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Spin superfluids enable long-distance spin transport through classical ferromagnets by developing
topologically stable magnetic textures. For small spins at low dimensions, however, the topological
protection suffers from strong quantum fluctuations. We study the remanence of spin superfluidity
inherited from the classical magnet by considering the two-terminal spin transport through a finite
spin-1/2 magnetic chain with planar exchange. By fermionizing the system, we recast the spin-
transport problem in terms of quasiparticle transmission through a superconducting region. We
show that the topological underpinnings of a semiclassical spin superfluid relate to the topological
superconductivity in the fermionic representation. In particular, we find an efficient spin transmis-
sion through the magnetic region of a characteristic resonant length, which can be related to the
properties of the boundary Majorana zero modes.

I. INTRODUCTION

In magnetic insulating materials spin transport is me-
diated via spin-wave excitations or magnons rather than
electrons. [1] Because the excitations in ferromagnetic
insulators are bosonic, magnons are capable of support-
ing Bose-Einstein condensates[2] and even spin superfluid
transport.[3–5]

For a quasi-one-dimensional easy-plane magnet, the
magnetic order is topologically characterized by the
winding number of the mapping from R1 to S1. When
a spin bias is applied to the boundary of such a sys-
tem, topological defects in the magnetic texture, which
are characterized by nontrivial winding numbers, are
nucleated.[6] The ensuing topological transport yields a
long-range spin supercurrent[4, 7] subject to thermal[8]
or quantum[9] phase slips. Such a supercurrent is sup-
pressed, however, when the topological protection is de-
stroyed by applying a magnetic field greater than the
in-plane anisotropy. A preferred (easy) axis within the
plane, furthermore, can reduce the mobility of the topo-
logical texture.[7]

In contrast to (semi)classical magnets, the elementary
excitations in quantum spin chains exhibit strong quan-
tum fluctuations. In particular, in the extreme case of the
lowest spin 1/2, it is unclear to which extent the super-
fluid character of the winding dynamics is applicable and
useful. Recent spin-caloritronic experiments on spin liq-
uids have demonstrated that spin can be transported via
quantum spin excitations by thermal biasing.[10] With
these practical tools in hand, an important open ques-
tion concerns the possibility of long-ranged collective spin
flows in quantum spin chains.

In this paper, we consider two semi-infinite XY spin
chains, which realize Fermi-liquid like spin reservoirs
(Fig. 1). They supply and drain spin currents from a
central region, whose transport is examined with an eye
on spin superfluidity. We control the spin ordering and,
consequently, the transport properties of the central re-
gion by applying an out-of-plane magnetic field, which,
in the semiclassical view, would tune the superfluid den-
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FIG. 1. (a) Schematic of our spin-1/2 chain setup: The
left and right sides are semi-infinite spin chains (blue circles)
wherein the spins are symmetrically coupled in the xy plane
via an exchange coupling. The central region is of length
L and has an in-plane anisotropy parameterized by α. (b)
The left and right sides, absent of anisotropy, have a gapless
spectrum while the anisotropic central region is gapped. An
incoming spin excitation, which is generically in a superposi-
tion of positive (a↑) and negative (a↓) spin collinear with the
z axis, can be reflected (transmitted) as a spin up, R↑ (T↑),
or spin down, R↓ (T↓), excitation.

sity, and an axial anisotropy within the easy (xy) plane,
which breaks rotational symmetry and would pin the con-
densate phase. When the spins are uniformly ordered by
a sufficiently large magnetic field, transport of low en-
ergy excitations between the reservoirs is exponentially
suppressed with the length of the central region. A chain
with an easy-plane anisotropy and a sufficiently small ap-
plied magnetic field affords zero-energy excitations which
are transported ballistically. Although the bulk spectrum
is gapped when there is an easy-axis anisotropy in the xy
plane, evanescent domain walls at the ends of the chain
survive which contribute to the transport. This is ex-
plicated by performing a nonlocal transformation which
maps the spin operators to fermions.[11] In the fermionic
language, the localized domain walls correspond to Ma-
jorana end modes. Analogous to the effect Majoranas
have on the charge transport in topological supercon-
ductors, these localized domain walls qualitatively affect
the transport in anisotropic spin chains. Specifically, for
a sufficiently long central region, zero-energy excitations
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carrying positive spin along the z axis are perfectly re-
flected off the central region carrying negative spin; this is
the analogue of a perfect Andreev reflection from a topo-
logical superconductor.[12] Furthermore, zero-energy ex-
citations can be ballistically transported through the cen-
tral region when it is a certain resonant length, defined
below, tunable by an applied magnetic field. This cor-
responds to perfect conductance of a fermion through a
topological superconductor of the same resonant length;
we are unaware of the a discussion of such an effect in
the literature.

