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We calculate the lattice dielectric function of strongly anharmonic rutile TiO2 from ab initio
anharmonic lattice dynamics methods. Since an accurate calculation of the Γ point phonons is es-
sential for determining optical properties, we employ the modified self-consistent approach, including
third-order anharmonicity as well as fourth-order anharmonicity. The resulting optical phonon fre-
quencies and linewidths at the Γ point much better agree with experimental measurements than
those from a perturbative approach. We show that the four-phonon scattering process contributes
as much as the third-order anharmonic term to phonon linewidths of some phonon modes. Fur-
thermore, incorporating the frequency dependence of phonon linewidth reveals that experimentally
known but unidentified peaks of the dielectric function are due to two-phonon process. This work
emphasizes the importance of the self-consistent approach in predicting the optical properties of
highly anharmonic materials.

I. INTRODUCTION

Titanium dioxide (TiO2) is a polar semiconductor,
which has been studied extensively from both experi-
mental and theoretical perspectives for its phenomenal
dielectric constants of 111 and 250 along the x and z
axes, respectively. The consequent high refractive in-
dex is advantageous for various technological applications
such as pigments and capacitors. Rutile TiO2 thin film
has also attracted attention as a high-κ dielectric mate-
rial for DRAM [1].

The importance of rutile TiO2 has instigated several
experimental and theoretical studies on dielectric prop-
erties [2–11]. The large dielectric constant directly links
to substantial Born effective charges and a low-frequency
transverse optical phonon mode (A2u, see Fig. 1). The
frequency of the A2u phonon rapidly increases with in-
creasing temperature [12], as in the case of ferroelectric
crystals, and is accompanied by a decrease in the static
dielectric constant. However, unlike ferroelectric crys-
tals, the frequency of the A2u phonon does not become
zero with lowering temperature, and therefore the system
does not undergo a phase transition. Several perovskites
(e.g., KTaO3) are known as such materials and are called
incipient ferroelectric. The strong anharmonicity of the
lattice [6] is the reason for such remarkable temperature-
dependent behavior. Gervais and Piriou [7, 8] applied the
four-parameter semi-quantum model (FPSQ) as a model
of the dielectric function and successfully fitted experi-
mental reflectivity data. The model partially accounts
for anharmonic effects employing different damping pa-
rameters for each transverse optical (TO) and longitudi-
nal optical (LO) phonon. The FPSQ model studies [7–
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FIG. 1: (a) The unit cell of rutile TiO2, which contains
two titanium atoms (black) and four oxygen atoms

(red). (b-e) Schematic views of atomic displacements
for the A2u mode and the three Eu modes.

10] showed a marked difference in damping parameters
between each LO and TO phonon, indicating that the
conventional harmonic vibration model breaks down, es-
pecially for the A2u phonon mode.

The first ab initio study on the lattice dynamics of
rutile TiO2 by Lee et al. [13] successfully calculated
large Born effective charges and static dielectric constant,
which led to many other studies on harmonic phonon
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properties of rutile TiO2 using input from first-principles
calculations [14–21]. These calculations unveiled the im-
portance of the mixed covalent and ionic bonding of s
orbitals of oxygen and d orbitals of titanium, the cause of
which is large polarizability due to long-range Coulomb
interactions between the ions. The high Born effective
charges could be caused by the dynamical transfer of elec-
trons associated with atomic displacements. Therefore,
careful convergence testing is required to get meaningful
results. Also, the phonon frequencies of the A2u and TA
phonons show strong strain dependencies [15, 17, 20]. For
example, the generalized gradient approximation (GGA)
of Perdew-Burke-Ernzerhof yields an overestimation of
the lattice constants, resulting in the A2u phonon with
imaginary frequency [14]. These results indicate that the
phonon frequencies are sensitive to exchange-correlation
functionals and the accuracy of the pseudopotentials [18].
While LDA functionals are often used in previous cal-
culations and have been successful in describing lattice
dynamics despite the underestimation of the lattice con-
stants, recent works [18, 21] revealed that meta-GGA
and hybrid functionals give us more accurate lattice con-
stants.

Recently, an ab initio computational framework of
phonon anharmonicity has been developed to calculate
lattice thermal conductivity, phonon lifetime, and other
phonon-related properties. In the framework, harmonic
and anharmonic interatomic force constants (IFCs) are
extracted from first-principles density functional theory
(DFT) or density functional perturbation theory (DFPT)
calculations. Computing a dynamical matrix from har-
monic IFCs give us frequencies and eigenvectors of ordi-
nary harmonic phonons, whereas anharmonic IFCs de-
termine self-energies that cause the frequency shifts and
linewidths.

Regarding rutile TiO2, several previous studies [22, 23]
have calculated thermal conductivity using this frame-
work. Fu et al. [23] found that the finite-temperature
effective IFCs [24], including higher order anharmonic-
ity, are essential for predicting thermal conductivity,
whereas calculations only including third-order anhar-
monicity underestimated the thermal conductivity. This
result suggests that including higher-order IFCs explains
the lattice properties of rutile TiO2. The validity of
perturbative approaches taken in previous studies is
questionable in highly anharmonic cases such as rutile
TiO2, where the anharmonic term contributes as much
as 20% of the A2u phonon frequency at room tempera-
ture. The self-consistent phonon (SCPH) theory [25, 26],
which includes the frequency shift associated with fourth-
order anharmonicity in a self-consistent manner, can
treat such strongly anharmonic crystals. Recently, the
SCPH+B theory has been developed, including the fre-
quency shift associated with third-order anharmonicity
within a quasiparticle approximation [27]. It could de-
scribe the possible cancellation of frequency shifts of third
and fourth-order anharmonicity in the A2u phonon.

