquet space. The average Chern
number is 0, due to the trace identity [50]. In the region away
from the edge as shown in the right plot, we obtain a Chern
marker of 1, corresponding to the bulk topology. The marker
is stable in the bulk, and non-physical near the edges.

infinite, we can study a truncated space using the Chern
marker to examine the topological order [54, 58]. We con-
sider 200 Floquet modes, m, resulting in a 8000 × 8000
matrix unless otherwise stated, which we construct and
diagonalize in Fortran. All presented calculations of the
Chern number are accurate up to a maximum error of 1%.
Where stated, the Stark field is considered by adding in
the mΩ dependent value along the Floquet diagonal δnm.
As for the coupling, the integers chosen in Eq. 2 result
in different delta functionals after integration of Eq. 6
in the Floquet space due to the cosine drive. For ex-
ample n1 = 10→ δn,m+10 + δn,m−10. Although theoreti-
cally any integer ratio may be employed, here we consider
the {n1, n2} cases of {1, 1} (single drive reference), {1, 2}
(Floquet next-nearest neighbor), {10, 11} (close-by beat
frequency).

A. Topology - Single Drive

Our model relaxes to a single drive case by setting
α = 0, and setting Ω1 as the base frequency. In Fig. 2, we
plot the Chern marker over the static 2D representation
of the sample in the presence of periodic boundaries. As
expected [50], averaged over the entire sample the marker
is 0 due to its commutator definition. However, in the
bulk of the sample, the average Chern marker yields 1,
in excellent agreement with the Fukui method. Previous
works [52] have discovered that the single drive Hamilto-
nian is topologically non-trivial for non-zero θ. However,
these predictions enforce translationally invariant sam-
ples and rely on computational methods using k-space,
meaning the effect of the Stark field on the topological or-
der is ignored. By employing the local Chern marker [50]
we provide both real-space confirmation of single drive
topology, and simple determination of topology in the
face of the Stark electric field. An advantage of com-
puting topology using the Chern marker is that we may
easily reintroduce the Stark field along the frequency di-
rection for small values of Ω. Consequently, the topology
may be visualized along each direction in response to in-

FIG. 3. Chern marker plotted in I. real space and II. Floquet
space, for increasing Ω, magnitude of the Stark field. Note
that only 100 Floquet modes were used. In I. the real space
Chern marker is not strongly changed by increasing Ω - a
sensible result as the Stark field only permeates the Floquet
space. In II. the Stark field destroys the topological order in
the sample as Ω increases, but notice that for small m the
Chern marker returns to the expected Chern number of 1,
confirming the adiabatic theorem for small Ω.

creasing field value, or even disorder along the real-space
direction. In Fig. 3, we plot the Chern marker along
real and frequency space with increasing Stark electric
field ∝ Ω. We see the real space Chern marker unaf-
fected everywhere by increasing Ω. Similarly, for finite
but small Ω the frequency space Chern marker remains
unaffected. However as Ω increases the LCM along the
frequency space does not remain topologically invariant
and the system does not have a meaningful topology. At
the very center of the sample where m = n ≈ 0, the ex-
pected topology is recovered which is consistent with the
adiabatic theorem for small fields (mΩ). Consequently,
this calculation may be used to probe maximum allowed
values of Ω above which the topology becomes ill-defined.
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FIG. 4. The band (left) and Chern marker interior (right)
for the case n1 = 1, n2 = 2 and Ω → 0. This case simulates
a second neighbor hopping in the Floquet space - impossible
to achieve without a second drive. The system is found to be
insulating with a quasi-energy gap of ∼ 2.0, meaning topology
can be computed. The right plot shows the interior of the
Chern marker, and the bulk average value of 2.

B. Multi-Frequency Drive: Case 1,2

1. Topological Phase Transition

We examine the effects of the second drive for fre-
quency ratio n1, n2 = 1, 2. This ratio has been stud-
ied before for a variety of systems, including 1D chains
[14, 37, 38, 43–46]. The band structure and the Chern
marker under periodic boundaries in each direction (adi-
abatic driving Ω → 0, translational invariance along
Fourier manifold) are computed and shown in Fig. 4.
The interpretation of this model is the presence of a next-
nearest neighbor coupling along the frequency space. The
system still possesses a gap for n1, n2 = 1, 2, but only the
case that the amplitudes of the respective drives are dif-
ferent. Here we fix α = 2. Due to the invariance the
Chern marker is seen to be relatively stable with little
variation over the sample bulk. We find that the Chern
number is 2, indicating that an advantage of commensu-
rate driving is the ability to engineer phases with C > 1.
Surprisingly, we discover that the offset amplitude be-
tween the drives functions as a tuning parameter for a
topological phase transition (TI). This transition is plot-
ted in Fig. 5. For α < 1, C = 1, and for α > 1,
C = 2. The transition occurs through the gap closing
condition of α = 1. Note that the gap is computed as
the difference between the lowest conduction band and
highest valence band quasi-energies. The gap closes on
Brillouin zone corners {kx, kf} = {−π,−π}, etc., but
initially the smallest difference is elsewhere in the Bril-
louin zone. This transition is not unique to the case of
n1, n2 = 1, 2. We expect this behavior for any choice of
Ω1,Ω2 provided that the system remains gapped. The
Chern number will transition with the amplitude mix-
ture controlling the critical point, and the frequencies
controlling the topology. This amplitude modulation of
a two-frequency drive should be experimental feasible. It
does not rely on fabrication of the lattice or on a quantum
well thickness [59]. The formalism presented here poses
an easily tune-able topological phase transition, based
simply on the control of the driving lasers. However,