II. GROUND STATES AND DOMAIN WALL
EXCITATIONS

A simple model to illustrate quantum transport is an
N -site spin-1/2 ferromagnetic chain with a planar ex-
change coupling

H = −J
N−1∑
i=1

[
(1 + α)σxi σ

x
i+1 + (1− α)σyi σ

y
i+1

]
−h

N∑
i=1

σzi ,

(1)
where σµi for µ = x, y, z are the Pauli matrices acting
on a spin at site i. Here, J is the exchange coupling
between adjacent sites, α parameterizes the asymmetry
in the xy plane, and h is the magnitude of an applied
magnetic field along the z axis. Lengths are measured in
units of the lattice spacing a. For the following discus-
sion, we assume ferromagnetic exchange and so restrict
the parameters as such, J > 0 and 0 ≤ α ≤ 1.[13] If
there is no anisotropy, α = 0, the Hamiltonian is rota-
tionally symmetric about the z axis. For finite α, this
symmetry is reduced to rotations by π. There is a quan-
tum phase transition when the magnetic field is equal
to the exchange, |h| = J . When |h| > J , the ground
state is a nondegenerate with spins aligning according
to the sign of the magnetic field. When |h| < J and
α 6= 0, the ground state is doubly degenerate. In the
case of a quantum Ising chain absent of magnetic field,
α = 1 and h = 0, the two ground states correspond to
the spins pointing homogenously parallel or antiparallel
to the anisotropy axis. For the more general case, α < 1,
at low fields, we can picture the magnetic moment along
the (easy) anisotropy axis as an order parameter.

The spectrum is easily found upon performing a
Jordan-Wigner transformation.[11, 14] Defining a spin-
less fermionic creation (annihilation) operator at site j,

c†j = σ+
j Pj (cj = σ−j Pj) where σ±j = (σxj ± iσ

y
j )/2 and

Pj =
∏
l<j(−σzl ). That is, c†j or cj polarize the spin at

site j parallel or antiparallel to the z axis, respectively,
while the sites before j are rotated by π around the z axis.
When acting on the paramagnetic ground state, this cor-
responds to a spin flip at site j [Fig. 2(a)]. In the doubly-
degenerate phase, the action of these operators is most
easily visualized in the Ising limit wherein the excitation
is a domain wall at site j polarized parallel or antiparal-
lel to the z axis [Fig. 2(b)], establishing a ferromagnetic

analogue of the Villain mode.[15] Although the spins are
not collinear away from the Ising limit, 0 < α < 1, the

action of c†j and cj on the ground state can similarly be
regarded as the creation of a domain wall at site j.

Using these fermionic operators, Eq. (1) becomes

H = −J
2

N−1∑
i=1

(
c†i ci+1 + αc†i c

†
i+1 + H.c

)
−h

N∑
i=1

(c†i ci−1/2) .

(2)
This is the Kitaev chain[16], describing a spinless metal
(p-wave superconductor) for α = 0 (α 6= 0). The bulk ex-
citations are known[17] and can be found in terms of the

Fourier-transformed operators ck and c†k (see appendix
A). In the spin chain (metal) picture, ck creates holes
carrying −~ spin quantized along the z axis (negative

charge) while c†k creates particles carrying ~ spin (posi-
tive charge). Although conventionally these are regarded
as delocalized particles or holes in in the metallic picture,
they can be equally well viewed as delocalized domain
walls in the spin picture.
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FIG. 2. The action of a fermionic creation operator, c†i , (a)
flips the spin at site i when |h| > J and (b) creates a domain
wall pointing along the z axis when acting on the degenerate
ground state, for |h| < J . (c) A superposition of ci + c†i [(d)

ci − c†i ] rotates all sites before i by π around the z axis and
the site i by π around the x (y) axis.

When the magnetic field is small, h < J , and the chain
is absent of anisotropy, α = 0, the spectrum consists of
a partially filled gapless band.[17] There are two zero-
energy modes with ±k0 = ± cos−1(h/J) defining the
Fermi points. A zero-energy mode can be constructed

as a superposition of ck0 and c†k0 : a↓ck0 + a↑c
†
k0

with a↑
(a↓) the spin down (spin up) amplitudes of the mode.
Consider an excitation which has equal spin up and spin
down amplitudes, a↑ = a↓e

iϕ = eiϕ/2/
√

2. Note that
these are delocalized Majorana fermions as they are Her-
mitian. In the spin language, such an operator takes the
form,

(eiϕ/2ck0 + e−iϕ/2c†k0)/
√

2

=
∑
j

Pj [cos(k0j + ϕ/2)σxj + sin(k0j + ϕ/2)σyj ]/
√

2 .

