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We investigate laser emission at the interface of the topological and trivial phases in one dimension. The
system is described by a generalized Su-Schrieffer-Heeger model with site-dependent hopping parameters in-
volving the interface width parameter, where gain (loss) is introduced only to the A (B) sites of the bipartite
lattice. The topological interface state is described by the Jackiw-Rebbi state with a pure imaginary energy, re-
flecting the non-Hermiticity of the system. It feels only the gain effect since it is strictly localized at the A sites.
The Jackiw-Rebbi state exists for any value of the interface width. We thus obtain a large area single-mode laser
by making the interface width wide enough. We also find a series of analytic solutions of excited states based on
SUSY quantum mechanics, where the A and B sites of the bipartite lattice form SUSY partners. Furthermore,
we study the system containing loss and gain with saturation by extending the Jackiw-Rebbi mode to a nonlinear
theory.

I. INTRODUCTION

Topological physics is one of the most exciting fields[1, 2].
The Su-Schrieffer-Heeger (SSH) model is a simplest one-
dimensional example of topological insulators[3]. The topo-
logical phase is characterized by the emergence of zero-
energy states at the edges of a sample. A zero-energy state
emerges also at an interface between a topological phase and
a trivial phase, which is called a topological interface state.
Topological photonics is an ideal playground of studying
topological physics[4–21], where the system is non-Hermitian
inevitably due to the presence of loss and gain[22, 23]. Topo-
logical laser is one of the most successful applications of topo-
logical physics[24–41].

A high-power laser with high beam quality is important for
applications. However, there is a limit of the power for a sin-
gle laser due to the damage threshold. On the other hand,
multimode laser degrades the beam quality. In order to realize
a large area single-mode laser, topological lasers are promis-
ing. There are several proposals on the single-mode laser us-
ing photonic crystals by using double-lattice photonic-crystal
resonators[42], accidental Dirac-point[43, 44] and Kekulé
modulation[45, 46] in the photonic lattice mostly over the past
few years. Especially, it has been pointed out that a topologi-
cal interface laser has enables a large area single-mode lasing
by using a smooth interface [47].

In this paper, in order to study laser emission from the inter-
face between topological and trivial phases, we analyze a non-
Hermitian SSH model by including gain terms to the A sites
and loss terms to the B sites of a bipartite system. The model
is characterized by site-dependent hopping parameters. The
topological interface state is described by the Jackiw-Rebbi
(JR) state[48], which is a mode formed only on the A sites.
The JR state exists for any value of the interface width, indi-
cating that a large area single-mode laser is possible by tak-
ing the interface width wide enough. We also find a series
of analytic solutions of excited states making SUSY partners
based on SUSY quantum mechanics, where the JR state is the
ground state.

This paper is composed as follows. In Sec.II, we introduce
a generalized SSH model by including gain terms with pa-
rameter γχ to the A sites and loss terms with parameter γ
to the B sites. The hopping interaction is characterized by
site-dependent hopping parameters involving a dimensionless
interface width parameter ξ.

In Sec.III, we investigate the linear model by neglecting the
saturation effect. The model is a non-Hermitian SSH model,
whose energy is complex. Provided the interface width is suf-
ficiently narrow (ξ → 0), the standard topological analysis is
applicable, leading to the emergence of topological interface
state according to the bulk-edge correspondence. We examine
what happens when we increase ξ. We confirm numerically
that the interface state is generated at any value of ξ. We also
apply quench dynamics to investigate the dynamics of a topo-
logical interface laser.

In Sec.IV, by taking a continuous approximation of the
model, we obtain the JR solution describing the interface state.
It has a pure imaginary energy, reflecting the non-Hermiticity
of the system. The solution exists for any value of ξ in accord
with the numerical results derived in Sec.III. The JR mode is
strongly enhanced because it is strictly localized at the A sites
and has largest imaginary eigenvalue. The strength of single-
mode lasing becomes stronger for larger ξ. We thus obtain a
large area single-mode laser with a wide interlayer width.

In Sec.V and VI, we argue that supersymmetric (SUSY)
quantum mechanics underlies the basic structure of the
present bipartite system. By extending SUSY quantum me-
chanics to non-Hermitian systems, we find a series of analytic
solutions formed either A or B sites, where the JR state is the
ground state. Here, SUSY partners are formed on the A and B
sites, which we call SUSY JR modes. Not only the topologi-
cal interface state but also the SUSY JR modes are shown to
have pure imaginary energies. We confirm that the analytical
solutions well coincide with numerical solutions.

In Sec.VII, we include a saturation term to the gain, which
is a nonlinear term. Such a system well describes a large area
single-mode laser emission from an interface of a topological
system. We extend the JR mode to the nonlinear regime. Ex-
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citations at B sites are induced in the JR mode by a nonlinear
effect, where the wavefunction at B sites is fixed to be pure
imaginary. The relative phases between the saturated wave-
functions at the A and B sites are fixed. Furthermore, it is
shown that bulk modes emerge in transient process but decay
eventually. Namely, the JR topological mode is solely stimu-
lated in stable laser emission. Since the JR mode extends over
a wide region around the interface, it gives a large area single-
mode topological laser even if the saturation term is present.

Sec.VIII is devoted to conclusion and discussion. Appen-
dices are prepared for a review of the topological property of
the non-Hermitian SSH model and for a detailed analysis of
nonlinear JR solutions. We also derive the generalized SSH
model we have employed from a more basic theory, that is the
rate equation.