While the accurate SCPH theory has been successful in

many thermal conductivity calculations, there have been
few such attempts for lattice dielectric properties [28, 29],
only discussing static dielectric constants. Perturbative
approaches have been applied to lattice dielectric prop-
erties of weakly anharmonic materials. The Lorentz os-
cillator or FPSQ model studies revealed that the anhar-
monic term of four phonon scattering (4ph) is not negli-
gible for calculating optical properties [30, 31]. Fugallo et
al. [32] used the Cowley formula [33] to incorporate the
frequency dependence of a damping parameter, and suc-
cessfully obtained the dielectric spectra of MgO in good
agreement with experiment. Here we aim to study the
lattice dielectric properties of strongly anharmonic ru-
tile TiO2, where such a perturbative approach does not
apply.

In this work, we perform first-principles lattice dynam-
ics calculations to predict the IR optical properties of
strongly anharmonic rutile TiO2. The second-, third-,
and fourth-order IFCs are computed using the least abso-
lute shrinkage and selection operator (LASSO) technique
based on first-principles calculations. Phonon frequency
shifts and linewidths were calculated using SCPH+B,
and the Cowley formula was utilized to calculate the
dielectric function. We found that the results of the
r2SCAN functional are in good agreement with exper-
imental measurements and that a self-consistent method
is essential for describing the strong anharmonicity of the
rutile TiO2.

II. THEORY

A. Dielectric properties

The lattice dielectric function at photon energy ~ω is
generally described by the classical Lorentz model

ε(ω) = ε∞ +
∑
j

∆εjω
2
0j

ω2 − ω2
0j + iωγ0j

, (1)

where ωqj , ∆εj , and γqj are the resonant frequency, the
oscillator strength, and the damping (FWHM) of the
phonon with wave vector q and mode j. ε∞ is the elec-
tronic dielectric constant. Although this model can de-
scribe dielectric properties qualitatively, it may not work
well quantitatively because it is based on the Newton’s
equation of motion, ignoring the frequency dependence
of damping constants.

According to the Maxwell’s equations, the poles of a
dielectric function are TO phonon frequencies, and the
poles of a extinction coefficient η = 1/ε are LO phonon
frequencies. The following factorized form was devised
to analyze LO and TO phonons having different phonon
frequencies and dampings. This model is called FPSQ,
as there are four parameters per mode.

ε(ω) = ε∞
∏
j

ω2
0j,LO − ω2 + iωγ0j,LO

ω2
0j,TO − ω2 + iωγ0j,TO

. (2)
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When LO-TO splitting is large, namely, ωLO � ωTO,
the difference in a damping is more pronounced, and the
FPSQ model is more suitable than the Lorentz model.
Even though the model does not consider the frequency
dependence of damping, it successfully explains the ex-
perimental values well for a wide range of materials.

On the other hand, Cowley [33] derived an equation
incorporating the full frequency dependence of dampings
using the anharmonic lattice dynamics theory [34] and
the linear response theory (see Appendix A for deriva-
tion),

εαβ(ω) = ε∞αβ +
1

v0

∑
j

Sjαβ

(ω0j)
2 − ω2 − 2ω0jΣ0j(ω)

, (3)

where v0 is the volume of the unitcell, α and β are Carte-
sian indices, and Σ(ω) = −∆ω(ω) + iΓ(ω) is phonon
self-energy, where ∆ω(ω) and Γ(ω) are called frequency
shift and linewidth, respectively. Phonon lifetime τqj is
related to linewidth as τqj = 1/2Γ(ωqj), and a damp-
ing parameter in the Lorentz model or the FPSQ model
holds γ0j = 2Γ(ω0j). Summations are taken only for
TO phonons at the Γ point. S is called mode-oscillator
strength defined as follows [35],

Sjαβ =

(∑
κα′

Z∗κ,αα′
eκα′(0j)
√
mκ

)∑
κβ′

Z∗κ,ββ′
eκβ′(0j)
√
mκ

 ,

(4)
where κ is the index of the atoms, Z∗ is a Born
effective charge, mκ is the mass of the κ-th atom,
and eακ(q) is a phonon eigenvector normalized as∑
κα [eκα(qj)]

∗
eκα(qj′) = δjj′ .

The reflectivity R of optical waves normal to the sur-
face is given by

R(ω) =

∣∣∣∣∣
√
ε(ω)− 1√
ε(ω) + 1

∣∣∣∣∣
2

. (5)

B. Phonon self-energy

Calculating a dielectric function from Eq. (3) requires
estimating the phonon self-energy Σ. As the main contri-
bution to the self-energy, we consider the following terms

Σ = ΣT + ΣB + ΣL + Σ4ph. (6)

Here, T, B, L, and 4ph stand for tadpole, bubble, loop,
and four phonon scattering. Figure 2 depicts the Feyn-
man diagrams of these self-energies. These diagrams are
given by the following formulae [36].

Φ3

Φ3

(a): Tadpole

Φ4

(b): Loop

Φ3 Φ3

(c): Bubble

Φ4 Φ4

(d): 4ph
FIG. 2: Feynman diagrams of phonon self energies.

Solid lines and open circles represent phonon
propergators and phonon vertexes, respectively.

ΣT
q (ω) =

−1

~
∑

q2,j1=TO

V (−q, q,0j1)V (0j1, q2,−q2)
2n2 + 1

ω0j1

(7)

ΣB
q (ω) =

1

2~
∑

q1,q2,s±1
|V (−q, q1, q2)|2[

n1 + n2 + 1

sωc + ωq1 + ωq2
− n1 − n2
sωc + ωq1 − ωq2

]
(8)

ΣL
q (ω) =−

∑
q1

V (q,−q, q1,−q1)
2n1 + 1

2
(9)

Σ4ph
q (ω) =

1

6~
∑

q1q2q3,s±1
V (−q, q1, q2, q3)V (−q1,−q2,−q3, q)[

(n1 + 1)(n2 + 1)(n3 + 1)− n1n2n3
sωc + ωq1 + ωq2 + ωq3

+
3n1(n2 + 1)(n3 + 1)− (n1 + 1)n2n3

sωc − ωq1 + ωq2 + ωq3

]
(10)