(3)
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In order to get a sense of the action of this operator, sup-
pose it acts on a chain uniformly polarized along the x
axis. The operator Pj rotates the spins on the sites pro-
ceeding j by π around the z axis. The latter operator in
Eq. (3) effectively rotates the spin on site j by an angle
2(k0j+ϕ/2). Consequently, the resultant state is a delo-
calized Bloch domain wall in which the spin at the center
rotates clockwise with wavelength π/k0 as it propagates
along the chain.[18] Similarly, taking k0 → −k0, the state
is a domain wall rotating counter-clockwise.

In the doubly degenerate ground state, |h| < J and
α 6= 0, the bulk spectrum is gapped. However, in a finite
or semi-infinite chain, there exist zero-energy modes at
the ends. In the fermionic language, these are the cel-
ebrated Majorana zero modes.[16] Together, these end
modes form a nonlocal complex fermionic state which
can be occupied or unoccupied, parameterizing the dou-
ble degeneracy of the ground state. For the quantum
Ising chain in the absence of magnetic field, α = 1 and
h = 0, the zero-energy modes are localized to a sin-
gle site: the modes at the left and right end are σx1
and PNσyN , respectively.[14] The action of the product
of these operators reverses the bulk Ising order. In the
regime when h < 0 and |h| . J , the spin chain is largely
polarized antiparallel to the z axis.[19] Focusing on low-
energy excitations, we can pass from a discrete coordinate
to a continuum, ` measured with respect to the end of
the chain. The mode at the left end is created by the

operator
∫
d`σx`P`(e−κ

+` − e−κ
−`) where κ+ = α and

κ− = (1 + h/J)/α. The mode at the right end is then

created by
∫
d`σy`P`(eκ

+` − eκ−`) (see appendix A). Al-
though the ground states in a finite magnetic field are not
a uniformly ordered chains collinear with the x axis, the
product of the zero-energy operators likewise reverses the
bulk order between the two ground states. Analogous to
the operators defined in Eq. (3) that create delocalized
domain walls, the zero-energy operators create domain
walls localized at the ends of the finite spin chain. When
|h| > J , the system is trivially gapped and there exist no
zero-energy bulk or localized modes.

III. TRANSPORT

To calculate the transport properties of a finite size
chain, consider a geometry in which the translational
symmetry is broken: two semi-infinite isotropic spin
chains (α = 0) are connected to either side of a finite
anisotropic chain (α 6= 0) of length L. See Fig. 1(a). The
left and right isotropic sections of the chain are leads
which provide a gapless source and drain of spin exci-
tations, respectively, which probe the transport prop-
erties of the central gapped anisotropic region. Our
setup is equivalent to a spinless normal metal|p-wave
superconductor|normal metal junction through which
charge transport is mapped to spin transport in the spin
chain [Fig. 1(b)]. In general, the leads are held at a differ-
ent magnetic field, h′, from the magnetic field of the cen-

tral region, h. Furthermore, after going from the discrete
chain to the continuum limit, we include a delta-function
potential of strength U separating the leads from central
region. Physically, this corresponds to local a magnetic
field (scalar potential), on the scale of the lattice spacing,
in the spin (electronic) picture. This barrier does not
qualitatively affect our results but, for large U , makes
the ratio of resonant and off resonant transmission more
dramatic [12].

In the following we focus on the continuum limit of
the system and proceed to calculate the scattering am-
plitudes in the fermionic description by matching the so-
lutions at the interfaces between the leads and central
region. Consider a right-moving excitation in the left
lead with energy E. In general, this can be a superposi-
tion of a particle carrying positive spin with wave vector
k> =

√
1 + (h′ + E)/J and a hole carrying negative spin

with wave vector k< =
√

1 + (h′ − E)/J . The amplitude
of the particle (hole) in the wave function is parameter-
ized by a↑ (a↓). Because spin along the z axis is not
conserved in the central region, the incoming excitation
can be reflected as a particle or a hole with probability
R↑ or R↓, respectively. The excitation can likewise be
transmitted to the right lead as a particle (hole) with
probability T↑ (T↓).

Consider the regime near the topological phase transi-
tion, α2 � |1 + h/J |, in which the spectrum is gapped
by |1 + h/J | at k = 0. See appendix A for a discussion
of the spectrum. First, this limit allows us to contrast
the transport properties in the degenerate, |h| < J , and
nondegenerate, |h| > J , phases with equal gaps. Second,
zero-energy in-gap states have two decay lengths which
are well-separated 1/κ+ = 1/α � 1/κ− = α/(1 + h/J)
and allow us to obtain simple analytic solutions for the
transport properties when L ∼ 1/κ−.