II. MODEL

We investigate the dynamics of a laser system governed
by[26]

i
dψn
dt

=
∑
nm

Mnmψm − iγ

(
1− χ (1− (−1)

n
) /2

1 + |ψn|2 /η

)
ψn,

(1)
with a site dependent hopping matrix

Mnm =κA,n (δ2n,2m−1 + δ2m,2n−1)

+ κB (δ2n,2m+1 + δ2m,2n+1) , (2)

where ψn is the amplitudes at the site n, where n =
1, 2, 3, · · · , N in the system composed of N sites; γ repre-
sents the loss in each resonator; γχ represents the amplitude
of the optical gain via stimulated emission induced only at the
odd site; η represents the saturation parameter[26]. All these
parameters are taken positive semidefinite. The lattice struc-
ture of the SSH model is bipartite, where the odd and even
sites are called the A and B sites, respectively. The system
turns out to be a linear model in the limit η → ∞. On the
other hand, γ controls the non-Hermicity, where the system is
Hermitian for γ = 0. In Eq.(1) we measure time t in units of
1/κ and the loss parameter γ in units of κ, where κ is defined
in Eq.(3) just below. Furthermore, we set κ = 1 in numerical
studies.

The hopping parameter κA,n has a site dependence, while
κB does not. They are given by

κA,n = κ

(
1 + λ tanh

n− nIF + 1/2

ξ

)
, κB = κ, (3)

where λ > 0 and ξ > 0 represent the interface modulation and
the interface width, respectively. Small (large) ξ represents
a sharp (smooth) interface. nIF is the smallest odd number
larger than or equal to N/2. Then, n − nIF + 1/2 > 0 for
n ≥ nIF, and n− nIF + 1/2 < 0 for n < nIF. We call the site
n = nIF the interface of the chain. See Fig.1(a1) and (b1) for
an illustration in the case of N = 10 and 9.

The explicit equations for a finite chain with length N fol-
low from Eq.(1) as

i
dψ2n−1

dt
=κBψ2n−2 + κA,nψ2n

− iγ

(
1− χ

1 + |ψ2n−1|2 /η

)
ψ2n−1, (4)

i
dψ2n

dt
=κBψ2n+1 + κA,nψ2n−1 − iγψ2n. (5)

We solve this set of equations together with the initial condi-
tion

ψn (t = 0) = δn,nIF . (6)

This is quench dynamics starting from the interface site by
giving an input to it initially. The initial input triggers the gain
effect in Eq.(4) because nIF is an odd number.

A comment is in order. When we scale the amplitude as
ψn(t) =

√
ηψ′n(t), the parameter η disappears from the equa-

tions of motion (4) and (5). It appears in the initial condition
(6) instead. However, we use the amplitude ψn(t) in what fol-
lows, since it is convenient to use η to control the nonlinearity
of the model.

III. LINEAR THEORY

We start with the linear model (η → ∞). Then, Eq.(1) is
reduced to

i
dψn
dt

=
∑
nm

Mnmψm − iγ (1− χ (1− (−1)
n
) /2)ψn, (7)

or

i
dψn
dt

=
∑
m

M̃nmψm, (8)

where

M̃nm = Mnm − iγ
(

1− χ

2

)
δnm, (9)

with

Mnm = Mnm − iγχ
(−1)

n

2
δnm. (10)

Hereafter, we use M̃nm for the study of dynamics and Mnm

for the analytical study of the system. Since M̃nm and Mnm

are different only by a c-number term, they describe an iden-
tical non-Hermitian SSH model with gain and loss, where
hopping parameters have a site dependence as described by
Eq.(3).

A. Topological edge and interface states

1. SSH model

We analyze the SSH model Mnm in the case of a sharp
interface (ξ → 0). Then, Eq.(3) amounts to
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FIG. 1. (a1), (b1) Illustration of the interface (marked in red) in the
SSH chain for N = 10 and 9. (a1) Topological edge states (marked
in red) appear at the two edges of a topological sector. (b1) The
topological edge state is absent at the edge of a chain whenN is odd.
The topological state emerges only at the interface. (a2), (b2) Energy
spectrum (vertical axis) of the SSH model as a function of the eigen
index (horizontal axis) for N = 100 and 99, where the eigen index
is sorted in the increasing order of the energy. Two and one zero-
energy topological states (marked in red) emerge in the SSH chain
with N = 10 and 9. The structure of kinks at p = 16 and p = 84 is
due to the difference of the band width between the topological and
the trivial sectors. (a3) The spatial profile of the absolute value of the
eigenfunctions corresponding to the interface and edge states, which
are two-fold degenerated. (b3) The spatial profile of the absolute
value of the interface state. We have set ξ = 1 and λ = 0.5.

κA,n = κ (1 + λ) for n ≥ nIF,

κA,n = κ (1− λ) for n < nIF. (11)

The hopping amplitudes are constant κA,n = κ (1 + λ) for
the segments with n ≥ nIF, while they are constant κA,n =
κ (1− λ) for the segments with n < nIF, separately. Note that
κB = κ. The hopping matrix Mnm defines the SSH model in
each segment.

The SSH model with constant hopping amplitudes κA and
κB has a topological phase for κA < κB and the trivial phase
for κA > κB . The topological phase is characterized by the
emergence of zero-energy states at the both edges of a finite
chain, as demonstrated numerically in Fig.1(a2) forN = 100.
This is the standard bulk-edge correspondence. It is illustrated
in Fig.1(a1) for N = 10. See Appendix A for details.