Here and in the following, we use q for the shorthand
notation of (q, j), satisfying q = (q, j) and −q = (−q, j).
ni = n(ωqi) = 1/(eβ~ωqi−1) is the BoseEinstein distribu-
tion function and ωc = ω + i0+ with 0+ being a positive
infinitesimal. In addition, the summation in Eq. (8) is
restricted to the pairs (q1, q2) satisfying the momentum
conservation q1 + q2 = q + G, where G is a recipro-
cal lattice vector. Similarly, the sum of the 4ph dia-
gram (10) is limited to the pairs (q1, q2, q3) satisfying
q1 + q2 + q3 = q +G. V (q1, q2, q3) and V (q1, q2, q3, q4)
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are three and four phonon scattering matrices defined as

V (q1, q2, q3) =
1

N1/2

(
~
2

)3/2 ∑
κ1µ1
l2κ2µ2
l3κ3µ3

Φ0κ1,l2κ2,l3κ3
µ1µ2µ3

× eκ1µ1
(q1)eκ2µ2

(q2)eκ3µ3
(q3)

√
mκ1

mκ2
mκ3

ei(q2·r2+q3·r3),

(11)

V (q1, q2, q3, q4) =
1

N

(
~
2

)2 ∑
κ1µ1
l2κ2µ2
l3κ3µ3
l4κ4µ4

Φ0κ1,l2κ2,l3κ3,l4κ4
µ1µ2µ3µ4

× eκ1µ1
(q1)eκ2µ2

(q2)eκ3µ3
(q3)eκ4µ4

(q4)
√
mκ1

mκ2
mκ3

mκ4

× ei(q2·r2+q3·r3+q4·r4), (12)

where µ is a Cartesian index, l is the index of unit cells, rl
is the position of the lth primitive cell, and Φ represents
the third- and fourth-order IFCs, which is the derivative
of the potential energy U with respect to atomic displace-
ments u as follows,

Φl1κ1,··· ,lnκn
µ1···µn

=
∂U

∂uµ1
(l1κ1) · · · ∂uµn

(lnκn)
. (13)

The tadpole and loop diagrams are real constants, while
the bubble and 4ph diagrams are complex numbers that
depend on the frequency. Thus, only the bubble and 4ph
diagrams contribute to phonon linewidths. We ignore
the frequency shifts due to thermal expansion and iso-
tope effect because they are small in rutile TiO2 at room
temperature [37].

As mentioned before, the anharmonicity of rutile TiO2

is so strong that these self-energies must be treated in a
self-consistent manner. ΣT and ΣL are considered self-
consistently in the SCPH theory, and anharmonic phonon
frequencies are obtained with solving the following self-
consistent equation for ω.[

GS
q (ω)

]−1
=
[
G0
q(ω)

]−1 − ΣT[GS]− ΣL[GS] (14)

Here, G0
q and GS

q are harmonic and SCPH phonon
Green’s functions, respectively. We write the resultant
SCPH frequencies as ωS

q . The SCPH+bubble (SCPH+B)

theory [27] has recently been proposed to consider ΣB in
the SCPH theory. After solving the SCPH equation (14),
this method solves the following non-linear equation for
Ω,

Ω2
q =

(
ωS
q

)2 − 2ωS
q Re ΣB

q [GS,Φ3](ω = Ωq). (15)

In the following, we write the SCPH+B phonon frequen-
cies as ΩSCPH+B.

After obtaining the anharmonic phonon frequencies
and eigenvectors by the SCPH+B equation, the imagi-
nary part of ΣB and Σ4ph are considered in a frequency-
dependent form as

ΣB+4ph(ω) = Im ΣB[GSCPH+B,Φ3](ω)

+ Σ4ph[GSCPH+B,Φ4](ω). (16)

We use not harmonic Green’s functions but SCPH+B
Green’s functions to include the phonon frequencies
renormalization effect. We finally obtain a dielectric
function by substituting these self-energies into Eq. (3)
as

εαβ(ω) = ε∞αβ+

1

v0

∑
j

Sjαβ(
ΩSCPH+B

0j

)2 − ω2 − 2ΩSCPH+B
0j ΣB+4ph(ω)

.

(17)

All the parameters in Eq. (17) will be determined if
second, third, and fourth-order IFCs are provided other
than ε∞ and Z∗, which can be calculated from DFPT.
As ε∞ is well known to be overestimated in DFT and the
evaluation of ε∞ is outside the scope of our work, we use
the experimental values [2] of ε∞xx = 5.91 and ε∞zz = 7.20
in the following calculations.

III. RESULTS AND DISCUSSION

A. Computational Details

The IFCs of rutile TiO2 were calculated from ab initio
calculations using VASP [38]. The local density approx-
imation (LDA) [39] and the r2 strongly constrained and
appropriately normed (r2SCAN) meta-GGA [40] with the
projector augmented-wave method [41] were used for ex-
change and correlation functionals. We have also per-
formed calculations with the PBEsol functional [42] to
see how results changes due to functionals and the re-
sults are discussed in Sec. III E. The semicore 3s and 3p
states are considered as the valence electrons in the Ti
pseudopotential. The plane-wave energy and charge cut-
offs are 800 eV and 1200 eV, respectively. The energy
convergence threshold is set at 1× 10−9 eV.

Before phonon calculations, the lattice parameter and
geometry optimization was performed with the electronic
sampling of a 10 × 10 × 10 Monkhorst-Pack grid, which
converged to the maximum error in forces of 1 meV/Å
and stresses of 0.01 GPa. Born effective charges are ob-
tained from DFPT calculations for both long-range in-
teractions and dielectric properties.

