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One of the key pathways towards scalability of spin-based quantum computing systems lies in
achieving long-range interactions between electrons and increasing their inter-connectivity. Coherent
spin transport is one of the most promising strategies to achieve this architectural advantage.
Experimental results have previously demonstrated high fidelity transportation of spin qubits
between two quantum dots in silicon and identified possible sources of error. In this theoretical
study, we investigate these errors and analyze the impact of tunnel coupling, magnetic field and
spin-orbit effects on the spin transfer process. The interplay between these effects gives rise to
double dot configurations that include regimes of enhanced decoherence that should be avoided for
quantum information processing. These conclusions permit us to extrapolate previous experimental
conclusions and rationalize the future design of large scale quantum processors.

I. INTRODUCTION

Silicon-based quantum devices are one of the brightest
prospects for the future of quantum computing, achieving
long coherence times [1–4] and having potential for
mass-production [5–7]. In building a full-scale quantum
computer, achieving fault-tolerance is also of utmost
importance as devices are scaled up in complexity
and number of qubits [8, 9]. Scalable fault-tolerant
architectures have generally been envisioned to require
some form of long distance coupling between qubit
arrays [10]. Moving the qubits themselves is one of
the promising strategies shown across various material
platforms with both theoretical and experimental studies
[11–14]. Other strategies being adopted include the
coupling of spins to photons in a cavity [15–18], the use
of a spin bus [19], using spin chains [20], transporting
electrons with surface acoustic waves (SAW) [21], and
coherent SWAP gates based on exchange operations
applied consecutively [22].

Here, we focus on the coherent transfer of spins
by shuttling an electron qubit between MOS quantum
dots in silicon, including both analysis of experimental
demonstrations [23, 24] and theoretical studies [25–27].
It has been recently demonstrated that it is possible
to perform high fidelity transport of spins in a double
quantum dot with a polarization transfer fidelity of
99.97% and average coherent transfer fidelity of 99.4%
[24]. These results will serve as the motivation for the
theory presented in this paper.
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One of the key challenges for coherent transport in
silicon MOS devices arises from variability in the g-
factors of each quantum dot in a multi-dot architecture,
leading to different Zeeman splittings in each of the
dots. This variability occurs primarily due to surface
roughness at the interface between silicon and silicon
dioxide in MOS devices. If there is a large Zeeman
splitting difference between the dots, it would make the
spin transfer process more difficult and expose the qubits
to more errors. In general, there are several methods
of minimizing a large difference in Zeeman splitting.
One example is to do so via some engineering of either
the device fabrication process or lowering the magnetic
field. The scenario in which we have a large difference
in Zeeman splitting is also an important one to consider
especially for examining the transfer fidelity of a long
chain of dots. In this paper, we investigate the transport
process and the sweet spot near the interdot transition.
We are still able to draw general qualitative conclusions
while quantitative conclusions will be based on the case of
a large Zeeman splitting difference (with its value taken
from experiments done in Ref. [24]).

In the next section (Section II), we will present
the theory and modeling of the double quantum dot
system Hamiltonian and the qubit dispersion. In
Section III, we examine the temporal errors using a
four-level model for the qubit, where we solve the time
independent Schrödinger equation while subjected to
computer-generated noise. Here, we examine the impact
of noise on both the Ramsey-like coherence times and
Hahn echo times. In this section, we also demonstrate the
presence of a sweet spot in coherence times. Following
that, in Section IV, we reduce further into a two-
level system and examine another possible source of the
transfer error in the form of unwanted rotations on the
Bloch sphere during the transfer process. Finally, in
Section V, we discuss potential improvements to the
shuttling process to improve the transfer fidelity.
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II. THEORY AND MODELING

In this section, we define the Hamiltonian of our double
quantum dot system and examine the qubit dispersion
that results. Typically, electrons in silicon have a
total of six valley states, with two states per Cartesian
direction. In silicon devices, the electric confinement of
the quantum dots results in the valley states along the x
and y directions being much higher in energy than in the
z direction, resulting in only two valley states relevant
to our discussion [28, 29]. The valley states will be
defined using an effective mass approach [30] where the
valley wavefunctions are described by the combination of
the wave envelope function in the z direction and Bloch
functions.

In our system, we have a single electron in a double
quantum dot in silicon. We can define the wavefunction
as follows,

|ψi,±〉 = Fi(r)u±(r)e±ik0z , (1)

where Fi(r) is the envelope wavefunction in the x, y,
and z directions and describes the spatial part of the
wavefunction, and u±(r)e±ik0z is the Bloch function
describing the valley states, with the wave vector
±k0ẑ describing the positions in momentum-space of
the conduction band minima. Valley eigenstates are
generally a superposition of the +k0 and −k0 valley
states, with their coefficients determined from the valley
phases. This is accounted for in the Hamiltonian, which
consists of charge, spin and valley degrees of freedom.
Charge states here refer to the location of the electron,
i.e., whether the electron is in dot A or dot B, and
we define detuning to be the energy separation between
charge states localized in the two dots. Taking into
consideration all of these degrees of freedom, the basis
states in which we construct our Hamiltonian will be
given by,

{|A, ↑,−k0〉 , |A, ↓,−k0〉 , |A, ↑,+k0〉 , |A, ↓,+k0〉 ,
|B, ↑,−k0〉 , |B, ↓,−k0〉 , |B, ↑,+k0〉 , |B, ↓,+k0〉} . (2)

We define the Hamiltonian in second quantization in

terms of the creation and annihilation operators, c
(†)
i,σ,v,

and the number operator, n̂i,σ,v = c†i,σ,vci,σ,v. The total
Hamiltonian is given as,

Ĥ = Ĥqd + ĤZ + Ĥsoc + Ĥvalley + Ĥsv , (3)

where

Ĥqd =
∑
σ,v

[ε
2

(n̂A,σ,v − n̂B,σ,v) +

∑
i 6=j

tc
2

(
c†i,σ,vcj,σ,v + h.c.

) (4)

is the quantum dot Hamiltonian and describes the
detuning (ε) and spin- and valley-independent tunnel

coupling (tc) between dots. In this study, to be consistent
with the value of tunnel coupling found for the device
used experimentally in ref. [24], we adopt a value of
tunnel coupling corresponding to approximately 430 µeV.
While a large tunnel coupling (in this case larger than
the Zeeman splitting at 1 T by a factor of a few) is
advantageous in suppressing diabatic effects [27], we note
that this is already near the upper bound of useful range
given the typical valley splitting in Si-MOS dots [31]. The
second term

ĤZ =
∑
i,v

EZ,i

2
(n̂i,↑,v − n̂i,↓,v) (5)

describes the dot-dependent Zeeman splitting (EZ,i).
Due to spin-orbit coupling, the Zeeman splitting would
also be valley-dependent. However, we can neglect its
impact in this case since the electron will not occupy the
excited valley states during the transfer process thanks
to the large valley splitting in our systems (typically
about 0.5 to 1 meV). Spin-orbit interaction effects can
be described by,

Ĥsoc =
∑
i,v

ηiε

2
(n̂i,↑,v − n̂i,↓,v)

+
∑
v,i6=j

tsd
2

(
c†i,↑,vcj,↑,v − c

†
i,↓,vcj,↓,v

)
+
tsf
2

(
c†i,↑,vcj,↓,v + c†i,↓,vcj,↑,v

)
+ h.c. . (6)

Note that the Zeeman splitting differing in each dot is
also a result of spin-orbit coupling. The first spin-orbit
effect here is the linear Stark shift denoted by ηi. The
second effect alters the tunneling process and includes
both spin-dependent (tsd) and spin-flip (tsf) terms. Spin-
dependent effects alter the tunnel coupling such that
different spin states are coupled at slightly different
amplitudes, whereas spin-flip effects couple the spin up
and down states in different charge states. The coupling
between valley states is described by,

Ĥvalley =
∑
i,σ

Ev,ie
iφi

(
c†i,σ,vci,σ,v′

)
+ h.c. , (7)

where Ev,i is the intensity of the valley coupling and φi
is the valley phase, which differs for each dot. The final
term in the Hamiltonian describes spin-valley mixing and
is given by,

Ĥsv =
∑
i

∆sv
1

2
(c†i,↓,−k0ci,↑,+k0)

+
∆sv

2

2
(c†i,↓,+k0ci,↑,−k0) + h.c. , (8)

which results from the valley-dependent spin-orbit field
created by the SiO2 interface, with ∆sv