There is an intriguing phenomenon in the SSH model with
respect to the even-odd effect of the number of the sites within
the chain[38, 47]. We may remove the edge site at n = N
from an SSH chain with even N to obtain an SSH chain with
odd total number N − 1. See an illustration in Fig.1(a1)
and (b1), where two chains with N = 10 and 9 are shown.
We demonstrate numerically that there is only one zero-mode

FIG. 2. (a) Energy spectrum in the (γχ,Re[Ẽ],Im[Ẽ]) space for ξ =
10, where γχ stands for the gain (0 < γχ < 1.5). (b1), (c1),
(d1) Energy spectrum in the (γχ,Re[Ẽ]) plane for ξ = 1, 10, 100.
(b2), (c2), (d2) Energy spectrum in the (γχ,Im[Ẽ]) plane for ξ =
1, 10, 100 by fixing γ = 0.1. The red line represents the topological
interface state, whose energy is pure imaginary. The width of the
line is proportional to the local density of states. The interface state
is well separated from (almost touched to) the bulk spectrum for ξ =
1, 10 (ξ = 100). We have set γ = 0.1 and λ = 0.5. We have used
the chain with N = 99.

state in the odd chain with N = 99 in Fig.1(b2), which is
the topological interface state illustrated in Fig.1(a2). This is
also a bulk-edge correspondence. Recall that the topological
number is defined for the unit cell of the bulk.

We have displayed the eigenfunctions in Fig.1(a3) and (b3)
for the case of N = 100 and N = 10, where they are found
to be quite broad.

In the rest of this work, we focus on the topological inter-
face state by taking an SSH chain with odd N . Strictly speak-
ing, the topological numbers are well defined only in the limit
ξ → 0. However, we are actually interested in systems having
a very smooth interface (ξ ≈ N ) to create a high-power laser.
We investigate how the topological interface state behaves as
a function of ξ. We demonstrate numerically that it persists
even for ξ ≈ N . This is because the interface state is actually
the JR state associated with a smooth interface for any value
of ξ, whose stability is guaranteed as far as the hopping mod-
ulation forms a domain wall structure, as we argue in Sec.VI.

2. Non-Hermitian SSH model

We investigate the system M̃nm with a finite loss (γ 6= 0)
and gain (γχ 6= 0). Diagonalizing the hopping matrix M̃nm

in Eq.(9) numerically, we obtain the energy spectrum Ẽ as
a function of χ while setting γ = 0.1. We show the results
in the (χ,Re[Ẽ], Im[Ẽ]) space for ξ = 10 in Fig.2(a). See
also Fig.2(c1) and (c2) for its cross section at Im[Ẽ] = −γ
and Re[Ẽ] = 0, respectively. It means that the systems is
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FIG. 3. (a1), (b1), (c1) Real part of energyEp and (a2), (b2), (c2) the
component |cp| as functions of the eigen index p. A red large disk
indicates the topological interface state. On the other hand, cyan
small disks indicate the bulk states. The size of a disk is proportional
to the local density of states. It becomes smaller for larger ξ because
the interface mode becomes broader. The horizontal axis is the eigen
index. (a1), (a2) ξ = 1; (b1), (b2) ξ = 10; (c1), (c2) ξ = 100. We
have set N = 399, nIF = 199 and γ = 0.

lossy for χ = 0. We clearly observe a straight line passing
through the point (0, 0,−γ) in the (χ,Re[Ẽ], Im[Ẽ]) space,
which represents the energy of the topological interface state
we have just discussed.

Similarly, we show the energy spectrum for ξ = 1 and 100
in Fig.2(b1), (b2), (d1) and (d2). We also find a straight line
passing through the point (0, 0,−γ) in the (χ,Re[Ẽ], Im[Ẽ])
space.

The energy of the topological interface state is well fitted
for any system parameters by the formula

EIF = iγ̄ with γ̄ = γχ/2. (12)

The eigenvalue (12) and the associated eigenfunction are de-
rived as a JR solution later in Section IV: See Eq.(30).

Furthermore, we observe a band-edge mode[47] between
the interface mode and the bulk spectrum for ξ = 10. In the
case of ξ = 100, in addition to the band-edge mode, there are
many modes with almost equal spacing and characterized by
their pure imaginary energies. We call them SUSY JR modes,
with respect to which we discuss based on the SUSY quantum
mechanics in Section VI: See the energy spectrum in Eq.(57).

B. Dynamics

The quench dynamics is a powerful tool to distinguish topo-
logical phase even for nonlinear systems[49–52]. Before an-
alyzing the dynamics of the system, it is convenient to study
the eigenvalues and the eigenfunctions of the hopping matrix
M̃nm given by Eq.(9). We diagonalize it as

M̃φp = Ẽpφp, (13)

where an integer p labels the eigen index, 1 ≤ p ≤ N ,
and φp is the eigenfunction. We show the eigenvalues Ẽp in

Fig.3(a1), (b1) and (c1). Let the wavefunction of the topolog-
ical interface state be φIF. Its eigenvalue is

ẼIF = EIF − iγ
(

1− χ

2

)
δnm = iγ (χ− 1) , (14)

with the use of Eq.(9) and Eq.(12).
Decoupled equations follow from Eq.(8) for the eigenfunc-

tions,

i
dφp
dt

= Ẽpφp, (15)

whose solutions are given by

φp (t) = exp
[
−itẼp

]
φp. (16)

In particular, for the topological interface state, we have

φIF (t) = exp [γ (χ− 1) t]φIF, (17)

with the use of Eq.(14). It has no dynamics for γ = 0 or
χ = 1. On the other hand, it grows exponentially for χ > 1.

The initial state (6) is expanded in terms of the eigenfunc-
tions as

ψn (t = 0) = δn,nIF =
∑
p

cpφp. (18)

We show the coefficient |cp| in Fig.3(a2), (b2) and (c2), which
is determined by

cp =
∑
n

δn,nIFφp. (19)

It is the overlap between the initial state (6) and the eigenstate
φp. Such an overlap for the topological interface φIF is |cIF|,
which is found large for ξ = 1 but small for ξ = 100 in
Fig.3. This is because the topological interface state is strictly
localized at the interface for small ξ, but broad for large ξ.

We now investigate the quench dynamics of the system by
imposing the initial condition (6).