We estimated IFCs via linear-regression optimization
using DFT forces of various atomic configurations as
training data. The harmonic terms were fitted from
the finite displacement method with one atom moved by
0.01 Å, where the atomic forces were calculated building
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FIG. 3: (a) The harmonic (red) and SCPH+B (blue) band structures of r2SCAN functional at 300K with the
experimental values from inelastic neutron scattering (orange dot). The SCPH+B DOS is also illustrated at the

same time. The orange dashed lines are the peak obtained from the inelastic neutron scattering experiment [43]. (b)
The SCPH+B band structure with r2SCAN (blue) and LDA (red) functional. The green arrow indicate the A2u

mode, which is overestimated in the LDA functional.

a 2 × 2 × 4 supercell with a 5 × 5 × 5 electronic wave
vector grid. Then, we used the LASSO technique [44]
to extract anharmonic IFCs from the 100 displacement-
force training datasets with all atoms moved by 0.04 Å in
random directions. When constructing the IFC model,
we included all possible IFCs in a 2 × 2 × 4 supercell
for harmonic IFCs. The cubic, quartic, fifth, and sixth
terms were considered with cutoffs of 15, 10, 5, and 5
bohr, respectively.

The SCPH and SCPH+B equations, including ΣL and
the real part of ΣB, were solved for a 2× 2× 2 q points,
where a 6×6×6 q points grid was used for computing the
self-energies [25]. ΣT is ommited because of it’s smallness
in rutile TiO2. Finally, the imaginary parts of ΣB and
Σ4ph are calculated with using a 15 × 15 × 15 and 10 ×
10 × 10 q points grid, respectively. The extraction of
IFCs, the lattice dynamics calculations, and the SCPH
calculations were performed using the ALAMODE [45]
package.

B. phonon frequencies

Rutile TiO2 has a tetragonal unit cell and the
P42/mnm space group, as shown in Fig. 1. Because six
atoms are in the unit cell, there are 15 optical phonon
modes and three acoustic phonon modes. The optical
phonons at the Γ point of the Brillouin zone belong to

the following irreducible representations,

Γopt = A1g +A2g +A2u + 2B1u +B1g +B2g +Eg + 3Eu.
(18)

Expressions with subscript g are Raman-active, those
with u are infrared-active except for B1u, while the repre-
sentations with the E symbol are degenerate. Eu and A2u

are vibrations in the xy-plane and z-direction, respec-
tively, contributing to the dielectric function’s xy and z
components. In the E1

u phonon, the softest Eu phonon,
and the A2u phonon, the Ti and O ions move in opposite
directions, whereas in the E2

u and E3
u modes, the two Ti

ions move in opposite directions, as in Fig. 1.

TABLE I: calculated lattice constants with LDA and
r2SCAN. Experimental values are taken from a neutron
diffraction study [46]. a is the lattice constant in the x

and y directions, and c in the z direction. v0 is the
lattice volume. The four oxygen O ions are located at
the (u, u, 0), (1− u, 1− u, 0), (1/2− u, 1/2 + u, 1/2),

and (1/2 + u, 1/2− u, 1/2) in the fractional coordinate,
where u is a parameter.

a (Å) c (Å) u c/a v0 (Å
3
)

LDA 4.552 2.922 0.3038 0.642 60.55

r2SCAN 4.602 2.961 0.3046 0.643 62.71

Exp. 300 K [46] 4.593 2.959 0.3048 0.644 62.42

Exp. 15 K [46] 4.587 2.954 0.3047 0.644 62.15
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We first present results for optimized lattice constants
from LDA and r2SCAN compared with experimental val-
ues at 15 K and 295 K in Table I. As in previous stud-
ies, LDA slightly underestimates the lattice constants
by 0.8%. The r2SCAN functional, a meta-GGA family,
shows good agreement with experimental values within
0.4%, though the GGA-PBE functional is known to over-
estimate the lattice constants.

Table II shows that Born effective charges obtained
from r2SCAN are around 10% smaller than those from
LDA. The LDA values agree well with those of previous
LDA studies [13, 18, 49, 50]. Based on the LO phonon fre-
quencies results discussed below, Born effective charges
calculated from r2SCAN are considered more accurate
than those from LDA.

Figure 3 shows the phonon dispersion spectrum along
the high-symmetry points in the first Brillouin zone at
300 K with non-analytic term correction. Figure 3a com-
pares harmonic phonon frequencies (red, abbreviated
as harm) with SCPH+B frequencies (blue) using the
r2SCAN functional, while Fig. 3b compares the SCPH+B
frequencies using LDA (red) and r2SCAN (blue), to-
gether with inelastic neutron scattering results from
Traylor [12] (orange dots). Figure 3a also shows the den-
sity of states (DOS) of r2SCAN and SCPH+B, with the
orange dashed lines being the positions of the five DOS
peaks observed in the neutron experiment by Lan and
Fultz [51]. Overall, the combination of the r2SCAN func-
tional and the SCPH+B calculation agrees well with the
experimental data except for the lowest optical phonon
branch (B1u), which is known to be sensitive to the
choice of functionals [17]. The frequencies of the A2u

and E1
u phonons at the Γ point and the TA phonon

branch, considered highly anharmonic in previous stud-
ies, differ significantly between the harmonic approxima-
tion and the SCPH+B calculation, with the harmonic
approximation predicting smaller frequencies. The po-
tential energy surface of the A2u phonon is no longer a
quadratic function and is well described with consider-
ing functions up to the fourth order, as in Fig. 4. Ta-
ble III summarizes the Γ point phonon frequencies. For
the A2u and E1

u modes, the negative frequency shift by
the bubble self-energy and the positive frequency shift
by the loop self-energy cancel each other out, result-
ing in about 50 cm−1 positive frequency shift. The A2u

phonon frequency within the harmonic approximation
is 139 cm−1, which rises to 220 cm−1 by SCPH. The

TABLE II: calculated Born effective charge tensors Z of
the Ti atom at (0, 0, 0) and the O atom at (u, u, 0).