First, we consider a zero-energy excitation with spin
along the z axis impinging on the central region, E = 0
and a↑ = 1. When the length of the central region is
short, κ+L . 1, the transport properties of both degen-
erate and nondegenerate phases are characterized by an
exponential suppression of the transmission and perfect
reflection (Fig. 3). For κ+L � 1, the two phases show
a qualitative difference. In the nondegenerate phase, the
transmittance remains exponentially suppressed and the
reflection is perfect [Fig. 3 (upper panel)]. In the degen-
erate phase (|h| . J and, to be specific, we take h < 0 ),
the transmission and reflection probabilities are

T↑ = T↓ = sech2[κ−(L− L0)]/4 ,

R↑ = e−2κ
−(L−L0)sech2[κ−(L− L0)]/4 ,

R↓ = e2κ
−(L−L0)sech2[κ−(L− L0)]/4 . (4)

where the resonant length,

L0 =
α

1 + h/J
ln

[
1 + h′/J + (α/2 + U/J)2

α
√

1 + h′/J

]
. (5)

When 1/κ− . L < L0, the probability of transmission
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increases exponentially as the length of the central region
increases [Eq. (4) and Fig. 3 (lower panel)]. At L = L0,
the probability to transmit a zero-energy excitation is lo-
cally maximized and T↑ = T↓ = R↑ = R↓ = 1/4 such that
the excitation has equal probabilities of being reflected or
transmitted as a spin up or spin down. Because T↑ = T↓,
no net spin is transferred between the leads. Beyond L0,
the transmission is exponentially suppressed and the par-
ticle is favored to be reflected as a hole. That is, a spin of
2~ is perfectly injected into the anisotropic region. This
is the spin-chain analogue of a perfect Andreev reflection
in one-dimensional topological superconductors.[12]

FIG. 3. The probability as a function of L of a zero-energy
~-spin excitation impinging on an ordered spin chain of length
L to be reflected, R↑ (R↓), with the same (opposite) spin or
to be transmitted carrying positive (negative) spin, T↑ (T↓).
The plots are logarithmic on both axes and α = 1, U/J = 10,
and h′/J = −0.9. The upper panel is in the nondegenerate
phase, h/J = −1.1, while the lower panel is in the degenerate
phase, h/J = −0.9.

The probability for an in-gap but finite energy, E, ex-
citation to transmit through the central region is maxi-
mized at a length smaller than L0 (Fig. 4). Furthermore,
for an energy near the gap edge, E . |h+ J |, the trans-
mission probability, as a function of length, has the form
of a Lorentzian (see appendix B) rather than exponential
as in Eq. (4). Because the mode interpolating between
the leads is not at zero energy, the probability of trans-
mission for a positive spin is different than for a negative
spin, T↑ − T↓ ≈ (1 + h/J)/α2, resulting in a net flow
of spin. This restoration of long distance transmission
of spin is the remanence of classical spin supercurrent in
the ordered quantum spin chain.

Rather than a spin polarized along the z axis, con-
sider now a zero-energy incoming spin excitation which
is equal parts spin up and spin down, e.g. in the sense of
Eq. (3), scattering from the central region of the chain.
In the electronic picture, this is equivalent to an incoming

FIG. 4. Transmission probabilities, T↑ and T↓, and reflection
probabilities, R↑ and R↓, as a function of L of an excitation
with energy nearly at the gap edge, E = 0.999(h + J), and
positive spin, a↑ = 1 and a↓ = 0. The plots are logarithmic on
both axes and we have taken α = 1, U/J = 10, h/J = −0.9,
and h′/J = −0.9.

delocalized Majorana scattering from a p-wave supercon-
ductor. At zero energy, both the chain spectrum and the
incoming excitation are particle-hole symmetric. Con-
sequently, the outgoing state must also be particle-hole
symmetric. Within the spin language, this implies that
the probability of transmission (reflection) as spin up is
equal to probability of transmission (reflection) of spin
down, T↑ = T↓ (R↑ = R↓). Although the peak in trans-
mission remains at L0 and exponentially suppressed away
from that length, the transmission strongly depends on
ϕ [Eq. (3)]. Upon passing to the continuous coordinate,
`, the impinging spin operator takes the form of Eq. (3)
replacing i with `. To avoid ambiguity in the definition
of ϕ, we define the continuous coordinate so that ` = 0
corresponds to the interface between the left and central
region. At L = L0, the transmission and reflection as a
function of ϕ are

T↑ = T↓ =
[2
√

1 + h′/J cos(ϕ/2) + (α+ 2U) sin(ϕ/2)]2

2[α2 + 4αU + 4(1 + h′/J + U2)]
,

R↑ = R↓ =
[(α+ 2U) cos(ϕ/2)− 2

√
1 + h′/J sin(ϕ/2)]2

2[α2 + 4αU + 4(1 + h′/J + U2)]
,

(6)

respectively. In particular, when ϕ = ϕ0 with

ϕ0 = −2 tan−1

[
2
√

1 + h′/J

(α+ 2U/J)2)

]
+ π , (7)

the transmission is perfect, T↑ = T↓ = 1/2. Conversely,
when ϕ = ϕ0 + π, the excitation is perfectly reflected,
T↑ = T↓ = 0.