First, we neglect the loss and gain terms by setting γ = 0.
We numerically solve a set of differential equations (4) and
(5), whose results are shown in Fig.4(a1), (a2) and (a3). The
input given initially at the site n = nIF spreads over the chain,
but the component |cIF| remains as it is, because φIF (t) = φIF
in Eq.(17) for γ = 0. There is a peak at the interface for ξ = 2
as in Fig.4(a1) but the peak is tiny for ξ = 200 as in Fig.4(a3).

Second, we include the linear loss and gain terms (γχ 6= 0),
whose results are shown in Fig.4(b1), (b2) and (b3). The topo-
logical interface state has a maximum value at the site with
gain. As a result, the state exponentially evolves and becomes
infinite. However, this is not physical. Indeed, there is a satu-
ration of the gain in actual experiments, about which we dis-
cuss in Section VII. It is a saturation effect (η < ∞). Here,
we present the results in Fig.4(c1), (c2) and (c3) by choosing
η = 10.

We show the time evolution of the amplitude |ψnIF | in
Fig.4(a4), (b4) and (c4). It becomes stationary after a cer-
tain time in the absence of the loss and gain terms (γ = 0)
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FIG. 4. (*1), (*2), (*3) Time evolution of the spatial profile for the
time interval 0 < t < 100 and (*4) that of the amplitude |ψIF| at the
interface for the time interval 0 < t < 100 for various penetration
depth (ξ = 2, ξ = 20, ξ = 200). (a*) Hermitian model (γ = 0).
(b*) Linear non-Hermitian model (γ = 0.1, χ = 2, η = ∞). (c*)
Nonlinear non-Hermitian model (γ = 0.1, χ = 2, η = 10). We have
set N = 399, where nIF = 199.

as shown in Fig.4(a4). On the other hand, the amplitude ex-
ponentially becomes large once the loss and gain terms are
present (γχ 6= 0), as shown in Fig.4(b4). It becomes station-
ary by the saturation term (η < ∞) as in Fig.4(c4), about
which we discuss in Section VII.

IV. JACKIW-REBBI SOLUTION IN NON-HERMITIAN
MODEL

Supersymmetric quantum mechanics is a method to obtain
an analytic solution originally proposed by Witten[53–56]. It
has also been applied to laser systems[57–62].

We continue to study the linear model but based on the PT-
symmetric non-Hermitian SSH model Mnm from now. The
two matrices M̃nm andMnm are different only by a c-number
as in Eq.(10). Hence, the eigenfunctions are identical with the
eigenvalues different only by this c-number.

We diagonalize the matrix Mnm by employing an approx-
imation similar to the one made by Jackiw and Rebbi. The
hopping amplitude (3) becomes constant as in Eq.(11) far
away from the interface. Then, the hopping matrix Mnm can
be presented in the momentum space as

H ≡
(

iγ̄ κA + κBe
−iak

κA + κBe
iak −iγ̄

)
. (20)

The energy spectrum reads

E (k) = ±
√
κ2
A + κ2

B + 2κAκB cos ak − γ̄2, (21)

which has a Dirac-like dispersion in the vicinity of the mo-
mentum k = π/a. Assuming a sufficiently smooth configura-
tion in the vicinity of k = π/a, we expand it as

H =

(
iγ̄ ∆0 + iκk′

∆0 − iκk′ −iγ̄

)
, (22)

with

∆0 = κA − κB , k′ = k − π. (23)

We bring back this Hamiltonian to the continuous coordinate
space as

H =

(
iγ̄ ∆ (x)− κ∂x

∆ (x) + κ∂x −iγ̄

)
=

(
iγ̄ A†

A −iγ̄

)
,

(24)
with

A ≡ ∆ (x) + κ∂x, A† ≡ ∆ (x)− κ∂x, (25)

and

∆ (x) = κλ tanh
x− xIF

aξ
, (26)

where we have recovered the site dependent hopping ampli-
tude from Eq.(3).

The eigenequation of the Hamiltonian for the p-th eigen in-
dex (24) reads

H

(
ΨA
p (x)

ΨB
p (x)

)
= Ep

(
ΨA
p (x)

ΨB
p (x)

)
, (27)

with (24), where we have defined the wavefunctions with the
eigenvalue Ep at the A and B sites as ΨA (x) and ΨB (x),
respectively.

We derive the eigenfunction representing the topological in-
terface state. Its eigenenergy ẼIF is given by Eq.(12) in the
M̃nm basis, which reads EIF = iγ̄ in the H basis. Hence,
Eq.(27) yields

H

(
ΨA

0 (x)
ΨB

0 (x)

)
= iγ̄

(
ΨA

0 (x)
ΨB

0 (x)

)
, (28)

with E0 = EIF = iγ̄ and (24) for H . It is easy to obtain
one solution by setting ΨB

0 (x) = 0. The equation for ΨA (x)
reads

AΨA
0 (x) = [∆ (x) + κ∂x] ΨA

0 (x) = 0, (29)

for which the JR solution follows,

ΨA
0 (x) = c exp

[
− 1

κ

∫ x

∆ (x′) dx′
]
, (30)

ΨB
0 (x) = 0, (31)
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with c is a normalization constant. This is a non-Hermitian
generalization of the JR mode with a pure imaginary eigen-
value. It is the unique solution because there is no degeneracy
in the topological interface state.

The solution (30) is a simple functional of the hopping
function ∆ (x) given by Eq.(26). There are several key fea-
tures. 1) The solution exists for any value of the interface
width parameter ξ. 2) We may use it for a sample with an
arbitrary size. 3) The solution does not depend on the precise
form of the hopping function ∆ (x). The crucial requisite is
that the sign of the hopping function (26) has opposite signs
between the right and left hand sides of the chain, i.e.,

∆ (x) > 0 for x > xIF and ∆ (x) < 0 for x < xIF. (32)

Then, a domain-wall type solution is necessarily generated
around x = xIF. This is the JR solution. Its stability is as-
sured as far as the condition (32) is satisfied.