Ti O

Zxx Zxy Zzz Zxx Zxy Zzz

LDA 6.34 −1.01 7.66 −3.17 1.81 −3.83

r2SCAN 5.96 −0.97 7.27 −2.94 1.71 −3.60
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FIG. 4: Frozen phonon potential (blue) of A2u mode
with x axis being the displacement of the Ti atoms.

The quartic component (red) describes the DFT
potential well, while the harmonic component (orange)

deviates from the potential.

frequency decreases to 179 cm−1 when the bubble self-
energy is considered with SCPH+B. The contribution
of the anharmonic terms reache 29%. Similarly, the E1

u

phonon frequency is 133 cm−1 for the harmonic approxi-
mation, 210 cm−1 for SCPH, and 189 cm−1 for SCPH+B.
Phonon frequencies are also calculated from a usual per-
turbative approach (abbreviated as non-SC) for r2SCAN
as ω = ω0 + ∆ωT + ∆ωB + ∆ωL. The non-SC frequen-
cies differ largely from the SCPH+B frequencies in the
A2u and E1

u phonons. In the A2u phonon mode, we ob-
tained ∆ωB = −78 and ∆ωL = 144, which are too large
to be handled within perturbation theory. This calcula-
tion shows that neither the harmonic approximation nor
the perturbation method suffices for optical properties,
where an accurate estimation of the optical phonon fre-
quencies at the Γ point is necessary.

Figure 3b demonstrates a good agreement between
LDA and r2SCAN throughout the Brillouin zone. How-
ever, the LDA calculation overestimates the A2u phonon
at the Γ point. The underestimation of the lattice con-
stants of LDA may cause the overestimation of the A2u

phonon, as the A2u phonon is sensitive to lattice con-
stants [14]. To clarify this point, we have performed the
SCPH+B calculation with LDA using the experimental
lattice constants. The resultant frequency of the A2u

phonon was 146 cm−1 , which underestimates the exper-
imental value by 15%. This result shows that the A2u

mode is sensitive to the lattice constant even at the level
of anharmonic phonon calculations. For the LO phonons,
the LDA results overestimate the E3

u phonon frequency,
the cause of which is larger Born effective charges by
LDA than that by r2SCAN. As r2SCAN gives better re-
sults than LDA, all the following calculations are based
on r2SCAN.
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TABLE III: Comparison of the computed mode frequencies (in cm−1) at the Γ point with various experimental data
at room temperature. The results from the harmonic approximation (harm), SCPH and SCPH+B are shown for
both LDA and r2SCAN at 300 K, while a usual perturbation calculation (non-SC) are shown only for r2SCAN.

LDA r2SCAN neutron [12] Raman [47] FPSQ [10]

harm SCPH SCPH+B harm SCPH SCPH+B non-SC IR [48]

Raman

A1g 612.5 620.8 616.6 599.8 613.1 613.3 627.1 610 612 -

A2g 395.0 424.0 413.7 456.5 432.9 451.8 458.9 NF1 NF -

B1g 134.7 121.9 116.6 146.5 143.0 138.9 139.1 142 143 -

B2g 817.5 818.2 817.2 809.6 814.4 821.8 831.4 824 826 -

Eg 464.3 476.0 467.5 434.4 463.1 431.5 429.0 445 447 -

non-active

B1
1u 108.1 149.6 140.2 103.2 141.0 130.0 159.5 113 - -

B2
1u 417.9 414.8 413.8 398.4 420.7 411.7 421.8 406 - -

TO

A2u 147.8 227.9 198.0 138.5 210.1 179.4 210.6 172.6 167 172.3

E1
u 149.0 216.8 202.0 132.7 203.6 186.9 238.4 189 183 188.6

E2
u 384.3 394.6 386.5 378.8 382.1 374.9 374.3 374 388 379.3

E3
u 489.0 504.7 492.5 495.7 513.1 500.1 495.0 494 500 500.5

LO

A2u 843.9 861.5 854.2 784.9 800.6 793.1 805.2 NF 811 796.5

E1
u 354.6 362.7 354.0 364.5 364.9 356.9 360.0 375 373 365.7

E2
u 439.1 447.3 436.8 445.5 455.6 443.9 445.7 428 458 444.9

E3
u 882.8 904.9 904.9 815.1 836.0 830.7 851.4 842 806 829.6

1 NF=not found.

Finally, we calculated the temperature dependence of
the static dielectric constant ε0 ≡ ε(ω = 0), which di-
rectly reflects the effect of the phonon frequency shift
with temperature. Figure 5 compares the calculated tem-
perature dependence of ε0x and ε0z with the experimental
data [3]. Both ε0x and ε0z increase with lowering temper-
atures due to a decrease in the phonon frequencies. In
particular, ε0z increases up to 250 at T = 0 because of
the strong temperature dependence of the A2u phonon
frequency. The SCPH+B calculation well reproduced
experimental values for ε0x. For ε0z, on the other hand,
the tendency to increase is reproduced, but the value at
T = 0 is 169, which is only 70% of the experimental
value. In fact, the frequency of the A2u mode at T = 0
is 167 cm−1 in the SCPH+B calculation, compared to
140 cm−1 for the experimental value [12], which indicates
that the zero-point vibration is very large. This could be
improved by using more acurate functionals like hybrid
functionals.

C. phonon linewidth

We calculated the frequency-independent linewidths of
the four phonon modes involved in the dielectric function
in two ways as

γSCPH+B = 2 Im Σ[GSCPH+B](ω = ΩSCPH+B) (19)

γnon−SC = 2 Im Σ[Gharm](ω = ωharm). (20)

As mentioned in Sec. II B, while the latter (non-SC) is
a usual perturbative calculation, the former uses the
SCPH+B phonon frequencies. Table IV shows that
the Non-SC linewidths are overestimated significantly,
whereas the SCPH+B calculations agree better with the
FPSQ data [10], which is determined by fitting exper-
imental reflectivity data to the FPSQ model. It indi-
cates that the calculation of linewidth requires accurate
determination of phonon frequencies, including anhar-
monicity, as pointed out by Fu et al. [23]. Discrepan-
cies are observed in the E1

u and A2u TO modes with
relatively high frequencies, which could be improved by
incorporating higher-order diagrams. We also found that
self-energies from the four-phonon scattering give a non-
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FIG. 5: Temperature dependence of the static dielectric
constant. The triangular dots show the experimental
values and the circular dots show the results from the

SCPH+B calculations.

negligible contribution in the A2u and E1
u modes. Such

phenomena have been observed in other materials [30].