FIG. 5. The Chern number in red plotted against the Ω2

driving amplitude α for the case Ω → 0. Note that the am-
plitude on Ω1 is 1. Below the transition point 1, the Chern
number is robustly 1. Above the transition point the Chern
number is robustly 2. The quasi-energy gap is shown to close
at the transition point in green. The color gradient is shown
to signify that even changing parameters such as θ, u, v will
yield the same results provided that the gap is not closed.

it is also known [46] that the relative phase of the two-
frequency drive can change the symmetry of the system
which is being examined in ongoing calculations.

2. Edge States

The topology present in this drive case has an observ-
able physical effect, manifested in the emergence of edge
modes (states which have non-zero wavefunction only
along the boundary of a sample) along the edges of the
effective 2D sample. In Fig. 6 we plot the zero-quasi-
energy eigenstates upon opening both the Floquet, and
the real space boundary. The states are seen in Fig. 6
to occupy the real space boundary, with amplitude di-
minishing to 0 in the center of the sample. This plot
is constructed by taking ψ†ψi,j for i, j the real and fre-
quency space elements, respectively, for the eigenstates
at 0-quasi-energy. The real-space treatment easily al-
lows us to plot the zero-quasi-energy states for a variety
of boundary conditions. For example one may reinstate
translational invariance along the SSH chain, break in-
variance of the Fourier manifold, and recompute the am-
plitude of 6. In this case, we find that the edge states
exist along the ”Fourier edge” only. Unlike SSH chain
edge states which may be observable in current measure-
ments, Fourier edges are only an artifact of the theoreti-
cal Floquet mapping and subsequent truncation scheme,
so we neglect the result in the current paper.



6

FIG. 6. Edge modes occurring along the real space edge in the
case Ω → 0, and n1, n2 = 1, 2 driving frequency ratio. The
contour is computed for ψ†ψi,j , for i, j the real and frequency
space, respectively. The states plotted are the 0-quasi-energy
states.

FIG. 7. The band and Chern marker interior for the case
n1 = 10, n2 = 11 and Ω → 0. The band is shown in the
left, and the system is found to be gapped in quasi-energy,
meaning topology can be computed. The right plot shows
the interior of the Chern marker, and the bulk average value
of 11. Note that the n1, n2 = 10, 11 shows more interference
in the LCM than the 1, 2 case.

C. Multi-Frequency Drive: Case 10,11

1. Exotic Topology

Here we examine the effects of the second drive in the
case of frequency ratio n1, n2 = 10, 11. The band struc-
ture and the Chern marker for the case of periodic bound-
aries in each direction are computed and plotted in Fig.
7. The system possesses a gap for n1, n2 = 10, 11, with
condition α = 2. The Chern marker is seen to be not
as stable over the sample bulk as in the n1, n2 = 1, 2
case, resulting from interference between the two close-
by frequencies. We again tune α through the critical
point, as plotted in Fig. 8. The system displays the
same phase transition behavior as in the n1, n2 = 1, 2
case. The Chern number is found to be C = 10 for α < 1
and C = 11 for α > 1. Our motivation in studying the
multi-frequency driving was to model a beat frequency
Hamiltonian. This is based on the hope that the disorder
induced by the beat frequency along the Floquet direc-
tion would be a temporal analog to the twisted bi-layer
graphene, in which maximum disorder occurs for certain
”magic” angles. The requirement then, is that the two
drives possess frequencies which are close in value. The

FIG. 8. The Chern number in red plotted against the Ω2 driv-
ing amplitude α in the case Ω→ 0. Note that the amplitude
on Ω1 is 1. Below the transition point 1, the Chern number
is robustly 10. Above the transition point the Chern number
is robustly 11. The quasi-energy gap closes at the transition
point, of α = 1. The color gradient is shown to signify that
even changing parameters such as θ, u, v will yield the same
results provided that the gap is not closed.

FIG. 9. Edge modes occurring along the real space edge in the
case Ω → 0 and n1, n2 = 10, 11 driving frequency ratio. The
contour is computed for ψ†ψi,j , for i, j the real and frequency
space, respectively. The states plotted are the 0-quasi-energy
states.

size of the matrix must accommodate long-range cou-
plings. The case for n1, n2 = 10, 11 is explored using
our current Fortran code, but larger frequency ratios like
100, 101 demand a much larger matrix. This larger case
would be ideal to consider for the beat frequency ana-
logue.

