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Strongly correlated electron systems host a variety of poorly understood correlations in their
high temperature normal state. Unlike ordered phases defined by order parameters, regions of the
normal state are often defined through unconventional properties such as strange metallic transport
or spectroscopic pseudogaps. Characterizing the microscopic correlations in the normal state is
necessary to elucidate mechanisms that lead to these properties and their connection to ground
state orders. Here we establish the presence of intertwined charge and spin stripes in the strange
metal normal state of the Hubbard model using determinant quantum Monte Carlo calculations.
The charge and spin density waves constituting the stripes are fluctuating and short-ranged, yet
they obey a mutual commensurability relation and remain microscopically interlocked, as evidenced
through measurements of three-point spin-spin-hole correlation functions. Our findings demonstrate
the ability of many-body numerical simulations to unravel the microscopic correlations that define
quantum states of matter.

The concept of intertwined orders is commonly used
to characterize states within the pseudogap regime of
the cuprate phase diagram [1, 2]. A well-known ex-
ample is that of stripe order, unidirectional spin and
charge density waves that are most prominent at low
temperatures around p = 1/8 hole doping [3–6]. In La-
based cuprates [7, 8] and in simulations of the Hubbard
model [5], spin and charge stripes are interlocked. Re-
gions of high hole concentration are aligned with antifer-
romagnetic phase reversals. Stripe order is well known to
interact closely with superconductivity, as evidenced by
1/8-anomalies in cuprate experiments [9] and by nearly-
degenerate ground state energies in Hubbard model cal-
culations [5, 10]. The close interplay of spin and charge
orders and their competition with superconductivity are
believed to be hallmarks of the pseudogap regime.

The majority of recent progress in solving the Hub-
bard model has targeted ground state properties [11–17].
Studies at finite temperature have found fluctuating spin
and charge stripes [6, 18, 19], but their interplay, dop-
ing dependence, and placement in the broader phase di-
agram have not been explored thoroughly. Our calcula-
tions of the Hubbard model demonstrate interlocked spin
and charge stripes at temperatures above the onset of the
pseudogap, in the strange metal regime characterized by
T -linear resistivity [20, 21]. The wide range of doping
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where we find stripes corroborate a growing number of
experimental studies finding charge stripes in optimally
doped and overdoped cuprates [22–30].

Our results are based on unbiased determinant quan-
tum Monte Carlo (DQMC) simulations [31, 32] con-
ducted with very large sample sizes. Typical simulations
involve ∼ 1010 measurements, allowing for small stochas-
tic errors (∼ 10−6) despite the presence of a fermion sign
problem. The principal observables we compute to inves-
tigate stripes in the Hubbard model are the charge and
spin susceptibilities at zero frequency, defined as

χc(r) =

∫ β

0

dτ 〈nr(τ)n0〉 − 〈nr〉 〈n0〉 (1)

χs(r) =

∫ β

0

dτ 〈mz
r(τ)mz

0〉 , (2)

where nr = nr↑ + nr↓ and mz
r = 1

2 (nr↑ − nr↓) are the
charge and spin densities on site r. These quantities can
be computed directly with DQMC, without the need for
analytic continuation, so that our results are numerically
exact.

Figure 1a displays the spin and charge susceptibili-
ties as functions of r for a 12 × 4 rectangular cluster
with periodic boundary conditions at doping p = 1/8.
The spin susceptibility is plotted with a staggering factor
(χ∗s(r) = χs(r)× (−1)rx+ry ) to highlight deviations from
commensurate antiferromagnetism. In both the spin and
charge susceptibilities, periodic modulations are visible
along the long direction of the cluster, indicating the
presence of short-ranged fluctuating stripes. The charge

mailto:tpd@stanford.edu


2

1

0

1

2
* s
(r

)

4 2 0 2 4 6
1

0

1

2

c(r
)

2 0 2 4

2

0

2

4

* s
(r

)

2 0 2 4

2

0

2

4

c(r
)

0.10 0.05 0.00 0.05 0.10
a

b

FIG. 1. Stripes in spin and charge susceptibilities.
a,b, Spin susceptibility χs(r) and charge susceptibility χc(r)
at zero frequency in the Hubbard model. The spin sus-
ceptibility is plotted with a staggering factor for clarity
(χ∗s(r) = χs(r)× (−1)rx+ry ). Parameters are U/t = 6, t′/t =
−0.25, T/t ≈ 0.22, p = 0.125. Cluster size is a 12 × 4 and b
8× 8. + and - signs indicate correlations that are nonzero by
at least two standard errors. Green dashed lines in a denote
the antiphase domain walls of spin stripes. The diamond pat-
terns of modulation in b indicate a superposition of stripes
along x and y directions.