D. dielectric function

Figure 6a shows the calculated imaginary part of di-
electric function together with experimental data. The
blue line represents the SCPH+B calculation, while
the cyan dashed line represents the non-SC calculation,

TABLE IV: Calculated linewidth (cm−1) of IR-active
phonon modes at 300 K together with the experimental

parameters fitted with the FPSQ model. The
contributions from the bubble diagram, from the 4ph
diagram and the sum of the two are shown for both

non-SC and SCPH+B results.

non-SC SCPH+B FPSQ [10]

bubble 4ph total bubble 4ph total

TO

E1
u 21.2 69.9 91.1 8.54 7.95 16.4 14.7 ± 8.0

E2
u 40.7 7.09 47.8 14.5 1.81 16.2 19.3 ± 2.8

E3
u 28.3 11.6 39.9 12.6 3.47 16.0 22.4 ± 3.1

A2u 29.3 51.8 81.1 16.3 9.57 25.7 20.0 ± 10.2

LO

E1
u 13.8 2.71 16.5 7.12 0.97 8.09 8.8 ± 1.8

E2
u 24.3 8.43 32.7 11.7 2.33 14.0 18.4 ± 2.2

E3
u 33.0 8.39 41.4 22.6 3.88 26.5 43.9 ± 5.6

A2u 22.8 7.58 30.4 12.6 3.62 16.2 46.4 ± 5.3

TABLE V: Positions of additional peaks (cm−1). εx,1 is
for εxx and εz,1 is for εzz.

Mode r2SCAN FPSQ [8] FPSQ [10]

εx,1 563 585 556 ± 5

εz,1 598 592 587 ± 12

where harmonic phonon frequencies are used, and the
frequency-dependent self-energy is calculated as

Σnon−SC(ω) = Im ΣB[Gharm] + Σ4ph[Gharm]. (21)

The maximum values of the imaginary part of εxx and εzz
reach 785 and 932, respectively, which are due to the E1

u

and A2u phonons with large mode-oscillator strength of
S(E1

u) = 1.87 e2/u and S(A2u) = 6.12 e2/u, respectively.
It is because the positively charged Ti ions and negatively
charged O ions move in opposite directions in the A2u and
E1

u phonons, as shown in Fig. 1. On the other hand, in
the E2

u and E3
u phonons, the two Ti atoms move in op-

posite directions, so the mode oscillator strength is much
smaller. The renormalization of phonon eigenvectors by
SCPH is negligible, and it is the phonon frequencies and
self-energies that affect the calculation results of dielec-
tric properties. The SCPH+B calculations agree remark-
ably well with experimental values, whereas the non-SC
calculations failed to reproduce experimental data, espe-
cially in the A2u and E1

u peaks.
Figure 6b shows the reflectivity R in x and z directions

calculated using Eq. (5). For the x direction, the dip
due to the E2

u phonon (380 cm−1) is shallower than the
experimental data, whereas the dip due to the E1

u and E3
u

phonons (bellow 200 cm−1 and 450 cm−1 ) are in good
agreement with experiment. The SCPH+B calculations
are overall in better agreement with experiment than the
non-SC calculations.

To examine the importance of the frequency depen-
dence of the self-energy, dielectric functions in the log-
arithm scale are shown in Fig. 7, together with the ex-
perimental data from Schoche [10]. The dielectric func-
tions εxx and εzz have one peak each at about 600 cm−1,
which is not the position of any IR-active phonon fre-
quency at the Γ point. Several experiments [7, 10] re-
ported that adding these additional peaks to the FPSQ
model improved agreement with experimental data. The
peak positions are listed in Table V together with these
experimental data.

Possible origins of these peaks, such as lattice defects,
have been argued, but the causes are still unclear [10].
The imaginary part of frequency-dependent self-energies
can explain these peaks. The frequency dependence of
the 4ph self-energy is not so strong, whereas the bub-
ble self-energy has strong frequency dependence in rutile
TiO2. Figure 8 shows the bubble self-energies of the E3

u

and A2u phonons, which contribute to εxx and εzz, re-
spectively, with vertical dotted lines corresponding to the
positions of additional peaks. The bubble self-energies
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FIG. 6: (a) Calculated imaginary part of dielectric functions εxx (left) and εzz (right) from SCPH+B (solid blue
lines) and harmonic approximation (dashed cyan lines) with experimental data at room temperature [11] (orange
open circles). The TO phonons corresponding to the peaks are marked. (b) Calculated reflectivity from SCPH+B

(solid blue lines) with experimental data at room temperature [4].

also have peaks at the positions of the additional peaks.
We ascribe, therefore, the bubble self-energy to the ad-
ditional peaks.

When the bubble diagram is taken into account, the
dielectric function, and thus the Green’s function, has
peaks at a certain frequency ω when the two phonons
with frequencies (ω1, ω2) satisfy the relation ω = ω1±ω2

and q1±q2 = 0. The positive sign corresponds to phonon
emission, and the negative sign to phonon absorption.
Such phonon pairs can be specified by the two-phonon

density of states (TDOS), which is defined as follows,

TDOS±(ω, q) =
1

Nq

∑
(q1,j1)
(q2,j2)

δ(ω±ωq1j1−ωq2j2)δq±q1,q2+G.