The JR mode has the largest imaginary eigenvalue as in
Fig.2(b2). It is understood as follows. As we will soon see,
the JR mode has amplitude only at the A sites, to which the
gain is introduced. On the other hand, the other modes have
amplitudes both at A and B sites. Namely, the JR mode feels
only the gain effect but the other modes feel boss gain and loss
effects. Hence, the JR mode has the largest positive imaginary
energy, which means that it feels the largest gain effect.

g=0.5

|0>

|1>

|2>

|3>

En series
+

En series
-

A

A

|f3 
|

B|f2 
|

A|f2 
|

A|f1 
|

B|f1 
|

A|f0 
|

B|f0 
|

B|f2 
|

|f3 
|

A

B|f1 
|

|f2 
|

A

B|f0 
|

|f1 
|

FIG. 6. Red (blue) bars show the amplitudes numerically calculated
at the A (B) site. Magenta (cyan) heavy curves are analytical results
given by Eq.(73), which envelop the numerical results very well.
Each panel contains SUSY partners made of amplitudes |φA

n | and
|φB

n−1|. Their magnitudes are quite different for γ = 0.5. The left
(right) column is for the series of the energy E

+
n (E

−
n ).

V. SUSY QUANTUM MECHANICS

When an operator A is given, we may define the super-
charges Q, Q† and the Hamiltonian Ĥ by[53–56]

Q ≡
(

0 0
A 0

)
, Q† ≡

(
0 A†

0 0

)
, (33)

Ĥ =
{
Q,Q†

}
=

(
A†A 0

0 AA†

)
. (34)

The superalgebra follows.

{Q,Q} =
{
Q†, Q†

}
=
[
Ĥ,Q

]
=
[
Ĥ,Q†

]
= 0. (35)

A representation of the algebra is constructed as follows.
We define the operators

HA ≡ A†A, HB ≡ AA†. (36)

The eigenvalue equations are

HAφ
A
p = EAp φ

A
p , HBφ

B
p = EBp φ

B
p . (37)

Using these we obtain

HB(AφAp ) = AA†AφAp = EAp (AφAp ), (38)

HA(A†φBp ) = A†AA†φBp = EBp (A†φBp ), (39)

and hence, AφAq is an eigenstate of HB with the eigenvalue
EAq . If we assume EA0 = 0 and EB0 6= 0, we may choose q =

p+ 1. Then, φBp (x) ∝ AφAp+1 (x) and φAp+1 (x) ∝ A†φBp (x)
so that

EBp = EAp+1, EA0 = 0. (40)
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The wavefunctions give a representation of the SUSY algebra,
as illustrated in Fig.5.

We now show that the present model presents a non-
Hermitian representation of the SUSY algebra. We may use
Eq.(25) for A and A†. For the Hamiltonian (24) we find

H
2

=

(
−γ̄2 +A†A 0

0 −γ̄2 +AA†

)
. (41)

On the other hand, from

H
2
(

ΨA
p (x)

ΨB
p (x)

)
= E

2

n

(
ΨA
p (x)

ΨB
p (x)

)
, (42)

we find a set of decoupled equations,

HAΨA
p (x) = (E

2

p + γ̄2)ΨA
p (x) , (43)

HBΨB
p (x) = (E

2

p + γ̄2)ΨB
p (x) . (44)

When we set

φAp = ΨA
p (x) , φBp−1 = ΨB

p (x) , (45)

EBp−1 = EAp = E
2

p + γ̄2, (46)

Eq.(37) is satisfied. Hence, the SUSY algebra is satisfied. The
SUSY partners are the wavefunctions on the A and B sites.

VI. EXPLICIT SOLUTIONS OF NON-HERMITIAN SSH
MODEL

We next seek the explicit solutions of the non-Hermitian
model (27). This can be done by simplifying the function
(26). When ξ is large, we can approximate the gap function
by a linear function as

∆ (x) = (κλ/ξ)x, (47)

where we set x = 0 at the interface. The Hamiltonian is given
by

H =

(
iγ̄ A†

A −iγ̄

)
, (48)

or

H̃ =

(
iγχ− iγ A†

A −iγ

)
, (49)

where

A ≡ (κλ/ξ)x+ κ∂x, A† ≡ (κλ/ξ)x− κ∂x. (50)

The commutator of the SUSY operators is calculated as[
A,A†

]
= α, with α ≡ 2κ2λ/ξ. (51)

The standard commutation relation of the annihilation and
creation operators follows,[

b, b†
]

= 1, (52)

in terms of the scaled operators b and b† defined by

A ≡
√
αb, A† ≡

√
αb†. (53)

Eqs.(43) and (44) are rewritten as

αb†bΨA
p = (E

2

p+ γ̄2)ΨA
p , α(1 + b†b)ΨB

p = (E
2

p+ γ̄2)ΨB
p .

(54)
These are solved as

ΨA
p (x) = hAp 〈x|p〉, ΨB

p (x) = hBp 〈x|p− 1〉, (55)

E
2

p = −γ̄2 + αp, (56)

for p ≥ 1, where hAp and hBp are c-numbers, |p〉 stands for the
p-th eigenfunction and 〈x|p〉 is its coordinate space represen-
tation. For p = 0, we have E0 = iγ̄, and the wavefunctions
are given by the non-Hermitian JR solutions (30) and (31).

We note that the energy Ep of the p-th level is pure imagi-
nary when

p <
γ̄2

α
=

γχξ

4κ2λ
. (57)

We call the mode |p〉 the SUSY JR mode, because we create
it from the JR mode |0〉 by the operation of b†. The SUSY JR
modes are supersymmetric, while the JR mode breaks it. They
describes the numerically obtained energy spectrum shown in
Fig.2(b2), (c2) and (d2).