1 = |∆sv
1 |eiφi and

∆sv
2 = |∆sv

2 |eiφi [32–34].
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The Hamiltonian defined above will serve as the basis
for all the calculations that follow in the rest of the
paper. Depending on the situation and the type of
analysis, we employ different Hamiltonians defined in
different bases for ease of understanding the specifics
of the system. In general, if we are to consider all
eight basis states as described in Eq. 2, we would obtain
an eight-level energy diagram as shown in Fig. 1(a).
In Section III, where we analyze the effect of charge
noise, we consider only the Hamiltonian in the lower
valley eigenstate. Therefore, the basis states considered
here become {|A, ↑〉 , |A, ↓〉 , |B, ↑〉 , |B, ↓〉}. In Section IV,
where we are interested in unitary errors that occur
as unwanted rotations, we consider the Hamiltonian in
the reduced Schrieffer-Wolff basis. The Schrieffer-Wolff
method is a quasi-degenerate perturbative method which
projects the unwanted excited states into the desired
ground states [35]. In all of the remainder of the paper,
we are performing numerical simulations assuming a
specific set of parameters corresponding to that fitted
from experimental data from Ref. [24] or from literature
values, which are summarized in Appendix A. We show
the energy diagrams of the respective multi-level models
in Figs. 1(a)-(c). Specifically, we plot the qubit frequency
obtained based on the first excitation energy of the eight-
level model in Fig. 1(d). As a benchmark, we plot the
qubit energy diagrams predicted by the different models
for the same set of parameters in Fig. 5 in Appendix A.

The primary topic of study in this paper is the coherent
transfer of spin qubits in double quantum dots, the
schematic of which is shown in Fig. 1(d). Typically, the
qubit state is initialized in one of the quantum dots, for
example, dot A in the case of ε� −tc, with the ground
state being the superposition state of spin up and down in
the lower valley eigenstate. A pulse in voltage detuning
brings the energy levels of the two dots into equilibrium.
Near this equilibrium point (ε = 0), charge hybridization
occurs, and the wavefunction of the electron is spread
across both quantum dots. Finally, after the transfer,
the qubit state is now in dot B (ε� tc).

We will test the model defined above against the
experimental results obtained in Ref. (24). We reproduce
in Fig. 1(d) the results from two experiments [24]. The
blue triangles are the resonant frequencies for microwave
spin driving, and the red dots are the frequency of qubit
precession measured from a Ramsey experiment. The
precession frequency of the qubit is the frequency at
which the qubit accumulates phase and will be referred
to as the qubit frequency. The qubit frequency changes
as the electron moves from one dot to another.

In comparison, we can model the qubit frequency using
the Hamiltonian as defined in Eq. (3) while taking into
account all eight energy levels as shown in Fig. 1(a)
and with basis states as defined in Eq. (2). The
qubit frequency can be obtained by calculating the first
excitation energy, with the result shown in Fig. 1(d)
(yellow line).

This eight-level model describes the qubit dispersion

(b)
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FIG. 1. Energy levels and qubit dispersion in regime tc � EZ.
(a) shows the energy levels of the full 8 × 8 Hamiltonian as
described in Eq. (3). The legend describes the states when
the electron is far detuned in dot A (ε� −tc), with |−〉 and
|+〉 being the valley eigenstates. (b) shows the energies of the
four-level model where we consider only the charge (electron
position) and spin states. (c) shows the two-level system of
only the effective ground states obtained from a Schrieffer-
Wolff transformation. (d) shows the qubit dispersion of the
double quantum dot system. The electron spin resonance
(ESR) frequency (blue triangles) and precession frequency
(red circles) are obtained experimentally as shown in ref. 24.
The yellow line plots the fit of the dispersion calculated
from the eight-level Hamiltonian model [Eq. (3)]. Magnetic
field, B0, is set at 1 T here. The accompanying schematic
demonstrates the location of the electron as detuning changes.
There are a total of eight energy levels with the red and blue
levels respectively representing the ground and excited valley
eigenstates. The dotted and solid lines are spin up and down
states respectively.

except for nonlinear Stark shifts at far detuning levels.
Therefore, our analysis will be limited to voltage
detuning within ε = ±2.5 meV and will not be impacted
by nonlinear Stark shift effects in far detuning levels.
This model serves as the theoretical basis upon which we
build our understanding of the double dot system and the
spin transport process. In recent experimental findings
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relating to spin transport [24], one of the key findings is
that there are two main types of errors that accumulate
during the transfer process. One is an error accumulated
over time due to the exposure of the qubit to electric
field fluctuations, which can be described by simulating
Ramsey-like, T ∗2 , and Hahn echo, TH

2 , coherence times.
The other error component is a transfer error that does
not depend on the ramp time but increases with the
number of transfers across the inter-dot region. In
this work, we examine both of these sources of error,
investigating possible causes and their impacts on the
transfer process.

III. ELECTRIC NOISE AND SWEET SPOTS

In this section, we look at temporal errors, and how
these errors can impact the transfer process. We focus
on the variation of coherence times (T ∗2 and TH

2 ) with
detuning, especially close to the inter-dot anticrossing.

The limitations on T ∗2 coherence times vary from
system to system, but for our system of concern [that
in Ref. (24)], the same device has been extensively
characterized in a previous experiment in Ref. (36).
There, the two main sources of noise identified were the
hyperfine coupling to the residual 29Si nuclear spins [37]
(the device is fabricated on isotopically purified 28Si, with
residual 29Si at concentrations of 800ppm) and the 1/f
noise originating from fluctuations of two-level charged
systems in the oxide and at the interface between the
oxide and silicon [38, 39], which create noise on the spin
mediated by the spin-orbit coupling. For this analysis,
we will focus on the 1/f noise effects, which becomes
dominant with the strong dispersion at the onset of the
dot transition. Hyperfine effects are also expected to
have some influence on the qubit shuttling performance
when the variability between qubit frequencies in the dots
is not too large, but for the regime considered here we
disregard such effects.

For the purpose of understanding the coherence times,
we neglect the valley degree of freedom, which was
defined in Eq. (3), leaving us with an effective four-level
system. In our system, the valley splittings are expected
to be on the order of 0.5 to 1 meV and therefore it is
unlikely for the electron to couple to these valley states

during the transport process. In this case, the charge
and spin states will be sufficient for an analysis of the
impact of 1/f noise on the system, with charge noise
entering directly through the charge degree of freedom,
degrading the spin coherence through the dependence of
its frequency on ε. Note that valleys still play a role in
this system because the linear spin-orbit coupling of each
dot is dictated by its valley structure [40].

We can observe in Fig. 2(a) the energy levels relevant
to our analysis. At negative detuning values, the ground
state wavefunctions of the system are primarily in dot A,
and correspondingly, the ground state wavefunctions are
mostly in dot B at positive detuning values. There is a
large energy gap between the two lowest levels and the
excited pair of states, corresponding to the large tunnel
coupling in our double dot system (∼ 430 µeV ≈ h ×
104 GHz). In this regime, the tunnel coupling is much
larger than the Zeeman splitting at 1T, and this reduces
the state leakage in the transfer process.

In Fig. 2(b), we plot the dispersion of the first
excitation energy of the double dot system. The
difference in Zeeman splittings between the two dots
is caused by the surface roughness arising from atomic
sources of disorder in the oxide as mentioned before. This
creates a small difference in the g-factors of the two dots
that generally results in tens of megahertz of difference in
the Zeeman splittings [41]. The transition between these
two qubit frequencies is set by the charge hybridization
between the dots due to the tunnel coupling.

Examining the qubit frequency, we find that it is
highly dependent on the detuning energies, especially
near the anticrossing, where there is a steep transition
from one qubit frequency to another. Charge noise causes
fluctuations of the dot levels and therefore enters as
detuning noise in the Hamiltonian. Near the anticrossing
at zero detuning, small fluctuations in detuning leads to
large shifts in frequency, due to the large Stark shifts,
|dfQ/dε|, plotted (in red) in Fig. 2(b).