(22)
Here G is a reciprocal lattice vector, and Nq is the num-
ber of q points in the summation. Figure 9 presents
the calculated TDOS(ω, q = 0) with a 15 × 15 × 15 q
points grid, in which TDOS for the emission process has
a considerable value at around 600 cm−1. Furthermore,
from Fig. 3, phonon DOS peaks at around 115, 210, 300,
398, and 455 cm−1, of which the 115 cm−1 one is due
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FIG. 7: Calculated imaginary part of dielectric functions with experimental data from Schoche [10] in a logarithm
scale. Both εxx and εzz have a peak at about 600 cm−1, which does not belong to any IR-active phonon frequency,

and these peaks are indicated by the gray arrows.
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FIG. 8: Calculated imaginary part of frequency
dependent bubble self-energy of A2u (blue) and E3

u

(red) modes. Blue and red vertical lines represent the
additional peaks for εzz and εxx, respectively.

to acoustic phonons and the others are due to optical
phonons. Therefore, it is concluded that the 600 cm−1

additional peak is created by the emission process of the
pairs (115 cm−1, 455 cm−1), (210 cm−1, 398 cm−1) and
(300 cm−1, 300 cm−1). Notably, the first pair emission
process, involving the acoustic modes, is contributed by
phonons with non-zero wave numbers, which can not be
detected via single phonon processes by optical probes
that are sensitive to Γ point phonons.
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FIG. 9: Calculated TDOS±(ω, q = 0) for absorption
(red) ω = ω1−ω2 and emission (blue) ω = ω1 +ω2. Red
vertical lines represent the positions of additional peaks.

E. functional dependence

We have seen that the combination of r2SCAN and
SCPH+B gives generally good results for phonon fre-
quencies and dielectric properties, meanwhile the lowest
phonon branch (B1

1u) in Fig. 3a and the temperature-
dependent dielectric constant εz0 in Fig. 5 are not in good
agreement with experiment. To investigate the causes of
these discrepancies, we also performed SCPH+B calcu-
lations using the PBEsol functional [52]. The results are
summarized in Appendix B. Although the PBEsol func-
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tional predicts the lattice constants well in Table BI, it
underestimates the overall phonon frequencies, which is
well known for the GGA family in the rutile TiO2 [14, 53].
However, its description of the B1

1u branch is superior to
that of LDA and r2SCAN as in Fig. B1. This result im-
plies that the B1

1u phonon also highly depends on func-
tionals like the A2u phonon.

The calculated behavior of εz0 with PBEsol at low tem-
peratures in Fig. B2 shows better agreement with ex-
periment than r2SCAN. The r2SCAN calculation gives
a frequency of A2u of 167 cm−1 at T = 0, whereas
PBEsol yields 143 cm−1, close to the experimental value
(140 cm−1 [12]). This is why the large εz0 value at low
temperature is well reproduced in the PBEsol calcula-
tion.

We have here seen that some physical quantities are
strongly dependent on functionals. These problems could
be cured by further functional improvements.

IV. CONCLUSIONS

We studied the infrared spectra of rutile TiO2 using
first-principles (DFT) calculations and lattice dynamics
calculations. The calculation of phonon frequencies was
performed using the SCPH+B theory, a self-consistent
anharmonic phonon theory [Fig. 3]. The SCPH+B cal-
culation very well described the E1

u and A2u phonon fre-
quencies, which were greatly underestimated in the har-
monic approximation. We showed that the anharmonic-
ity in these modes is too strong to treat in a perturba-
tive approach, and self-consistent treatment is essential
for accurately describing phonon frequencies. We also
compared the LDA and r2SCAN results, finding that the
r2SCAN functional is more predictive, especially in de-
scribing the A2u mode.

Phonon linewidths were calculated using both the
perturbation theory (non-SC) and the SCPH+B the-
ory. They were significantly overestimated in the non-
SC calculation, as suggested by Fu et al. [23]. We
also found that the contribution from the 4ph self-
energy is non-negligible at 300 K. The SCPH+B di-
electric function showed good agreement with experi-
mental values. Furthermore, the additional peaks at
around 600cm−1 pointed out in the previous experiments
can be attributed to the two phonon emission process
included in the frequency-dependent bubble diagram,
which shows the importance of the frequency dependence
of phonon self-energies in accurately calculationg the di-
electric function. We expect the presented approach to
be useful in predicting the dielectric properties of other
materials.
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Appendix A: Derivation of the Cowley equation

We review the derivation of the Cowley equation (3).
Consider a supercell with L unit lattices and impose pe-
riodic boundary condition. The coordinates of the atoms
are denoted by R. If the atomic displacements from the
equilibrium positions R0 are small compared with the in-
teratomic distance, the dipole moment of the interacting
atomic system can be expanded in a power series of the
displacements u(lκ) = R(lκ)−R0(lκ) as

δM = M1 +M2 +M3 + · · · (A1)

where the α component of Mn is

Mn,α =
1

n!

∑
l1κ1µ1

· · ·
∑

lnκnµn

M l1κ1,l2κ2,···lnκn
α,µ1···µn

× uµ1
(l1κ1)uµ2

(l2κ2) · · ·uµn
(lnκn) (A2)

Here, µ and α are the indices of Cartesian coordinates,
and uµ(lκ) is the displacement of the atom κ in the l

th cell. The coefficient M l1κ1,l2κ2,···lnκn
α,µ1···µn is the nth-order

derivative of M with respect to atomic coordinates as

M l1κ1,··· ,lnκn
α,µ1···µn

=
∂Mα

∂uµ1
(l1κ1) · · · ∂uµn

(lnκn)
. (A3)

Thus, the first-order coefficient is the Born effective
charge as Mα,β(lκ) = Z∗κ,αβ . From the periodic bound-
ary condition, the value of the quantity does not change
when the same number is added to the indices of all cells
as

M l1κ1,···lnκn
α,µ1···µn

= M0κ1,l2−l1κ2,···ln−l1κn
α,µ1···µn

. (A4)

Next, we introduce the complex normal coordinate Qq,
with which the atomic displacement is expressed as

uµ(lκ) =
1√
Lmκ

∑
q

Qqeµκ(q)eiq·rl , (A5)

By substituting Eq. (A5) for Eq. (A2) and using
Eq. (A4), we obtainMn expressed in terms of the normal
coordinate as follows,

Mn =
1

n!