We determine the relation between two c-numbers hAp and
hBp . We write down the eigenvalue equations (27) explicitly,

iγ̄ΨA
p +A†ΨB

p = EpΨ
A
p , AΨA

p − iγ̄ΨB
p = EpΨ

B
p , (58)

which we rewrite with the use of (55) as

iγ̄hAp |p〉+
√
αhBp b

†|p− 1〉 = Eph
A
p |p〉, (59)

√
αhAp b|p〉 − iγ̄hBp |p− 1〉 = Eph

B
p |p− 1〉. (60)

It follows that

iγ̄hAp +
√
αphBp = Eph

A
p , (61)

√
αphAp − iγ̄hBp = Eph

B
p . (62)

or
√
αphBp = (Ep − iγ̄)hAp , (63)
√
αphAp = (Ep + iγ̄)hBp , (64)

which leads to

hBp =

(
Ep − iγ̄
Ep + iγ̄

)1/2

hAp . (65)

Hence, the wavefunction ΨB
p is determined once the wave-

function ΨA
p is given.

Here we recall that there are two series of eigenfunctions
corresponding to E

±
p = ±

√
−γ̄2 + αp for p ≥ 1 and E

+

0 =

iγ̄. We focus on SUSY JR modes, where γ̄2 > αp. In the
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FIG. 7. Spatial profile of the amplitude |Ψn|. (a1)∼(a3) linear model, (b1)∼(b3) η = 100, (c1)∼(c3) η = 10 , (d1)∼(d3) η = 1 , (e1)∼(e3)
η = 0.1 and (f1)∼(f3) η = 0.01. We have set χ = 2, γ = 0.1, L = 399 and ξ = 200. (a1)∼(f1) t = 50, (a2)∼(f2) t = 100 and (a3)∼(f3)
t = 1000. The wavefunction is saturated and fixed real at the A sites in red and pure imaginary at the B sites in blue for finite η.

parameter region with γ̄2 � αp, we would expand E
±
p =

±iγ̄ + · · · . Then, we have(
hBp
hAp

)2

=
E

+

p − iγ̄

E
+

p + iγ̄
� 1 for E

+

p = iγ̄ + · · · , (66)

(
hBp
hAp

)2

=
E
−
p − iγ̄

E
−
p + iγ̄

� 1 for E
−
p = −iγ̄ + · · · . (67)

Hence,

|ΨA
p | � |ΨB

p | for the series E
+

p , (68)

|ΨA
p | � |ΨB

p | for the series E
−
p . (69)

This explains a huge difference numerically found between
the amplitudes at the A and B sites in Fig.6.

We comment on the SUSY quantum mechanics. First of
all, there are two series of energies E

±
p = ±

√
−γ̄2 + αp, al-

though the relevant energies are EBp−1 = EAp = αp for both
the series in SUSY quantum mechanics. However, the magni-
tudes of the amplitudes are very different,

|φAp | � |φBp−1| for the series E
+

p , (70)

|φAp | � |φBp−1| for the series E
−
p , (71)

which follows from (45) and (69). These two series are shown
in Fig.6.

The wavefunction is given by 〈x|p〉 apart from the normal-
ization constant, and hence it is written in terms of the Hermite
polynomials precisely as in the Hermitian model,

ΨA
p (x) = hAp

√√√√ 1

p!2p

√
λ

πξ
Hp

(√
λ

ξ
x

)
exp

[
− λ

2ξ
x2

]
,

(72)

ΨB
p (x) = hBp ΨA

p−1 (x) , (73)

where hBp is given by Eq.(65) while hAp is to be determined
numerically.

There is the JR mode only for A site, whose wavefunctions
are

ΨA
0 (x) = hA0 exp

[
− λ

2ξ
x2

]
, ΨB

0 (x) = 0. (74)

This is the SUSY-broken state.
Finally, we compare the analytic solutions and the numeri-

cal solutions of the wave functions in Fig.6. The coincidence
is very well between the analytic solution and the numerical
results except for a minor difference, where the mirror sym-
metry is slightly broken in the numerical results. It is due to
the difference between the hopping parameters κA,n and κB
in Eq.(3), where the band widths are different between the
topological and trivial phases. This difference is taken care
of in the numerical calculation but ignored in the analytical
study.

VII. GAIN WITH SATURATION

A. Quench dynamics

We have so far studied the linear model containing loss and
gain. The amplitude increases infinitely as time passes. Actu-
ally, there must be a saturation effect in gain, which makes the
amplitude finite. We include the saturation effect by keeping
η finite in Eq.(1). We show the results in Fig.4(c1), (c2) and
(c3). The amplitudes remain finite due to the saturation effect.
It is a topological interface laser stabilized by nonlinear and
non-Hermicity effects. We also show the time evolution of
the amplitude |ψnIF | in Fig.4(c4).

We show the spatial profile of the amplitude |ψn| at t =
50, 100, 1000 for various η in Fig.7. Main excitations are lo-
calized at the A sites in the vicinity of the interface, whose
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wavefunction is real. This is simply because the gain is given
to the A sites. However, there are also excitations at the B sites
as in Fig.7, which is a nonlinearity effect. We observe three
key properties: (1) ΨA is proportional to

√
η. (2) ΨB/ΨA is

independent of η. (3) ΨB is pure imaginary and it vanishes at
the interface site. We explain them analytically based on the
nonlinear JR theory in the following subsection.

There is an important remark. Bulk excitations emerge in
transient states as in Fig.7(b1)∼(f1) and (d2)∼(f2), but they
disappear after enough time (t = 1000) as in Fig.7(a3)∼(f3).
The time for saturation is longer for smaller η. Hence, we
conclude a stable single-mode topological lasing after enough
time irrespective of the saturation parameter η.