In reality, 1/f noise is not always small in amplitude,
such that analyzing |dfQ/dε| may be insufficient in some
scenarios. To understand how the coherence times are
related to the qubit frequency, we simulate the effect of
charge noise on the qubit. The Hamiltonian we use to
describe our system is given explicitly as,

Ĥ4×4 =
1

2


EZ,A + (ηA + 1) ε 0 tc + tsd tsf

0 −EZ,A − (ηA − 1) ε tsf tc − tsd
tc + tsd tsf EZ,B + (ηB − 1) ε 0

tsf tc − tsd 0 −EZ,B − (ηB + 1) ε

 , (9)

where all the terms are as defined in the previous
section. We can model 1/f charge noise in this system

as fluctuations on the detuning levels. Thus, the noise
Hamiltonian is given by,
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FIG. 2. Effect of 1/f charge noise on Ramsey and Hahn echo coherence times. (a) shows the energy diagram for a four-level
model with spin and charge degrees of freedom, in the regime where tc � EZ, and colors are coded based on the proportion
of each state as per the legend. We will focus on the ground charge states for next section (enclosed in orange dotted
lines). (b) shows the qubit dispersion (fQ) and its gradient (|dfQ/dε|), defined with respect to the qubit Larmor frequency at
ε ∼ −1.35 meV (dot A). The gradient goes to zero at ε = −1.56 meV. (c) shows the results of the single electron transistor
(SET) noise spectroscopy measurement (in purple). Trend line in yellow shows the extrapolation of the noise amplitude at 1 Hz
(100 µeV2/Hz) to higher frequencies. Examples of computer-generated noise spectra are also plotted at sampling frequencies of
20 GHz (blue) and at 20 kHz (red). (d) shows the T ∗2 Ramsey coherence times for different values of detuning at B0 = 1.42 T.
The sweet spot in coherence is observed at about −2 meV at this magnetic field. We also plot here in purple |(dfQ/dε)δε|−1

calculated at B0 = 1.42 T, with |δε| ≈ 200 µeV. (e) shows the TH
2 Hahn echo times at B0 = 1 T. We show here two sets

of experimental data from a Hahn echo-like experiment performed in a device reported in Ref. [24], with only the data from
experiment 1 showing a sweet spot in detuning.

Ĥnoise(t) =
1

2


(ηA + 1) δε(t) 0 0 0

0 − (ηA − 1) δε(t) 0 0

0 0 (ηB − 1) δε(t) 0

0 0 0 − (ηB + 1) δε(t)

 , (10)

where the δε(t) terms are numerically generated noise in
the time domain. Examples of the spectrum are shown in
Fig. 2(c) and details of how the noise is simulated can be
found in Appendix B. The total Hamiltonian will then
be given as,

Ĥtotal(t) = Ĥ4×4 + Ĥnoise(t) . (11)

Having defined the Hamiltonian, we now evaluate the
evolution of the wavefunctions under the Hamiltonian by
solving numerically the Schrödinger equation,

i~
∂

∂t
ψ(t) = Ĥtotalψ(t) . (12)

In general, the solution to this system can be constructed
from small time steps δt as,

ψ(t+ δt) = e−iĤtotalδt/~ψ(t) , (13)

where the time evolution of the wavefunction is governed

by the unitary, U = e−iĤtotalδt/~. This approximation is
valid as long as δt is much smaller than the characteristic
time scale of variation of Ĥtotal. We initialize at t = 0 into
the superposition state of spin up and down, and then
iteratively calculate the unitary and the wavefunction of
Eq. (13) until a total evolution time tevol.

We note that only the time dependence of the
noise Hamiltonian is kept in the total expression for
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the Hamiltonian, with the qubit Hamiltonian time-
independent in Eq. (11). In general, the qubit

Hamiltonian (Ĥ4×4) is also time-dependent since it
contains the detuning parameter ε(t). This implies that
in order for the approximation in Eq. (13) to be valid,
we would have to use small time discretization of at
least three orders smaller than the Hamiltonian terms for
our purpose since the detuning is the dominating energy
term. This is also the case for the calculations in the
next section where we do not consider any noise in the
system and examine the impact of diabatic effects on the
transfer process.

However, in the case relevant to the discussion in
this section, we are calculating the coherence times of
the qubit for fixed detuning values. This leaves only
the time dependence in the noise Hamiltonian. We do
not have to sweep the detuning values over time. The
only time-varying parameters are the noise parameters
which are themselves small. This allows us to perform
the simulation using coarse time steps of a tenth of the
total evolution time, tevol/10, which, as we will show
later in the section, reproduces the experimental results
sufficiently well.

A computational challenge is the fact that the
calculation has to be performed over several orders of
magnitude in time. There is a large range of expected
coherence times, with minimum coherence times on the
order of 0.1 µs near the anticrossing, and maximum
coherence times near the sweet spot expected to be on
the order of hundreds of microseconds. In order to
capture the full range of coherence decay, we divide up
the numerical simulation into different sections with each
section consisting of tevol varying over a single order of
magnitude, thus speeding up significantly the simulation.
More details are contained in Appendix C.

Our simulated noise is calibrated against the noise
amplitude measured from the current through a single
electron transistor (SET) near the quantum dots, which
is used to estimate the electric noise in the device
(Appendix D).

The purple trace in Fig. 2(c) shows the results from
this experimental technique, and we take reference to its
amplitude at f = 1 Hz, with the yellow dotted line as the
reference line for 1/f noise of amplitude 100 µeV2/Hz.
The power spectral density (PSD) for two examples of
the computer generated noise is also plotted in Fig. 2(c)
corresponding to different sampling frequencies (20 GHz
for the blue trace and 20 kHz for the red trace).

Given the statistical nature of the noise, we repeat
the calculation of the density matrix ρ after tevol over
100 realizations of noise. The final density matrix is
then averaged over these 100 iterations and we obtain
ρ̄. Finally, we calculate the Bloch length [42, 43], which
is a measure of the qubit coherence,

|r| =

√
4

3

(
Tr(ρ̄2)− 1

4

)
. (14)

The Bloch length is chosen here because it corresponds
to what was measured in the experiment in Ref. (24).
We can calculate the Bloch length as a function of time
evolution, tevol. We obtain a decay, which can be fitted
using, |r| = A exp

(
−(tevol/T

∗
2 )β
)

+ C, where A, C,
T ∗2 , and β are the amplitude, the final Bloch length
after decay, the coherence time, and the decay exponent,
respectively. The same expression is adapted later to
obtain the Hahn echo time.

We used these numerical simulations to estimate the
effect of 1/f charge noise on the system. In addition, we

also account for hyperfine nuclear spin noise 1/T hyp
2 [23],

which combine with the electric charge noise to determine
the T ∗2 coherence time,

1

T ∗2
=

1

T elec
2

+
1

T hyp
2

, (15)

Hyperfine nuclear noise may be relevant when we
suppress the effect of charge noise at the sweet spot
and this source of noise is modeled to be independent
of detuning and would set an upper bound for the

coherence time. We estimate the amplitude T hyp
2 to be

approximately 30 µs.
Following this process, we obtain the results shown in

Fig. 2(d). Here, we set the B0 magnetic field to 1.42 T,
corresponding directly to the conditions under which the
experiment in Ref. (24) was performed, which yielded
the experimental data (plotted in blue) in Fig. 2(d). We
plot the Ramsey coherence times to highlight the point
of minimum T ∗2 near the anticrossing at zero detuning,
and we also obtain fairly consistent results between the
numerical simulation (in red) and the experiment (in
blue).

In addition to the numerical simulations, we also
performed an analytical estimate of the electric charge
noise, where we approximate its effect on the spin to
be proportional to its Stark shift and therefore, we can
describe the decoherence due to charge noise in the
following way,

1

T elec
2

=

∣∣∣∣dfQ

dε

∣∣∣∣ |δε| (16)

where
∣∣∣dfQdε ∣∣∣ can be obtained directly from Fig. 2(b)

while |δε| can be estimated from the amplitude of
1/f noise at 1 Hz using the following expression(
∼ 2π|δε|1Hz

√
ln
(
fh
fl

))
[4, 44]. We estimate |δε|1Hz

to be 10 µeV from the amplitude spectral density of
10 µeV/

√
Hz at 1Hz in our charge noise model. Based on

the way we generate the noise spectra, we estimate our
ratio of fh/fl to be approximately 5×104, given that fh =
1/(2∆t) and fl = 1/(N∆t) (Appendix B). This leads to
a value of ∼ 200 µeV for |δε|. As with the numerical

simulations, we estimate the T hyp
2 to be approximately

30 µs. We can observe that the analytical estimation of
the T *

2 coherence time spectrum is also fairly accurate
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with both the detuning dependence modeled accurately
as well as the expected trend at the sweet spot based on
the experimental data.