These features in the transmission can be understood
by the absence or presence and properties of the in-gap
states. When |h| > J , transmission is suppressed for all
L because there exist no in-gap states in the nondegner-
ate phase. In the degenerate phase, on the other hand,
there exist in-gap evanescent end states which enhance
transport. When L� L0, the states do not overlap and
there is no coherent transmission of the signal between
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the leads. When L < L0, the end modes overlap and
hybridize away from zero-energy thereby facilitating in-
gap, finite energy transport. Precisely at L = L0, the
end modes overlap but are stabilized at zero-energy be-
cause they leak into the leads. Moreover, because the
central region breaks gauge invariance when α 6= 0, the
transmission of an incoming Majorana [Eq. (3)] will de-
pend on the phase difference between the particle and
hole components. The resonance in transmission occurs
when this phase for the incoming excitation matches the
phase of the Majorana at the interface of the gapless and
gapped regions.

Correspondingly, within the spin chain picture, the
transmission and reflection can be viewed as domain wall
transport, e.g. in the sense of Eq. (3). For a sufficiently
long central region, L � L0, the incoming domain wall
in the lead interacts with the domain wall localized at
the interface and is reflected with opposite spin; remark-
ably, the presence of this localized domain wall serves as
a perfect spin-sink, independent of the effective barrier
between the lead and the central region. At L = L0, the
domain walls are extended throughout the chain and sup-
port transport between the left and right regions. The
spin analogue of broken gauge invariance is an easy axis
in the central region of our spin chain, e.g. the x axis
in our system [Eq. (1)]. Although the orientation of the
spin at the center of a domain wall can rotate in the gap-
less region, in the sense of Eq. (3), our results imply that
the transmission through the central region depends on
matching the easy axis and the domain wall direction at
the interface. In particular, when the spin configuration
of the incoming domain wall and localized domain-wall
match, in the sense of ϕ = ϕ0, we obtain a perfect con-
ductance of these states through the central region and
no signal at the right lead when their alignment is an-
tiparallel, ϕ = ϕ0 + π. Partial transmission can occur
when, for instance, an equal parts superposition of two
domain walls with ϕ differing by π, scatter from the cen-
tral region. In particular, this is nicely illustrated when
the central spin of the domain wall is collinear with the z
axis [Eq. (4)] which can be written as a superposition of
two domain walls, differing in relative phase by ±π, with
ϕ differing by π.

IV. DISCUSSION

We studied the low-energy transport through a quan-
tum spin chain with an anisotropic planar exchange.
We found that the most interesting features take place
in the degenerate phase (|h| < J), which supports
collective winding transport in the semiclassical spin
perspective.[4, 7] In the fermionic representation, this is
the regime in which Majorana zero modes appear in long,
isolated p-wave superconductors. We see that, as a re-
sult, the most dramatic transport phenomena occur in
this phase. In particular, fixing the transverse magnetic
field, there is a length scale, L0, which describes the on-

set of hybridization of the Majoranas in the presence of
spin reservoirs. When L � L0, the low-energy trans-
mission is exponentially suppressed due to the spectral
gap. When the length of the central region is reduced
towards L0, the transmission kicks in exponentially at
zero energy, where there is an equal transmission for
both spin orientations along the z axis. Consequently,
although there is no net spin flux, we expect a strong
spin-current noise response at precisely this length. For
L < L0, the resonance in transmission moves to a finite
energy, which supports net long-range spin transport and
reflects the partial restoration of spin superfluidity.[20]
The associated spin transport, or spin-current noise when
L = L0, may be measured by utilizing the spin Hall ef-
fect for spin-to-charge conversion.[21] Moreover, the lo-
calized domain walls that are responsible for the underly-
ing signal propagation could be imaged in real space, e.g.,
by a spin-polarized scanning tunneling microscopy or
nitrogen-vacancy quantum sensors, although a detailed
investigation of the key signatures associated with non-
local spin transport is beyond our scope here.

In order to consider the effects of a disorder, suppose
that the chain is made up of several segments, each
with a random in-plane anisotropy. Adjacent regions
whose anisotropies differ by an angle φ are connected
by superconducting weak links as in a Kitaev chain.[16]
Such a topological Josephson junction can support in-
gap evanescent states whose energy is proportional to
sinφ, where φ corresponds to half of the difference in
the condensate phase across the junction. Hybridization
of these localized states can form an in-gap band capable
of supporting spin excitations.[22] In other words, dis-
order in the spin chain can globally smear the in-plane
anisotropy on average, thereby restoring low-energy bal-
listic spin transport.