B. Nonlinear Jackiw-Rebbi theory

We have numerically revealed the excitations at the B sites
in the presence of the saturation term. We now show that they
form the JR mode generalized to the nonlinear regime. Re-
placing the linear gain term with the nonlinear gain term in
Eq.(49), we have( iγχ

1+|ΨA(x)|2/η − iγ A†

A −iγ

)(
ΨA (x)
ΨB (x)

)
= E

(
ΨA (x)
ΨB (x)

)
.

(75)
We analyze a small excitation at the B sites. Using a mean-
field approximation, we obtain ΨA (x) and ΨB (x) as

ΨA (x) = c exp

[
−κλ

2ξ
(1 + c2)x2

]
, (76)

ΨB (x) = −icx
η

c2κλ

ξ
exp

[
−κλ

2ξ
(1 + c2)x2

]
, (77)

where c is a normalization constant, and

c2 =
γ2χ2ξ

κ2λ

[
1

1 +
∣∣ΨA

∣∣2 /η − 1

1 + |ΨA (0)|2 /η

]
, (78)

with ΨA the mean of ΨA (x). See Appendix B for detailed
derivation. We note that

ΨB (x)

ΨA (x)
= −ixγ

2χ2

κ

[
1

1 +
∣∣ΨA

∣∣2 /η − 1

1 + |ΨA (0)|2 /η

]
.

(79)
The relative phases between the A and B are fixed to be ±i.

We summarize the key properties of the wavefunction. The
equation of motion (75) becomes free from the parameter η,
if we scale the amplitudes by the factor

√
η, as we already

noted in the paragraph below Eq.(6). It explains that ΨA(x)
is proportional to

√
η. Then, it follows from Eq.(79) that

ΨB(x)/ΨA(x) is independent of η. Eq.(79) itself says that
ΨB(x) is pure imaginary and it vanishes at the interface site.

VIII. CONCLUSION AND DISCUSSION

We have explored the SSH model with a topological inter-
face as a model of a large area single-mode laser. In previous

works[27, 30], the gain terms were only introduced at the edge
sites in order to excite the topological edge states. On the con-
trary, in the present model, the gain terms are introduced to all
the A sites. Although bulk modes are excited in transient pro-
cess, they decay after enough time. The topological interface
mode lases solely, which is the JR mode.

There are some eminent features with respect to the mode
excitations. First, as a nonlinear effect, the JR mode has am-
plitudes not only at the A sites but also at the B sites. Second,
their relative phase is fixed and hence the JR mode presents a
single coherent mode. Third, the A-site component of the JR
mode is compatible with the gain terms introduced only to the
A sites.

We have also revealed that SUSY quantum mechanics un-
derlies the basic structure of the present bipartite system. By
extending SUSY quantum mechanics to non-Hermitian sys-
tems, we have found a series of analytic solutions formed ei-
ther A or B sites. They have pure imaginary energies and
their wavefunctions are given by those of a harmonic oscil-
lator. They form the SUSY partners, where the JR state is
the SUSY breaking state formed on the A sites. Furthermore,
we have derived an analytic form of the JR mode in nonlinear
regime by using a mean-field approximation.

We have applied quench dynamics to investigate a topo-
logical interface laser. However, it may be hard to observe
the time evolution in actual optical experiments because the
time scale is too short. The same physics is executed by the
coupled-wave-guide arrays along the z direction[63], simply
by replacing time t by coordinate z in the equation of motion.

We have developed an analysis based on the basic equation
(1). On the other hand, it is well known that the dynamics
of a laser is described by the rate equations. It is actually
possible to derive Eq.(1) from the rate equations in a certain
limit provided the carrier population is saturated. See details
for Appendix C.
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CREST, JST (Grants No. JPMJCR19T1) and the Grants-in-
Aid for Scientific Research from MEXT KAKENHI (Grants.
Nos. 22H00298 and 22H01994).

Appendix A: Topological property of the non-Hermitian SSH
model

We consider a homogeneous system. The Hamiltonian in
the momentum space corresponding to the hopping matrix (9)
is

H̃ =

(
−iγ (1− χ) κA + κBe

−iak

κA + κBe
iak −iγ

)
,

= −iγ
(

1− χ

2

)
I2 +HSSH (A1)
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with a the lattice constant and

H ≡
(

iγχ/2 κA + κBe
−iak

κA + κBe
iak −iγχ/2

)
. (A2)

The Hamiltonian HSSH is non-Hermitian for γ 6= 0. The re-
lation between the eigenenergy of the Hamiltonians (A1) and
(A2) is

Ẽ = −iγ
(

1− χ

2

)
+ ESSH. (A3)

The energy spectrum reads

E (k) = ±
√
κ2
A + κ2

B + 2κAκB cos ak − γ2. (A4)

Especially, we have

E (π/a) = ±
√

(κA − κB)
2 − γ2. (A5)

The system is the PT preserved phase for γ < |κA − κB |,
where the bulk energy is real even though the system is non-
Hermitian, while the system is the PT broken phase for γ >
|κA − κB |, where the bulk energy becomes pure imaginary
for a certain range of the momentum k.

We recall that the PT symmetry operation is defined by

PT = σxK, (A6)

with K the complex conjugation. Since we have

PTH (k) (PT )
−1

= H (k) , (A7)

and hence HSSH is a PT symmetric Hamiltonian.
The topological number is defined with respect to the

Hamiltonian (A2). We define the right and left eigenvectors
by

H
∣∣ψR〉 = E

∣∣ψR〉 , H†
∣∣ψL〉 = E

∣∣ψL〉 . (A8)

The non-Hermitian Zak phase is a topological number[64]

W ≡ i

2π/a

∫ 2π/a

0

〈
ψL
∣∣ ∂
∂k

∣∣ψR〉 dk. (A9)

It is straightforward to show that W = 1 for κA < κB and
W = 0 for κA > κB irrespective of γ. Hence, the system is
topological for κA < κB and trivial for κA > κB .