We find that there is good agreement between
the experimental results with both the full numerical
simulation and the analytical estimation, suggesting that
outside of the sweet spot, most of the noise in our system
is quasi-static charge noise in this interdot tunneling
regime.

We observe that there is indeed a dip in the coherence
time near zero detuning, where the inter-dot anticrossing
is. This coincides with what we observed from the
Stark shift of the double quantum dot [as shown in
Fig. 2(b)] where it is maximum close to the inter-dot
anticrossing. We also observe a coherence time sweet
spot from the simulation results which is outside of the
range of detuning values swept in the experiment. We
note that the point of maximum coherence time is indeed
at the point where dfQ/dε = 0.

Next, we incorporate a Hahn echo pulse into the
simulation. The key difference between this simulation
and what was described previously is the inclusion of a
π-pulse during the time evolution of the qubit state. The
π-pulse is implemented by applying a unitary operator,

Uπ = exp
(
−i π

2
τI ⊗ σy

)
, (17)

with

τI ⊗ σy =


0 −1i 0 0

1i 0 0 0

0 0 0 −1i

0 0 1i 0

 , (18)

where τ and σ are the Pauli matrices representing the
charge and spin subspace respectively, and Uπ represents
a π-pulse about the y-axis in the spin-subspace. This
unitary operator is multiplied to the qubit wavefunction
at exactly the mid-point of the time evolution (tevol/2),
corresponding also to the pulsing sequence used in
the experiment [24]. Otherwise, the other aspects of
calculating the Hahn echo time, TH

2 , are the same as for
the Ramsey coherence time, T ∗2 .

The results of this simulation are shown in Fig. 2(e),
where we can also observe both the point of minimum
Hahn echo times near the inter-dot anticrossing and the
sweet spot in detuning. At the sweet spot, we benefit
from enhanced coherence, which is indicative of an ideal
point for qubit idling due to reduced temporal errors.
The existence of this sweet spot can be explained by
examining the qubit dispersion plotted in Fig. 2(b) and
the plotted gradient dfQ/dε, where we observe that the
dispersion gradient vanishes at ε = −1.56 meV. In the
context of qubit transfer, this is an ideal point in detuning
for initializing or idling due to its long coherence times.
Such a sweet spot could potentially also be an ideal point
for qubit control.

Similar to the case of T ∗2 , we also plot here in purple
in Fig. 2(e) the theoretical estimation of the Hahn echo

time T hyp
2 as well as include the effect of hyperfine nuclear

noise in both the numerical simulation and analytical
estimations. Since the Hahn echo is the result of a
single decoupling pulse, in the specific case of 1/f noise,
previous studies have shown that the average noise
amplitude across all frequencies would be reduced by
approximately an order of magnitude [44–46]. Therefore,
we estimate the reduced charge noise after the Hahn echo
to be |δε| ∼ 20 µeV. Similarly, we estimate that the
effect of hyperfine noise will also be reduced by an order

of magnitude such that now, 1/T hyp
2 = 1/(300 µs).

Comparing the experimental result of Fig. 2(e) in blue
(experiment 1) with the simulation results, we observe
a small constant offset between the results, which is
discussed in Appendix E. We also discuss why in some
data, such as shown in red (experiment 2), the sweet spot
seems absent.

Finally, comparing T ∗2 and TH
2 , we observe that the

Hahn echo improves the coherence times across all
detuning values up to an order of magnitude. We
also note that while these results are calculated at
different magnetic fields, we find that the difference in
magnetic field only leads to marginal change in the
results, as discussed in Appendix F, indicating that the
improvement occurs due to the echo decoupling.

Overall, there is satisfactory consistency between the
experimental and simulation results for both cases of
T ∗2 and TH

2 , suggesting that 1/f noise can be used to
model decoherence in our system. What these results
mean in the context of qubit transport is that we should
avoid idling at the regions of reduced coherence times
by implementing fast pulsing between the quantum dots
while making use of the sweet spot in detuning as an
idling point in experiments. However, fast pulsing can
also increase leakage errors, so the pulse speed would be
limited by the size of the tunnel coupling [27]. We will
explore the impact of pulsing speed in more detail in
Sec. V.

IV. TRANSPORT PROCESS AS A SINGLE
QUBIT GATE

Other than the errors due to 1/f charge noise
investigated in the previous section, we are also
interested in other errors that occur near the anticrossing.
Recent studies suggest that 1/f noise can also lead
to diabatic effects at the inter-dot transition [27].
Previous experimental results also show error that occurs
regardless of the transfer ramp times and are finite
even in the idealized limit of infinitely fast transfers
[24]. One potential type of such errors is unitary error,
i.e., unaccounted rotations occurring on the qubit Bloch
sphere, and we will analyze them in this section as
effective x and z gates after the transfer process.

One characteristic of our double dot system is that
we have a large tunnel coupling as shown in Fig. 2(a),
and that has been instrumental in allowing us to pulse
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qubits across 4 meV in voltage detuning over 8 ns,
without significant contributions from diabatic errors.
The opposite scenario with a small tunnel coupling is
discussed in Appendix G, where we have the energy
diagram of a four-level system with a tunnel coupling
of 41 µeV or 10 GHz, which is smaller than the Zeeman
splitting at B0 = 1 T (115 µeV or 28 GHz). With these
Hamiltonian parameters, states with different spin and
charge configurations cross around the inter-dot charge
transition, ε = 0, leading to enhanced spin-flip tunneling
and larger possibilities of state leakage in the transport
process. This is the regime that should be avoided in
qubit transport protocols.

Considering only the regime with tunnel coupling
larger than the Zeeman splitting, tc � Ez, we perform
a Schrieffer-Wolff transformation [35] to isolate only the
effective ground state orbitals, consisting of the lowest
two energy levels as shown in Fig. 3(a). To confirm
the validity of this approximation, we also calculate the
spin polarization errors after a transfer across 4 meV
with ramp times spanning several different orders of
magnitude, which we plot in Fig. 3(b). For this
simulation, we remain in the four-level model [Fig. 2(a)]
and initialize the qubit in either the spin up or spin
down state in quantum dot A, at a detuning level of
ε = −2 meV, and calculate the time evolution operators
of the time-dependent Hamiltonian as we ramp the qubit
from one dot to another, similar to what we outlined
in Section III. As previously mentioned, we remove
the impact of noise for this analysis and consider only
diabatic effects due to the ramp itself (in a recent study
it was found that the 1/f noise is also responsible for
significant diabatic effects [27]).

Next, we consider a time-dependent Hamiltonian in
which the detuning parameter, ε(t) varies with time and

Ĥnoise = 0. Therefore, we solve for the qubit state in
time steps that are 1/105 of the total ramp time, ensuring
that the numerical time steps are small enough to capture
the change in wavefunction accurately [26]. Finally, we
calculate the state fidelity, F , at the end of the transfer
by comparing with the target eigenstate,

F = | 〈ψtarget|ψfinal〉 |2 . (19)

We show that for a tunnel coupling of 430 µeV =
h × 104 GHz, we have a very small diabatic error for
our chosen ramp rate, represented by the yellow star
(500 µeV/ns).

Now, using the Schrieffer-Wolff transformation, we
derive an effective 2× 2 Hamiltonian from the four-level
model, with details given in Appendix A,

Ĥ2×2 =
1

2
~ω01 +

1

2
~ωσz +

1

2
~gσx (20)

where ω0 is a shift in energy governed by the size of
the tunnel coupling and the detuning, ω is dominated
by the qubit frequencies of each dot depending on
the detuning position and g is dominated by the term

(b)
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FIG. 3. Unitary errors arising from the transport process. (a)
shows the energy levels of the effective two-level Hamiltonian,
obtained from a Schrieffer-Wolff transformation of the four-
level model shown in Fig. 2(a), where tc � Ez. (b) shows the
polarization spin transfer errors over a range of ramp rates.
The ramp rate of 500 µeV/ns corresponds to what is used in
the experiment [24] and is represented by the yellow star. (c)
shows the magnitude of the off-diagonal term in the H2×2

Hamiltonian. We show the magnitude of tunnel coupling
in both units of meV and GHz. (d) shows the effective z-
gate after a single transfer, which is a rotation about the
quantization axis set by the B0 magnetic field. We fix here
the total ramp time from ε1 to ε2 at 8 ns. The rotating frame
is defined by the precession rate at ε = −1.35 meV (dot A).

tsftc/(2
√
t2c + ε2) which is highly dependent on the

magnitude of the spin-flip tunnel coupling. We neglect
second order terms and higher in this Hamiltonian. In
this form, the Hamiltonian explicitly shows that we can
characterize the spin-flip error as an x-rotation set by g,
and any phase accumulation as a z-rotation set by ω.