Throughout this manuscript, we have neglected addi-
tional out-of-plane exchange interactions, i.e., along the
z axis in addition to exchange in the xy plane, between
neighboring sites. It is known that such an antiferromag-
netic exchange, corresponding to a repulsive interaction
in the fermionic picture, can modify the order[23] and de-
stroy the end states[24] for a sufficiently strong interac-
tion. As a result, perfect Andreev reflection is destroyed
and excitations are normally reflected at the interface
with the anisotropic region even when the magnetic field
is smaller than the exchange.[25] Upon the inclusion of an
out-of-plane ferromagnetic exchange interaction on the
other hand, which corresponds to an attractive interac-
tion in the fermionic picture, perfect spin injection into
the anisotropic region remains even for a strong out-of-
plane exchange and can persist for large applied magnetic
fields.[25] In the future work, it may be interesting to in-
vestigate the length dependence of the associated spin
transport.[26]
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Appendix A: Kitaev Hamiltonian

The Kitaev Hamiltonian, given by Eq. (2) in the main
text, can be Fourier transformed to momentum space

taking the form H = 1
2

∑
k C
†
kHCk, where the sum is

over k in the Brillouin zone and

H = −(J cos k + h)ηz − (αJ sin k)ηy , C†k = [c†k, c−k] .
(A1)

Here, ηj are the Pauli matrices acting in Nambu space.
In the following we are interested in long wavelengths as
compared to the lattice spacing, which is valid when |h|
is comparable to J , so that the low energy Hamiltonian
is

H = J [k2 − (1 + h/J)]ηz − kαJηy , (A2)

where we henceforth take h < 0. When α = 0, the ener-
gies are ±J [k2 − (1 + h/J)] for the respective eigenvec-
tors ϕ+ = (1, 0) and ϕ− = (0, 1). The spectrum has two

Fermi points, ±k±
√

1 + h/J [Fig. 5 (inset)]. If |h| > J |
the spectrum has a gap of |h+J | at k = 0. When α 6= 0,
the eigenvalues and eigenvectors are given by

E±/J = ±
√

[k2 − (1 + h/J)]2 + α2k2 ,

φ±k =

[
k2 − (1 + h/J) + E±/J

−iαk
, 1

]
, (A3)

respectively.
For finite α, the spectrum E± has a gap which closes

at k = 0 when |h| = J signaling a phase transi-
tion with |h| < J (|h| > J) supporting a degener-
ate (nondegenerate) ground state. There are two qual-
itatively different regimes of the spectrum: (1) when
2α2 > |1 + h/J | [Fig. 5 (black solid and red dashed
curve)] and (2) when 2α2 < (1 + h/J) [Fig. 5 (green
dotted curve)]. In the first case, there is one mini-
mum in the spectrum at k = 0 with gap |h + J |. Near
the phase transition when the energy is within the gap,
αJ � |h + J | > E, all the wave vectors are purely

imaginary, given by ±iα and±i
√

(h+ J)2 − E2/αJ , i.e.,
there are no propagating solutions. When the energy
is above the gap but still near the bottom of the band
(αJ � E > |h+J |), there are two propagating solutions,

±
√
E2 − (h+ J)2/αJ , and two totally imaginary wave

vectors, ±iα. In the second case there are two minima
in the spectrum which are symmetric about k = 0 where
there is a local maximum. Deep within the degenerate
regime, (1+h/J)� α2, the minima are at ±kF with gap
αkFJ . When the energy is within the gap, E < αkFJ ,
the four wave vectors are kF ± i

√
α2 − E2/J(h+ J)

0.2

0.4

0.6

αkF J

− kF kF
k

E
/
J

E
/
J

k

FIG. 5. The positive energy spectrum of the spin chain system
with periodic boundary conditions in three regimes: (1) 2α2 >
|1 + h/J | and |h| < J (black solid curve), (2) 2α2 > |1 + h/J |
and |h| > J , and (3) 2α2 < 1 + h/J . Inset: The positive
energy spectrum when α = 0 and |h| < J . The excitations
for k < |kF | (k > |kF |) correspond to particles (holes).

and −kF ± i
√
α2 − E2/J(h+ J); they oscillate with

wave vector kF and decay or grow exponentially ac-
cording to their depth within the gap. Above the
gap with E <

√
(h+ J)2 + J(h+ J)α2, there are four

propagating states with kF ±
√
E2/J(h+ J)− α2 and

−kF ±
√
E2/J(h+ J)− α2, i.e., two solutions around

each Fermi point. When E >
√

(h+ J)2 + J(h+ J)α2,
there are two purely imaginary and two purely real solu-
tions symmetric about k = 0.