Appendix B: Nonlinear Jackiw-Rebbi solution

We derive a set of the saturated distribution (76) and (77)
from Eq.(75). First, we write Eq.(75) explicitly as

iγ

(
χ

1 + |ΨA (x)|2 /η
− 1

)
ΨA (x) +A†ΨB (x) = EΨA (x) ,

(B1)

AΨA (x)− iγΨB (x) = EΨB (x) , (B2)

where A and A† are given by Eq.(25) with Eq.(26). The sec-
ond equation is solved as

ΨB (x) =
AΨA (x)

E + iγ
, (B3)

which we insert into the first equation to derive

A†AΨA (x)

= (E + iγ)

[
E − iγ

(
χ

1

1 + |ΨA (x)|2 /η
− 1

)]
ΨA (x) .

(B4)

We assume that the energy is modified from Eq.(14) as

E = iγ (χ− 1) + c1, (B5)

where c1 is a constant to be determined. Inserting it and we
have

A†AΨA (x) ' iγχ

[
c1 + iγχ

(
1− 1

1 + |ΨA (0)|2 /η

)]
ΨA (x) ,

where we have used an approximation |ΨA (x)|2 ' |ΨA (0)|2
because ΨA (x) rapidly decreases except at x = 0. We choose

c1 = iγχ

(
1

1 +
∣∣ΨA

∣∣2 /η − 1

)
, (B6)

where ΨA is the mean value of ΨA (x). We obtain

A†AΨA (x) = −γ2χ2

[
1

1 +
∣∣ΨA

∣∣2 /η − 1

1 + |ΨA (0)|2 /η

]
ΨA (x) .

(B7)
On the other hand, we assume a wavefunction modified from
Eq.(74) as

ΨA (x) = c exp

[
−κλ

2ξ
(1 + c2)x2

]
, (B8)

where c is a normalization constant and c2 is a constant to be
determined. Applying A and A†A to ΨA (x), we obtain

AΨA (x) ' −c2κλ
ξ

xΨA (x) , (B9)

A†AΨA (x) ' c2κ
2λ

ξ
ΨA (x) . (B10)

Comparing (B10) with Eq.(B7), we obtain

c2 =
γ2χ2ξ

κ2λ

[
1

1 +
∣∣ΨA

∣∣2 /η − 1

1 + |ΨA (0)|2 /η

]
. (B11)

With the use of Eqs.(B3) and (B9), ΨB (x) is derived as

ΨB (x) = −icxc2κλ
ξ

exp

[
−κλ

2ξ
(1 + c2)x2

]
. (B12)
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It is the saturated distribution (77) in the main text. We then
have

ΨB (x)

ΨA (x)
= −ixγ

2χ2

κ

[
1

1 +
∣∣ΨA

∣∣2 /η − 1

1 + |ΨA (0)|2 /η

]
,

(B13)
which is Eq.(79) in the main text.

Appendix C: Rate equation

The rate equations read[28, 37, 65]

dEAn
dt

=
1

2

[
−γ0 + σ

(
NA
n − 1

)]
(1− iαH)EAn + iκ0

AE
B
n + iκ0

BE
B
n−1, (C1)

dEBn
dt

=
1

2

[
−γ0 + σ

(
NB
n − 1

)]
(1− iαH)EBn + iκ0

AE
A
n + iκ0

BE
A
n+1, (C2)

dNA
n

dt
= RA −

NA
n

τr
− F

(
NA
n − 1

) ∣∣EAn ∣∣2 , (C3)

dNB
n

dt
= RB −

NB
n

τr
− F

(
NB
n − 1

) ∣∣EBn ∣∣2 , (C4)

where EAn and EBn are electric field amplitudes in sublattices A and B and NA
n and NB

n are carrier population densities.
We assume the carrier is saturated

dNA
n

dt
= 0,

dNA
n

dt
= 0, (C5)

or

NA
n − 1 =

F
∣∣EAn ∣∣2 +RA

F |EAn |
2

+ 1/τr
− 1 =

RA − 1/τr

F |EAn |
2

+ 1/τr
, (C6)

NB
n − 1 =

F
∣∣EBn ∣∣2 +RB

F |EBn |
2

+ 1/τr
− 1 =

RB − 1/τr

F |EBn |
2

+ 1/τr
. (C7)

By inserting them into the rate equations, we have

dEAn
dt

=
1

2

[
−γ0 + σ

RA − 1/τr

F |EAn |
2

+ 1/τr

]
(1− iαH)EAn + iκ0

AE
B
n + iκ0

BE
B
n−1, (C8)

dEBn
dt

=
1

2

[
−γ0 + σ

RB − 1/τr

F |EBn |
2

+ 1/τr

]
(1− iαH)EBn + iκ0

AE
A
n + iκ0

BE
A
n+1, (C9)

or

i
dEAn
dt

=
i

2

[
−γ0 + σ

τrRA − 1

1 + τrF |EAn |
2

]
(1− iαH)EAn − κ0

AE
B
n − κ0

BE
B
n−1, (C10)

i
dEBn
dt

=
i

2

[
−γ0 + σ

τrRB − 1

1 + τrF |EBn |
2

]
(1− iαH)EBn − κ0

AE
A
n − κ0

BE
A
n+1. (C11)

When αH is negligible and τrRB = 1, by setting

ψAn = EAn , ψBn = EBn , κA = −κ0
A, κB = −κ0

B , (C12)
γ = −γ0/2, η = τrF, γχ = σ (τrRA − 1) , (C13)

they are reduced to Eq.(1) in the main text.
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