With the effective 2 × 2 Hamiltonian [Eq. (20)], we
seek to understand the amount of z- and x-rotations
accumulated during the transfer process in a single
transfer. We will use a ramp time of 8 ns, corresponding
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to the ramp time used in the experiment of Ref. (24).
For these simulations, we initialized the qubit in a
superposition of the two eigenstates at a particular
detuning position, ε1. By iteratively calculating the
unitary defined in Eq. (13), we take the product of all
unitaries as we vary the detuning from ε1 to ε2. This
gives an effective unitary time-evolution operator, Ueff .
From this effective unitary operator, we factor out a
global phase eiφ, and then we take the matrix logarithm
[47]. In this way, we obtain a effective operator with σx,
σy, and σz components, which can be interpreted as an
effective qubit rotation accumulated during the transfer,

−i logUeff ≡ c1σx + c2σy + c3σz , (21)

where the coefficients of c1, c2, and c3 can be obtained
from this final effective operator. These coefficients
are different from the terms in the 2-by-2 Hamiltonian
[Eq. (20)]. We vary the detuning positions of the start
(ε1) and end (ε2) points for the transfer and calculate
the effective qubit rotation as a function of both these
quantities.

We note that in the form of Eq. (20), the leading
coefficient of σx is very small. In Fig. 3(c), we show
how ~g is expected to change with both detuning ε and
tunnel coupling tc parameters. This term is strongest
near the inter-dot anticrossing, and the detuning regime
in which it is significant increases with tunnel coupling.
This particular form of error would benefit from a smaller
tunnel coupling, but this would increase the temporal
errors discussed before. Instead, faster pulsing to avoid
the inter-dot region can help to minimize this error as
well as the temporal errors.

Calculating the effective x gates using the method
above, we find that indeed the amount of x-rotations
increases with increasing amount of time spent near the
inter-dot anticrossing. However, we find that the effective
x-rotations are small and on the order of pico-radians.
This is primarily due to two reasons: the first of which
is that g is small compared to the ω term. Second, we
define the qubit in the basis of the rotating frame, where
the off-diagonal terms gain an oscillatory phase at the
frequency of the rotating frame, and therefore to first
order, average to zero. We estimated higher order terms
in rotating wave approximation [48], and that yields
effective x-rotations on the order of pico-radians, shown
in Appendix H. The small magnitude of the x-rotations
is indicative that most likely, these effective rotations are
not a significant source of transfer errors during the qubit
transport process.

In Fig. 3(d), we show the result of the effective z-
rotations by plotting the coefficient c3 as a function of
ε1 and ε2. The results show that in the top right and
bottom left quadrants, the amount of phase accumulated
is approximately constant for a fixed total time anywhere
in the quadrant. This is consistent with the fact that if
the qubit is moving within the same dot and without
moving too close to the anticrossing, the rate of phase
accumulation is approximately constant, corresponding

to the qubit frequencies of each dot in the rotating frame.
The rotating frame is defined with respect to dot A, and
therefore the phase accumulation in dot A is completely
governed by the Stark shift in dot A, while in dot B, it will
be dominated by the difference in Zeeman splitting, ∆EZ.
The rate of phase accumulation is then most impacted
when a transfer takes place from one dot to another (i.e.
ε1 and ε2 not being in the same dot) or when the transfer
occurs near the inter-dot anticrossing where the electron
wavefunction is effectively spread across both quantum
dots.

The method described in this section was used to
characterize the transfer process as an effective gate,
and we found that there are unitary errors that occur
as a function of detuning positions for a fixed total
time. This includes a non-zero transfer error in the
form of unwanted x-rotations, it is also too small for
the particular experimental conditions to be significantly
measured due to the qubit being in the rotating frame
and also the small magnitude of the spin-flip term in
the Hamiltonian. We expect, however, that when the
Zeeman splitting matches or exceeds the tunnel coupling,
this approximation will no longer hold, and significant
spin flip may be observed.

V. DISCUSSION

In the previous sections, we have explored different
error mechanisms relevant to the transport process. In
this section, we discuss how this information can be of
aid in future experiments in coherent transport.

In the results shown in the previous sections, we
set the magnitude of the tunnel coupling to be about
430 µeV ≈ h × 104 GHz, obtained from experimental
fits [24]. Its large magnitude has been instrumental in
avoiding leakage in the experiment. In this section, we
examine how a different tunnel coupling can impact the
results we obtained in the earlier sections.

In Fig. 4(a), we show how the Hahn echo times,
TH

2 , change with the magnitude of tunnel coupling. In
Sec. III, we observed that coherent errors peaked at the
inter-dot anticrossing and that there exists a sweet spot
in detuning where the coherence time is maximum. In
this figure [Fig. 4(a)], we observe that with a larger
tunnel coupling, the minimum TH

2 time at the inter-dot
anticrossing is increased slightly. Even though it remains
within the same magnitude, it does suggest that a larger
tunnel coupling can be helpful in extending coherence
times. We also observe that the sweet spot remains
visible, indicating that the sweet spot can be readily
accessed in different tunnel coupling regimes and is a
general characteristic of the qubit dispersion. This opens
up possibilities of quantum information protocols making
use of the sweet spot while having tunability of the tunnel
coupling.

Next, we show in Fig. 4(b) the error rates during
transfer as a function of the ramp rates, considering only
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FIG. 4. Impact of tunnel coupling on Hahn echo coherence
times and polarization spin transfer error. (a) shows the
effect of tunnel coupling on the TH

2 spectrum across detuning
values between −3.6 meV and 3.6 meV. This simulation is
performed at B0 = 1 T. (b) considers the transfer of a spin
down ground state from dot A to B across 4 meV with varying
ramp times. The two curves are calculated for different tunnel
couplings, with the red and blue traces calculated for tunnel
couplings of 41 µeV ≈ h×10 GHz and 430 µeV ≈ h×104 GHz
respectively. The yellow star indicates the ramp rate used in
the experiments of Ref. [24].

diabatic effects. Here we investigate diabatic effects that
occur as a result of ramping too quickly between the
dots [26], where we calculate the state fidelity [Eq. (19)]
after a single transfer for different ramp rates. Similarly
to Fig. 3(b), we show the results of transferring a spin
down state from dot A to B across 4 meV with varying
ramp times. In other words, this is a measurement of
adiabaticity and ideally, we want minimum error rates
here at the chosen ramp rate, thus minimizing the effect
of state leakage. We had already seen that with a large
tunnel coupling of tc = 430 µeV ≈ h × 104 GHz, the
error rates are very small (∼ 10−10) at the ramp rate of
500 µeV/ns used in the experiment of Ref. (24). Here, we
expanded on that by also showing the results with a much
reduced tunnel coupling of tc = 41 µeV ≈ h × 10 GHz.
It becomes obvious that a large tunnel coupling is more
advantageous for avoiding diabatic errors by comparing
the results for ∼ 430 µeV (shown in blue) and for
∼ 41 µeV (shown in red). The diabatic errors with
a lower tunnel coupling are increased by several orders
of magnitude at the same ramp rate. It would not
be preferable to lower the ramp rate since one should
ramp quickly across the inter-dot anticrossing in order
to minimize the temporal errors. This points to a large

tunnel coupling being a key step towards optimizing the
transfer process.

In the previous sections, we have examined two
different sources of error. In Section III, we examined
the impact of charge noise on coherence times and
how decoherence peaks at the interdot anticrossing.
This effect should be minimized by pulsing across the
anticrossing rapidly to minimize the amount of time
spent there. In Section IV, we examined the amount
of diabatic errors in our system and concluded that we
should operate in a regime of large tunnel coupling where
we minimize diabatic errors. We find that given the large
tunnel coupling, accurate simulations in the transfer
process are computationally costly, requiring very fine
time resolution. Simulations of unitary errors with a
time-dependent detuning as shown in Fig. 3(d) was only
possible with the reduced basis, i.e. without excited
states, ignoring diabaticity. We note that T ∗2 effects
discussed in Section III and diabatic effects discussed
in Section IV become appreciable in distinct ranges
of ramp rate. Assuming a fixed tunnel coupling of
about 400 µeV as we have done in the paper, we
would have to work in regimes where the ramp rate is
approximately 105 µeV/ns or more before diabatic effects
became significant [Fig. 3(b)]. At this point, considering
most detuning ranges in a transfer between two quantum
dots, the transfer would be concluded in less than 0.1
ns, and therefore T ∗2 effects could be considered to be
negligible. Conversely, assuming a slower ramp rate,
T ∗2 effects become more significant but diabatic effects
become negligible exponentially.