L

Ln/2

∑
q1,··· ,qn

∆(q1 + · · · qn)M(q1, · · · , qn)Qq1 · · ·Qqn ,

(A6)
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where

M(q1, · · · , qn) =
∑
κ1µ1

· · ·
∑

lnκnµn

M0κ1,l2κ2,··· ,lnκn
µ1···µn

× 1
√
mκ1
· · ·mκn

eµ1
(q1, κ1) · · · eµn

(qn, κn)

× exp (i(q2 · rl2 + · · ·+ qn · rln)) .
(A7)

∆(q) takes the value 1 only when q is the reciprocal lat-
tice vector and 0 otherwise. Therefore, the summation
in first-order expansion is restricted to q1 = 0, and that
of the second-order expansion is restricted to q2 = −q1.

When phonon frequencies of all phonon modes are real
in the entire Brillouin zone, one may further transform
Eq. (A7) into a second quantization representation by
using Qq = (~/2ωq)1/2Aq with Aq = bq + b†q being the
displacement operator.

Mn =
L

n!

(
~

2L

)n/2 ∑
q1,··· ,qn

∆(q1 + · · ·+ qn)

×M(q1, · · · , qn)
√
ωq1 · · ·ωqn

Aq1 · · ·Aqn , (A8)

When an external electric field E(t) = E0e
−iωt+δt is

applied to the system, the interaction is represented by
the Hamiltonian as

HI = −M ·E(t). (A9)

According to the linear response theory, the expectation
value of the polarization P = M/v0 of the system is

P̄α(t) =
1

v0
GR(Mα,M , ω) ·E(t), (A10)

where GR(A,B, ω) is the retarded Green’s function for
operators A and B. By using the fact that the polar-
ization and the electric field are connected by the di-
electric susceptibility χ as Pα = χαβε0Eβ and that the
dielectric function ε in the IR region is the sum of the
phonon contribution χ and the electron contribution ε∞

as εαβ = ε∞αβ+χαβ , the dielectric function can be written
as

εαβ(ω) = ε∞αβ +
1

v0
GR(Mα,Mβ , ω). (A11)

Substituting Eq. (A8) into Eq. (A11), the lowest or-
der contribution of the dielectric function, as shown in
Fig. A1, is

εαβ(ω) = ε∞αβ +
1

v0

∑
jj′

~
2

M(0j)M(0j′)
√
ω0jω0j′

GR(A0j , A0j′ , ω)

= ε∞αβ +
1

v0

∑
(0,j)

Sjαβ

(ω0j)
2 − ω2 − 2ω0jΣ0j(ω)

.

(A12)

M1
α M1

β

(0, j)

FIG. A1: The lowest order of the dielectric function.
The double line represents the full-phonon Green’s

function.
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FIG. B1: The SCPH+B band structure with r2SCAN
(blue) and PBEsol (red) functional. The green arrow
indicate the B1u mode, which is overestimated in the

r2SCAN functional.

Appendix B: The results of the PBEsol functional

We summarized the calculation results of the PBEsol
functional. Table BI shows the optimized lattice con-
stants, and Table BII shows the Born effective charges
obtained from PBEsol. Figure B1 shows the phonon
dispersion spectrum along the high-symmetry points in
the first Brillouin zone at 300 K with non-analytic term
correction, together with inelastic neutron scattering re-
sults from Traylor [12] (orange dots), while Table BIII
shows the phonon frequencies at the Γ point. Fig-
ure B2 shows the temperature-dependent dielectric con-
stants from PBEsol.

TABLE BI: calculated lattice constants with PBEsol.

a (Å) c (Å) u c/a v0 (Å
3
)

PBEsol 4.595 2.942 0.3044 0.640 62.12

Exp. 300 K [46] 4.593 2.959 0.3048 0.644 62.42

Exp. 15 K [46] 4.587 2.954 0.3047 0.644 62.15
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TABLE BII: calculated Born effective charge tensors Z
of the Ti atom at (0, 0, 0) and the O atom at (u, u, 0).
Zxx = Zyy, Zyz = Zzy, and Zzz are shown considering

the symmetry.

Ti O

Zxx Zxy Zzz Zxx Zxy Zzz

PBEsol 4.26 −1.13 7.64 −3.16 1.80 −3.85
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FIG. B2: Temperature dependence of the static dielec-
tric constant. The triangular dots show the experimental
values and the circular dots show the results from the
SCPH+B calculations.

TABLE BIII: Comparison of the computed mode
frequencies (in cm−1) at the Γ point with experimental

data at room temperature. The results from the
harmonic approximation (harm), SCPH and SCPH+B

are shown at 300 K.

PBEsol neutron [12]

harm SCPH SCPH+B

Raman

A1g 590.2 601.3 602.4 610

A2g 415.4 424.1 423.6 NF1

B1g 140.8 119.8 117.0 142

B2g 793.5 802.8 807.9 824

Eg 447.4 444.8 434.5 445

non-active

B1
1u 77.9 131.9 115.9 113

B2
1u 374.4 387.4 374.3 406

TO

A2u 71.0 202.7 162.4 172.6

E1
u 98.8 187.0 169.9 189

E2
u 367.3 379.2 373.8 374

E3
u 478.0 493.0 478.4 494

LO

A2u 741.7 765.6 756.0 NF

E1
u 327.3 334.5 323.5 375

E2
u 378.0 390.9 383.9 428

E3
u 695.5 719.4 711.3 842

1 NF=not found.
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