2. Edge States

Since the system still possess topological order, we can
plot edge modes by opening the sample boundaries. We
plot the 0-energy states in the case of broken periodic
boundaries in each case. This result is shown in Fig.
9. Again as in the n1, n2 = 1, 2 we find states existing
along the real space edge only. As noted in the case of
n1, n2 = 1, 2, we also may break translational invariance
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along the Fourier space. In this case the amplitude is
only non-zero for certain modes along the Fourier man-
ifold, as opposed to the modes at the very ”edge”. The
presence of mode-localized states could be an artifact of
the truncation scheme, so their effect is best seen in defin-
ing and computing a physical observable in the 1-D time
dependent model.

IV. DISCUSSION

Multi-Tonal Driving - Integer Multiples There are,
broadly speaking, three contrasting multi-tonal driving
cases for which the Floquet formalism may be con-
structed. The simplest is when the frequencies are
not only commensurate, but related via integer multi-
ple. Examples for Ω2/Ω1 = n1/n2 are n1, n2 = 2, 4 or
n1, n2 = 1, 3. In this case, one frequency may be deter-
mined in terms of the other. The relative phase of the
drives plays a critical role, as explored in recent works
[44–46]. The formalism of Eq. 2 is unnecessary for this
driving protocol. In fact, constructing the formalism in
terms of the base period may yield incorrect computation
of observables. For example, treating n1, n2 = 2, 4, with
a base frequency with n = 1 will encode an extra integer
lattice spacing, yielding new non-physical twisting in the

Berry curvature from ~k → ~k+d~k. For example, the com-
putation of the transition would yield C = 2 → C = 4,
when it is physically C = 1→ C = 2.
Multi-Tonal Driving - Commensurate and Incommen-

surate On the other hand, there is another sort of
commensurate two-tone drive where the integers cannot
be uniquely expressed via an integer multiple, such as
n1, n2 = 4, 5 or n1, n2 = 10, 11. The Floquet theorem
and topology of this case may studied with the formalism
of [37], and the topology may be computed using the fre-
quency space Chern marker presented here. This treat-
ment follows from the fact that time degree of freedom
should have a one-to-one correspondence with the Fourier
transform to the extended space. The Floquet lattice
obtains new couplings computed from the off-diagonal
matrix elements of Eq. 5. This case is distinguished
from the incommensurate frequency driving [41] in which
each frequency yields an additional Fourier manifold. To
treat the 1D SSH in this case would require a 3D com-
putation. Additionally, two truncation schemes of the
Fourier space are needed. It could be advantageous to
approximate certain incommensurate ratios with nearby
commensurate ones and carry out the simpler calcula-
tions presented here.

Floquet Edge States Upon opening the ”Fourier bound-
ary” we find the zero quasi-energy modes localized to the
truncation edge in the case of n1, n2 = 1, 2, and localized
to certain frequencies in the case of n1, n2 = 10, 11. Since
the Fourier boundary physically does not exist, it is sim-
ply an artifact of the theoretical mapping, these results
are neglected as byproducts of the frequency truncation.
The distinction between the two cases (one edge-localized

and one mode-localized) could arise from the fact that
the matrix size stays the same, but for higher frequen-
cies the kinetic terms populate even further off-diagonal
elements. In other words, increasing the cutoff may cause
the mode-localized states to shift to the edges. While the
Floquet edge is nonphysical, it is possible to break peri-
odic boundary conditions along the Fourier manifold with
small Stark field. The consequences are best observed in
this case by computing observables such as current in the
original time-dependent representation.

V. CONCLUSIONS

In this paper, we have shown that commensurate
multi-frequency driving formalism may be modeled using
the Fourier mapping of Floquet theory to gain practical
levels of engineering control. The frequency ratio may
be chosen to create new couplings, which allows the Flo-
quet formalism to mimic difficult static systems. We find
that a second commensurate drive amounts to an extra
hopping term in the Fourier manifold. This approach ne-
cessitates only one Fourier manifold extension, meaning
that commensurate driving can be studied easily in 1,
and 2-dimensional systems. Finally, only one truncation
scheme is needed in the extended space as opposed to
two or more for incommensurate driving.

To explore the topological properties, we have em-
ployed the real space Chern marker instead of the Berry
curvature in k-space representation, which allows us to
study the adiabatic and intermediate frequency regimes
using the same framework. The model can incorporate
disorder and fields, more closely approximating a real sys-
tem. This approach yields direct examination of the local
fluctuations in topology resulting from interference, and
of the edge states. Moreover our work provides a method
for controlling the topological phase of an SSH sam-
ple, and appropriate choice of the frequency ratio allows
for engineering of Chern numbers C > 1. Consequen-
tially, the amplitude proportion of the two drives may
be tuned to induce topologically distinct states, meaning
that these systems can be engineered to sweep through
a topological phase transition. Since these topological
phases are induced via the amplitude, this model hosts
an experimentally appealing transition, that doesn’t rely
on a switching mechanism such as in the quantum wells.
We have further demonstrated a computation technique
to view edge states in the insulating phase, providing ad-
ditional confirmation that these systems are topological
insulators.
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