We would also like to point out that there have been
a related analysis performed by Krzywda et al. [27].
There, the diabaticity effect due to 1/f noise in charge
transport between dots was analyzed analytically, which
is complementary to our investigations into spin transfer
process.

Other than tunnel coupling, parameters like spin-
orbit coupling strengths and magnetic fields also have
an impact on the transport process, but they are
either kept constant or are difficult to control in
scalable architectures. Recent work also suggests that
spin-orbit parameters can be heavily dependent on
surface roughness and other characteristics of the device
determined during the fabrication process [40, 41, 49].

We have shown here that with a large tunnel coupling
and operating at or close to the sweet spot in detuning,
it would be possible to overcome these other effects,
which is also substantiated by the experimental results
obtained [24]. Discussing the results of coherent qubit
transport in the context of tunnel coupling is also
important because it is a highly tunable parameter [50–
52] and that will be important in scale-up architectures
as well. This is especially the case when we intend
to coherently transport qubits in a large-scale structure
in the bucket-brigade manner, a scheme that we are
primarily concerned with here. In this scheme, we are
moving the electrons across multiple dots and therefore it
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is important to understand the tunneling process, which
is where most of the errors occur in our system.

VI. SUMMARY

In this paper, we adopted an eight-level model for our
double quantum dot system, which includes the spin,
valley and charge degrees of freedom. We examined two
different types of errors in spin transfer, temporal and
unitary errors. To understand the temporal errors, we
analyzed the spectrum of both T ∗2 and TH

2 times, and
estimated that 1/f noise with amplitude of 100 µeV2/Hz
at 1 Hz is able to adequately describe the spectrum of
coherence times near the inter-dot anticrossing. As for
unitary errors, we model the transport process as x-
and z-rotations on the Bloch sphere by considering only
the two lowest-energy states and show that any errors
in the form of x-rotations are negligible in the rotating
frame with large tunnel couplings (tc � EZ). Finally,
we discussed how the results we presented changes with
the size of the tunnel coupling, further cementing its
importance.

To conclude, a large tunnel coupling will be key in
minimizing the errors that occur during the transport
process, especially for spin-flip errors. Also, fast pulsing
will be very helpful for avoiding the region of fast
dephasing near the inter-dot anticrossing, especially since
most errors accumulate near the inter-dot anticrossing.

Having coherent qubit transfer in large scale systems will
allow for non-local operations, while increasing the inter-
connectivity between the qubits.
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Appendix A: Hamiltonians

In Section II, we model our double quantum dot system
as an eight-level system, as described by the Hamiltonian
given in Eq. (3). Here we explicitly give the matrix
representation of the Hamiltonian,

Ĥ8×8 =

(
Ĥ

(A)
8×8 Ĥ

(c)
8×8

Ĥ
(c)†
8×8 Ĥ

(B)
8×8

)
(A1)

where each of these terms is a 4-by-4 matrix,

Ĥ
(A)
8×8 =

1

2


EZ,A + (ηA + 1)ε 0 Ev,A ∆sv∗

2

0 −EZ,A − (ηA − 1)ε ∆sv
1 Ev,A

E∗v,A ∆sv∗
1 EZ,A + (ηA + 1)ε 0

∆sv
2 E∗v,A 0 −EZ,A − (ηA − 1)ε

 (A2)

Ĥ
(c)
8×8 = Ĥ

(c)∗
8×8 =

1

2


tc + tsd tsf 0 0

tsf tc − tsd 0 0

0 0 tc + tsd tsf
0 0 tsf tc − tsd

 (A3)

Ĥ
(B)
8×8 =

1

2


EZ,B + (ηB − 1)ε 0 Ev,B ∆sv∗

2

0 −EZ,B − (ηB + 1)ε ∆sv
1 Ev,B

E∗v,B ∆sv∗
1 EZ,B + (ηB − 1)ε 0

∆sv
2 E∗v,B 0 −EZ,B − (ηB + 1)ε

 (A4)

in the basis of,

{|A, ↑,−k0〉 , |A, ↓,−k0〉 , |A, ↑,+k0〉 , |A, ↓,+k0〉 , |B, ↑,−k0〉 , |B, ↓,−k0〉 , |B, ↑,+k0〉 , |B, ↓,+k0〉} (A5)

Here, EZ,i refers to the Zeeman splitting, ηi is the Stark shift, ε is the detuning of the double dot, tc is the tunnel
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coupling between the dots, tsd and tsf are respectively
the spin-dependent and spin-flip tunneling parameters
arising from spin-orbit coupling, ∆sv

1(2) are the spin-valley

coupling terms, and finally Ev,i are the valley splitting
terms.

We note here that we consider the coupling terms to
be completely real, taking only the magnitude of tc, tsd,
and tsf . This is because the imaginary part of these terms
only causes the electron to gain a phase as it moves across

the dots, which is difficult to differentiate experimentally
from other contributions (i.e. inter-dot qubit frequency
difference).

In Section III, we discussed the role of 1/f noise in the
system in the context of the four-level model. Here, we
explicitly show the matrix representation of that model
Hamiltonian in the basis of {|A, ↑〉 , |A, ↓〉 , |B, ↑〉 , |B, ↓〉}
where we consider only the lower valley eigenstates,
and the four-level Hamiltonian can be obtained by
considering only the intra-valley components of the full
8× 8 Hamiltonian.

Ĥ4×4 =
1

2


EZ,A + (ηA + 1) ε 0 tc + tsd tsf

0 −EZ,A − (ηA − 1) ε tsf tc − tsd
tc + tsd tsf EZ,B + (ηB − 1) ε 0

tsf tc − tsd 0 −EZ,B − (ηB + 1) ε

 . (A6)

In Section IV, we further simplified the model and
performed a Schrieffer-Wolff transformation [35]. We
consider the four-level model Hamiltonian to be a sum
of Ĥ0 and V where Ĥ0 is given as,

Ĥ0 =
1

2


EZ + ε 0 tc 0

0 −EZ + ε 0 tc
tc 0 EZ − ε 0

0 tc 0 −EZ − ε

 , (A7)

and the perturbation term V is given as,

V =
1

2


ηAε 0 tsd tsf

0 −ηAε tsf −tsd
tsd tsf ηBε−∆EZ 0

tsf −tsd 0 −ηBε+ ∆EZ

 .

(A8)

where Ĥ0 is non-diagonal since tc is large with respect
to the Zeeman splitting EZ, and therefore cannot be
treated as perturbation. Performing the Schrieffer-Wolff
transformation, we obtain an effective 2×2 Hamiltonian,

H2×2 =
1

2
~ω01 +

1

2
~ωσz +

1

2
~gσx (A9)

where

~ω0 ≈ −
√
t2c + ε2 , (A10)

~ω ≈ −EZ,A + EZ,B + ε(ηA + ηB)

2
+

2tctsd + ∆EZε+ ε2(ηA − ηB)

2
√
t2c + ε2

, (A11)

and

~g ≈ − tctsf√
t2c + ε2

. (A12)

We have neglected second order terms and higher. The
main feature of this expression lies in the σx term which
is proportional to tsf , indicating that any errors in a form
of an out-of-plane rotation depend on the magnitude of
tsf . Furthermore, in the rotating frame, the off-diagonal
term proportional to σx averages to zero due to a rapidly
rotating term at the frequency of the rotating frame
(which is the precession frequency at ε = −1.35). The
Hamiltonian parameters used for the calculations in the
rest of this document are derived from a combination of
experimental parameters [24] as well as what is known
in the literature [31–33, 53]. Most of the valley related
parameters are treated as free parameters that we can
tune to fit the spin probabilities as obtained from the
experiment.