In the gapped system, we expect the zero-energy states
to be evanescent and consider the chain to be semi-
infinite, passing to the continuum limit, with ` ≥ 0 being
the coordinate along the chain. Near the phase transi-
tion, |h| ≈ J , the wavevectors corresponding to solutions
vanishing as ` → ∞ are k± = −iκ± with κ+ = α and
κ− = |1 + h/J |/α. The eigenvectors of these solutions
are φκ+ = [1, 1] and φκ− = [sgn(1 + h/J), 1]. Because
the zero-energy wavefunction can only be made to van-
ish at ` = 0 if the eigenvectors are parallel, such evanes-
cent states are only present when |h| < J . Furthermore,
because the particle and hole components are of equal
weight, such a solution corresponds to a Majorana bound
state up to an overall phase. As a general excitation can
be written as Φk = φk · Ck =

∫
d`φk · C`e−ik` where

C†` = [c†`, c`], the Majorana zero mode is

ΦM =

∫
d`(c` + c†`)(e

−κ+` − e−κ
−`) . (A4)

Appendix B: Transport Coefficients

In general the solutions for the transport coefficients
are rather complicated. However, when |1 + h/J | � 1,
the separation in length scales allows us to obtain a
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simplified formula for these coefficients in two regimes:
κ−L � 1 and κ+L � 1. Because we are interested in

the long length behavior in the degenerate phase, we fo-
cus on the regime when L� κ+ and |h| < J .

When the incoming excitation is at zero-energy, E = 0, the transport coefficients are

t↑ = 4iαkF e
(−ikF−κ−)L [(α+ 2U/J)2 + (2kF )2]a↓ − (α+ 2ikF + 2U/J)2a↑

[(α+ 2U/J)2 + (2kF )2]2e−2κ−L + (4αkF )2
,

t↓ = 4iαkF e
(ikF−κ−)L (α− 2ikF + 2U/J)2a↓ − [(α+ 2U/J)2 + (2kF )2]a↑

[(α+ 2U/J)2 + (2kF )2]2e−2κ−L + (4αkF )2
,

r↑ = − [(α− 2ikF + 2U/J)(α+ 2ikF + 2U/J)3]a↑e
−2κ−L + (4αkF )2a↓

[(α+ 2U/J)2 + (2kF )2]2e−2κ−L + (4αkF )2
,

r↓ = − [(α− 2ikF + 2U/J)(α+ 2ikF + 2U/J)3]a↓e
−2κ−L + (4αkF )2a↑

[(α+ 2U/J)2 + (2kF )2]2e−2κ−L + (4αkF )2
. (B1)

where we have redefined kF =
√

1 + h′/J to be the Fermi points in the leads.
The complex conjugate square of these quantities are the transport probabilities in the main text: R↑ = |r↑|2,

R↓ = |r↓|2, T↑ = |t↑|2, and T↓ = |t↓|2. One can show that the denominator of the transmission is minimized for the
resonant length, L0 [Eq. (5) in the main text] which is independent of the polarization of the incoming excitation.

When the magnitude of the incoming spin up and down excitation is equal but differ in a phase, ϕ, [Eq. (3)]

|t↑| = |t↓| =
√

24αkF
√

(α+ 2U/J)2 + (2kF )2[2kF cos(ϕ/2) + (α+ 2U/J) sin(ϕ/2)]eκ
−L

[(α+ 2U/J)2 + (2kF )2]2 + (4αkF )2e2κ−L
. (B2)

One can show that the transmission is maximized when

eiϕ = −α− 2ikF + 2U/J

α+ 2ikF + 2U/J
, (B3)

which is equivalent to Eq. (7) in the main text. Using the condition α2 � |1 +h/J |, when U = 0 ( U/J � α) we find
ϕ ≈ 0 (ϕ ≈ π).

We now consider the transmission coefficients of an excitation with positive energy within the gap, 0 < E < h+ J ,
scattering off the central region. A simple form of the transport coefficients can be found as the energy approaches
the band edge E → h+ J ,

t↑ = e−ikFL
w↑

u+ vL
, t↓ = e−ikFL

w↓
u+ vL

,

w↑ = 4αkFJ
3[−iαJ(a↑ − a↓) + 2kFJ(a↑ + a↓)− 2iU(a↑ − a↓)][α3J2 + 2α2J(ikFJ + U) + 4(h+ J)(ikFJ + U)] ,

w↓ = 4α2kFJ
3[−iαJ(a↑ − a↓) + 2kFJ(a↑ + a↓)− 2iU(a↑ − a↓)][α2J2 − 2J(h+ J) + 2αJ(−ikFJ + U)] ,

u = {α2J2 + 4αJ(ikFJ + U) + 4[(kFJ)2 + U2]}
× {α4J4 + 4α3J3(−ikFJ + U) + 8J(h+ J)[(kFJ)2 + U2] + α2J2[4(kFJ)2 − 2J(h+ J) + 4U2]} , (B4)

v = −αJ(h+ J){α2J2 + 4αJ(ikFJ + U) + 4[(kFJ)2 + U2]}2 . (B5)

Note that to obtain this expression we have assumed that the energy of the excitation is much smaller than h′ + J .
In general, |t↑|2 and |t↓|2 are unnormalized Lorentzian functions of L whose prefactor, center, and width are

complicated functions of the system parameters. To further simplify the expressions, consider the case of when the
excitation in the left lead carries ~ spin, a↑ = 1 and a↓ = 0. When U is large and making use of the limit α� (1+h/J),
we find

|t↑|2 =
[α2J + 2(h+ J)]2

4[α2J + (h+ J)]2 +
[
(h+J)U2

kF J2

]2 [
L− α2J+2(h+J)

α(h+J)

]2 ,
|t↓|2 =

α4J2

4[α2J + (h+ J)]2 +
[
(h+J)U2

kF J2

]2 [
L− α2J+2(h+J)

α(h+J)

]2 . (B6)
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When L = [α2J + 2(h+ J)]/α(h+ J), the transmission probabilities are maximized. Likewise, the net spin current,
|t↑|2−|t↓|2, is maximized to be (1+h/J)/[α2 +(1+h/J)] ≈ (1+h/J)/α2. We plot the probabilities for reflection and
transmission in Fig. 4. Notice that the excitation normally reflected for nearly all values of L except a small range in
which the tunneling is peaked.

[1] A. Khitun, M. Bao, and K. L. Wang, IEEE Transactions
on Magnetics 44, 2141 (2008); F. Meier and D. Loss,
Phys. Rev. Lett. 90, 167204 (2003).

[2] T. Nikuni, M. Oshikawa, A. Oosawa, and H. Tanaka,
Phys. Rev. Lett. 84, 5868 (2000); A. Oosawa, M. Ishii,
and H. Tanaka, J. Phys. Condens. Matter 11, 265 (1999);
T. Radu, H. Wilhelm, V. Yushankhai, D. Kovrizhin,
R. Coldea, Z. Tylczynski, T. Lühmann, and F. Steglich,
Phys. Rev. Lett. 95, 127202 (2005); S. Demokri-
tov, V. Demidov, O. Dzyapko, G. Melkov, A. Serga,
B. Hillebrands, and A. Slavin, Nature 443, 430 (2006);
K. Nakata, K. A. van Hoogdalem, P. Simon, and D. Loss,
Phys. Rev. B 90, 144419 (2014); K. Nakata, P. Simon,
and D. Loss, J. Phys. D 50, 114004 (2017).

[3] E. Sonin, J. Exp. Theor. Phys 47, 1091 (1978); Adv.
Phys 59, 181 (2010); J. König, M. C. Bønsager, and
A. H. MacDonald, Phys. Rev. Lett. 87, 187202 (2001);
S. A. Bender, R. A. Duine, and Y. Tserkovnyak, 108,
246601 (2012); H. Chen, A. D. Kent, A. H. MacDon-
ald, and I. Sodemann, Phys. Rev. B 90, 220401 (2014);
W. Chen and M. Sigrist, 89, 024511 (2014); Phys. Rev.
Lett. 114, 157203 (2015).

[4] S. Takei and Y. Tserkovnyak, Phys. Rev. Lett. 112,
227201 (2014).

[5] S. Takei, B. I. Halperin, A. Yacoby, and Y. Tserkovnyak,
Phys. Rev. B 90, 094408 (2014).

[6] S. K. Kim and Y. Tserkovnyak, Phys. Rev. B 94, 220404
(2016).

[7] S. K. Kim, S. Takei, and Y. Tserkovnyak, Phys. Rev. B
92, 220409 (2015).

[8] S. K. Kim, S. Takei, and Y. Tserkovnyak, Phys. Rev. B
93, 020402 (2016).

[9] S. K. Kim and Y. Tserkovnyak, Phys. Rev. Lett. 116,
127201 (2016).

[10] D. Hirobe, M. Sato, T. Kawamata, Y. Shiomi, K.-i.
Uchida, R. Iguchi, Y. Koike, S. Maekawa, and E. Saitoh,
Nat. Phys. 13, 30 EP (2017).

[11] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407

(1961).
[12] K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett.

103, 237001 (2009).
[13] In the case of an antiferromagnet exchange, J < 0, the

analysis formally remains the same with k → k + π.
[14] Y. Tserkovnyak and D. Loss, Phys. Rev. A 84, 032333

(2011).
[15] H.-B. Braun and D. Loss, Int. J. Mod. Phys. B 10, 219

(1996).
[16] A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).
[17] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A.

Fisher, Nat. Phys. 7, 412 (2011).
[18] V. Popkov, D. Karevski, and G. M. Schütz, Phys. Rev. E
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