Zeeman splitting (1T) EZ 116 µeV (28 GHz)

Zeeman splitting difference between dots (1T) ∆EZ 138 neV (33.4 MHz)

Zeeman splitting (1.42T) EZ 166 µeV (40 GHz)



13

Zeeman splitting difference between dots (1.42T) ∆EZ 205 neV (49.4 MHz)

Valley splitting in dot A Ev,A 330 µeV (80 GHz)

Valley splitting in dot B Ev,B 330 µeV (80 GHz)

Valley phase in dot A φA 0 rad

Valley phase in dot B φB 0 rad

Spin valley mixing, 〈↓, v′|Hso| ↑, v〉 ∆sv
1 20.7 neV (5 MHz)

Spin valley mixing, 〈↑, v′|Hso| ↓, v〉 ∆sv
2 166 neV (40 MHz)

Tunnel coupling tc 430 µeV (104 GHz)

Spin-dependent tunnel coupling tsd -14.1 neV (-3.4 MHz)

Spin-flip tunnel coupling tsf -14.1 neV (-3.4 MHz)

Stark shift in dot A ηA 186 MHz/eV (0.77 MHz/THz)

Stark shift in dot B ηB -33.8 MHz/eV (-0.14 MHz/THz)

TABLE I: Hamiltonian parameters used in numerical simulations.

We verify the accuracy of these parameters as well as
the consistency of the four-level model and the two-level
model after Schrieffer-Wolff transformation by checking
the qubit frequency of the double dot system using these
reduced models.
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FIG. 5. Verification of the different models’ accuracy in
reproducing the experimental qubit frequency, fQ. The inset
shows a zoom-in of the fit within a smaller detuning range.

We show that for the given parameters, all the
three models match well the experimental results (ESR
and precession frequency), across the relevant range of
detuning values. We show in the inset the fitting near the
anticrossing to show that it is also well-fitted for small
detuning values.

Appendix B: Simulation of Noise

In Section III, we examined the spectrum of T ∗2 and
TH

2 as a function of detuning by the addition of computer
generated noise to the qubit Hamiltonian, as it undergoes
time evolution. We have also outlined how we obtained
the spectrum of decoherence rates. In this section, we
detail how we generated the 1/f noise spectrum.

We begin by generating an array of 105 random
numbers, x(t). At this stage, the array is agnostic to
the time range, and the range of tevol that it crosses is
dependent on the time steps ∆t used in the simulation.
We perform discrete Fourier transformation on this array
to convert it from the time domain into the frequency
domain,

x(f) =

N−1∑
t=1

x(t)e−2iπtf/N .

The range of frequencies that we will consider include
negative frequencies, and we can scale the x(f) by a
scaling factor given as,

A(f) = |δA|f−1/2

where the frequency is scaled by a factor of −1/2
because we consider 1/f noise and the square root of
the power spectrum is inversely proportional to

√
f . The

amplitude in the scaling factor |δA| is a coefficient that
is determined such that the resulting PSD extends to
100 µeV2/Hz at 1 Hz, and will change with the time step
∆t such that the ratio of |∆A|2 to ∆t remains the same.
We then perform an inverse Fourier transform and obtain
the scaled time domain spectrum which can be used as
noise input for the simulations.

Examples of power spectral densities of these noise
spectra are shown in Fig. 2(c) in blue and red. In general,
we simulate noise spectra with time steps that vary from
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0.05 ns to 0.05 s and have lower cutoff frequencies given
by fl = 1/(N∆t) which depends on both the time step
and the number of samples. The higher cutoff frequency,
on the other hand, is given by, fh = 1/(2∆t) and depends
only on the size of the time steps.

Appendix C: Numerical Simulation of Coherence
Times
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FIG. 6. Schematic of numerical calculation of coherence
times. The calculations are partitioned into different sections
with varying time steps ∆t and evolution times tevol.

In our simulations, we need to probe coherence times
ranging across several orders of magnitude. In order to
do so effectively, we partition the simulation into different
sections, each with different time steps, ∆t, and total
evolution times, tevol. We show the schematic of how
that is performed in Fig. 6. We partition each section
such that the parameters ∆t and tevol differ no more than
2 orders of magnitude, thus ensuring that the simulation
time remains manageable.

As shown in Fig. 6, this allows us to obtain results for
the smallest tevol of 0.1 ns up to 1 s. Each section of
the simulation also has a different noise spectrum since
∆t is changing from section to section. To maintain
consistency between the runs, the amplitude pre-factor
|δA| for the noise also changes such that the resulting
PSD amplitude remains the same. Examples of these
generated noise spectra with different ∆t are shown in
Fig. 2(c).

Appendix D: SET Spectroscopy

The noise spectrum shown in Fig. 2(b) was measured
with the single electron transistor (SET) in the device
used for the spin transport experiments [24]. Obtaining
the SET noise spectrum is a two step process. In the first

step, we measured time traces of the fluctuations in the
current, I(t), at different top gate voltage values, Vi, as
we sweep across a SET peak. Secondly, in order to obtain
the corresponding trace for fluctuations in voltage, we
will need to also measure the sensitivity at these voltage
values.

We choose two sensitivity points at ±δV away from the
chosen Vi where I(t) is measured, with ±δV small enough
such that SET will give an approximately linear response
within that range. At each sensitivity point, fluctuations
in the current, I(t), is sampled with 10 repetitions of 20
second-long current signals. We define the ratio of δĪ
to 2δV as the sensitivity of the SET, where δĪ is the
difference of the mean current between Vi ± δV . The
sensitivity can be used to convert the current response,
I(t), to voltage response, V (t) for each top gate voltage,
Vi. The fast Fourier transform of the resulting V (t)
scaled by a leverarm factor (∼ 0.2 eV/V) corresponds
to the PSD shown in Fig. 2(c) (purple trace).

This measurement will be able to capture the
fluctuations from the environment around the SET, and
we showed in our studies that these fluctuations in the
current through the SET is also a good indicator of the
charge fluctuations on the qubit gates in the form of
detuning noise. This particular measurement of noise
only measures up to frequencies of 10 kHz due to the
filters in the setup, so it does not directly inform us
of the noise levels at high frequencies (on the order of
megahertz) which is the order of time on which the qubit
is being operated. However, it would be sensible to use
the amplitude of noise as given by this measurement
as an indication of the level of noise expected at all
frequencies, and so we extrapolate the noise spectrum
to higher frequencies, obtaining the spectra shown in
Fig. 2(c). The missing piece of the puzzle in determining
the expected noise spectrum is the slope of the noise
spectrum. It is generally expected that the source of
charge noise is two-level fluctuators each with noise
statistic 1/f2 and they would average out to a 1/f
spectrum [36, 54]. Therefore, we take the noise level at
1 Hz as the point of reference and assume the actual
noise spectrum extends with a slope of 1/f . The slope,
as shown in the experimental noise spectroscopy, can
be much steeper than 1/f especially at low frequencies,
but we do not interpret it to be indicative of the noise
characteristic across all frequencies. This is because in
a nanostructure, noise can be dominated by only a few
nearby two-level fluctuators at certain frequency ranges,
and it is common that they do not average out to an
exact 1/f noise when observed across a narrow frequency
range.

The SET spectroscopy data is valuable in
understanding the amplitude of the electrical noise
present in the system, by probing directly the charge
fluctuations via the SET, and will be useful especially
for probing low frequency charge noise [55]. It is also a
fast measurement that can be used as a benchmarking
tool for noise in qubit systems, without performing a full
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qubit noise spectroscopy [56]. Although it is not capable
of probing noise in the high frequency regime, the results
from the studies here indicate that extrapolating the
low frequency results to higher frequencies is consistent
with the qubit coherence results, and therefore remains
a useful predictive tool.

Appendix E: Sweet Spots in Detuning

In Sec. III, we showed that a coherence sweet spot
in detuning can occur as a result of the qubit dispersion
going to zero in dot A, due to the Stark shift from the
detuning between dots causing at first a decrease in spin
frequency and then a sudden increase when the spin
finally tunnels through. Whether a particular interdot
transition will have these properties is a random feature
that depends on the particular roughness profile of the
Si/SiO2 interface between those two dots. Therefore,
for a single pair of quantum dots, there is a 75%
chance of finding a sweet spot on either side of the
anticrossing (ignoring correlation between Stark shift
slope and interdot transition frequency shift). Therefore,
when it comes to a chain of dots, it becomes increasingly
unlikely that no sweet spots will be available across a
number of transitions.

Upon closer inspection of the results, the sweet spot
in both simulation and experiment can be seen from the
results of experiment 1 in Fig. 2(e) (blue trace), but that
is not the case for experiment 2 which we plotted in red.

Both of these experiments (1 and 2) were Ramsey-like
experiments where the amplitude of Ramsey fringes is
measured as a function of detuning and evolution time.
By extracting the decay of the fringes, the coherence
times can be obtained. But there exists a slight difference
in the protocol for these two experiments, and that is
the order in which the sweep over evolution time and the
averaging over the fringe phase shifts are performed. In
experiment 1, the fringe amplitudes are measured in a
sweep over time before repeating the results for different
phase shifts and averaging over the phases. However, in
experiment 2, the reverse process is executed, where the
amplitude is measured for different phase shifts before
varying the evolution time. However, we believe that
these changes cannot explain the difference between the
two sets of measured TH

2 .
The difference between these data sets can occur due to

a small (∼ 0.5 meV) shift in the detuning of experiment
1 [shown by the blue trace in Fig. 2(d)]. The absence
of the sweet spot may also be due to a detuning jump
between detuning steps during experiment 2 [shown by
the red trace in Fig. 2(d)]. These detuning jumps can
occur due to charge noise in the system, and is difficult
to track during the course of the experiment. It is also
plausible that the sweet spot might be less distinct in
the experimental data sets due to another source of noise
that changes the noise spectral density around 10 kHz
(i.e. > 1/102 µs), which limits THahn

2 times (despite the

fact that T ∗2 times seem fully accounted for).

Appendix F: Effect of Magnetic Fields on
Decoherence Rates
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FIG. 7. Coherence times at different magnetic fields. We
show the different coherence times, T ∗2 and TH

2 , at different
magnetic fields of 1 T and 1.42 T.

In Section III, we discussed the coherence times in the
system and showed that 1/f noise was able to sufficiently
account for the detuning dependence of coherence times
observed in the experiment conducted in Ref. (24). In
addition, we also showed that an echo sequence improves
the coherence times, giving us a long TH

2 , but at a
different magnetic field. Here, we plot both the Ramsey
coherence time T ∗2 and the Hahn echo time TH

2 at both
magnetic fields of 1 T and 1.42 T, showing that the effect
of the echo sequence outweighs the effect of the drop in
magnetic field, thus supporting the result shown in Fig. 2,
where approximately an order of magnitude improvement
in coherence times was observed with the Hahn echo.

Appendix G: Adiabaticity
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FIG. 8. Four-level energy diagram with tc < Ez. We show
here the energy level diagram for tc = 41 µeV ≈ h× 10 GHz
at 1 T with Ez = 116 µeV ≈ h× 28 GHz.

In the results of this paper, we have considered diabatic
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effects to be negligible in the transfer process, since we
take the tunnel coupling to be much larger than the
Zeeman splitting, tc � Ez. However, there are in fact
two regimes that concern us in spin transport, one with
tc � Ez represented in Fig. 2(a), which is the main
regime of concern in this paper and another with tc < Ez

shown here in Fig. 8, where there are several state leakage
pathways. In the tc < Ez regime, state leakage becomes
significant because of the additional anticrossings to the
left and right of the inter-dot anticrossing.

However, it is also worth noting that having a small
tunnel coupling does not mean that coherent spin
transport cannot be performed. There remain several
ways to minimize diabatic errors through manipulation
of the pulses. We can either calculate a single ramp rate
or have a pulse with variable ramp rates that change
with the detuning, ε. Either of these methods should
allow us to cross the spin-flip anticrossing diabatically
but the inter-dot anticrossing adiabatically, ensuring that
the qubit remains in the desired state during the transfer
[26, 27]. At the same time we avoid the region of
large Stark shift between the two spin-flip anticrossings.
However, the ramp rate in either of these methods will
be limited by the size of the inter-dot anticrossing since
we are in the regime of small tunnel coupling, which may
lead to increased time spent at the inter-dot anticrossing,
thus increasing errors.

Appendix H: Transfer Process as an x Rotation

In Sec. IV, we examined the transfer process as
effective rotations by considering the Hamiltonian in the
effective basis of the ground spin up and down basis.
We show here the results of characterizing the x-rotation
by looking at the coefficient of the σx component of
the effective rotation obtained from the logarithm of the
effective unitary operator. In Fig. 9, we show how the σx
component changes with start (ε1) and end (ε2) detuning
positions.

Given that Fig. 9 is plotted for fixed ramp time, we
notice that near the center of the plot where both the
start and end detuning positions (ε1 and ε2 respectively)
are close to zero, the amount of x-rotation is greater,
indicating for a small ramp time, the amount of x-
rotation is influenced by the amount of time spent close
to the anticrossing, such that the qubit gains more errors
by spending more time near the inter-dot anticrossing.
When the dot movement occurs only within the same
dot (top right and bottom left quadrants of the figure),
the error remains small because the electron does not
cross the inter-dot anticrossing. When the transfer is
across a larger range of detuning, corresponding to the
top left and bottom right regions of the figure, we observe
that there is now a larger error since the electron is
being pulsed across the double dot, therefore spending
time at the inter-dot anticrossing. The error is largest in
magnitude near the inter-dot anticrossing, regardless of

the start and end detuning points, because the electron is
always kept near the anticrossing and accumulates spin-
flip errors.
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FIG. 9. Effective x gate after transfer. Figure shows the
magnitude of effective x-rotations after a transfer from ε1 to
ε2 over 8 ns.

Appendix I: Role of Spin-Orbit Coupling

In SiMOS devices, spin-orbit coupling plays a very
important role and has contributions from both what
is traditionally known as Rashba and Dresselhaus
effects [57, 58]. Rashba effects arise from structural
inversion asymmetry due to the axial strain in the
[001] crystallographic direction. On the other hand,
Dresselhaus effects exist because the quantum dots are
situated close to the silicon-silicon dioxide interface, and
therefore has bulk inversion symmetry as well. We can
model the spin-orbit Hamiltonian as [59, 60],

Hsoc = αR (kxσy − kyσx) + βD (kyσy − kxσx) , (I1)

where αR and βD are the Rashba and Dresselhaus
coefficients respectively. We define the σx and σy to be
directions along the crystallographic axes of the silicon
lattice.

In the most current model of spin-orbit coupling
[59, 60], these effects combine to give rise to spin-orbit
induced tunnel couplings, which are accounted for in our
system in the form of spin-dependent and spin-flip tunnel
couplings. Spin-dependent tunnel couplings tsd changes
the inter-dot tunnel coupling such that we have different
tunnel couplings depending on whether the spin is in the
up or down state. Spin-flip tunnel coupling tsf on the
other hand couples opposite spin states across different
dots, i.e. between |A, ↑〉 and |B, ↓〉. As a result, the spin-
orbit Hamiltonian in the qubit quantization axis is of the
following form,

Hsoc =
1

2

(
tsd tsf
tsf −tsd

)
(I2)

We show here that we have both diagonal and off-
diagonal spin-orbit terms in the qubit Hamiltonian, with
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the diagonal terms of tsd being atypical in spin-orbit
coupling, but occurs due to the spin-orbit Hamiltonian
being defined along the crystallographic axis but the
qubit Hamiltonian being defined by the in-plane external
magnetic field, which results in these two Hamiltonians
being orthogonal to each other [60]. By aligning the spin-
orbit Hamiltonian into the quantization axis of the qubit
Hamiltonian, the spin-orbit terms are rotated, resulting
in both diagonal and off-diagonal spin-orbit terms, as
shown below, if we assume an in-plane rotation of π/4
and an out-of-plane rotation of π/2,

H ′soc = (αR − βD)(kx − ky)σz

− 1

2
(αR + βD)(kx + ky)(σx − σy) (I3)

In particular, we were able to determine the spin-

dependent tunnel coupling from a fitting of the qubit
frequency spectrum. The spin-flip tunnel coupling, while
present in the four-level model of the Hamiltonian, does
not have an impact on the qubit frequency spectrum in
the rotating frame, because off-diagonal terms average
out to zero in the rotating approximation. In the
simulations, we assume the spin-flip tunnel coupling to
be equal to the spin-dependent tunnel coupling. This is
because both of the spin-dependent and spin-flip terms
originate from both Rashba and Dresselhaus effects and
will be a function of αR and βD, up to a trigonometric
factor which arises from the rotation of the spin-orbit
Hamiltonian into the qubit quantization axis. Therefore,
the spin-dependent tunnel coupling, tsd, and spin-flip
tunnel coupling, tsf , are expected to be of the same order
of magnitude.
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