modulation has a shorter correlation length and a period
that is approximately half of that of the spin modula-
tion, consistent with a stripe pattern where antiphase
domain walls in the spin density coincide with regions of
increased hole density [33, 34]. The pattern of modula-
tion in the spin susceptibility is identical to that in the
equal-time (τ = 0) spin correlation function (Fig. S1, S2),
analyzed previously in Ref. [6]. By contrast, the stripe
modulations in the charge susceptibility are not visible
in the equal-time charge correlation function [19], at the
temperatures attainable in our simulations. This distinc-
tion is related to the fact that high-energy incoherent
excitations contaminate the equal-time correlation func-
tion more than the static susceptibility, as emphasized in
Ref. [3].

We have checked that the finite size cluster does not
have a notable impact on the properties of the stripe pat-
tern (Figs. S1-S3). We focus on 12× 4 cluster results in
Fig. 1a and Fig. 2 as the larger average fermion sign asso-
ciated with smaller cluster size enables us to more clearly

resolve modulations in the charge susceptibility. We con-
sider an 8 × 8 cluster in Fig. 1b. Here, modulations are
again visible in both the spin and charge susceptibilities,
with negative regions along the diagonal directions. This
pattern is precisely expected from a superposition of hor-
izontal and vertical stripes. Our analysis indicates that
the stripe modulations seen for the 12× 4 cluster are not
artifacts of limited system size.

The doping dependence of the spin and charge sus-
ceptibilities is shown in Fig. 2. In Fig. 2a-c, we plot
the susceptibilities for hole doping concentrations of p =
0.1, 0.15, and 0.2. Modulations are present, indicating
fluctuating spin and charge stripes for all three doping
levels. The period of the modulation decreases with in-
creased hole doping. This is also clearly reflected in
momentum-space susceptibilities. In Fig. 2d, the spin
susceptibility splits from a single peak at (π, π) (i.e.
(0.5, 0.5) in reciprocal lattice units) to two incommen-
surate peaks with increased hole doping. The data are
well fit with periodic Lorentzian functions (Supplement
C [35]). Similarly, the charge susceptibility (Fig. 2e)
splits away from q = (0, 0) as hole doping increases
and rises uniformly owing to the increased metallicity
of the doped system. For hole doping 0.1 ≤ p ≤ 0.2 we
obtain excellent fits to χc(q) with periodic Lorentzian
functions plus a constant background. In Fig. S5b, we
check that the charge susceptibilities are indeed peaked
close to (0, 0) or (π, 0), rather than near (π, π) as in the
non-interacting model. This indicates that the fluctu-
ating stripes we observe are unrelated to Fermi surface
effects such as nesting and cannot be captured by weak-
coupling approaches such as the random phase approxi-
mation (RPA).

From our fits to χs(q) and χc(q), we extract the spin
and charge incommensurabilities, defined as the separa-
tion of the incommensurate peaks from the commensu-
rate wavevectors ((0, 0) for charge, and (π, π) for spin).
Fig. 2f plots the spin and charge incommensurabilities
against doping. The spin incommensurability is very
close to half the charge incommensurability through the
range of doping 0.1 ≤ p ≤ 0.2, indicating that the stripes
are mutually commensurate. Both increase monotoni-
cally with hole doping, with a stripe filling in between
half-filled (dashed line) and fully-filled (dotted line).

The mutual commensurability of the spin and charge
stripes strongly suggests, but does not prove, that doped
holes reside near antiphase domain walls. It is known
that modifying the chemical potential on a column can
pin the location of antiphase domain walls [36], and con-
versely that including a staggered magnetic field on a col-
umn can induce a static charge stripe modulation [19].
However, whether spin and charge stripes are pinned to
each other while still fluctuating is unknown. To resolve
this question and probe the relation between fluctuating
spin and charge stripes, we consider the 3-point spin-
spin-hole correlation function

〈mz
rm

z
0hr′〉 (3)
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FIG. 2. Doping dependence of spin and charge stripes. a, b, c, Staggered spin susceptibilities and charge susceptibilities
for dopings 0.1, 0.15, and 0.2, respectively, on a 12 × 4 cluster with parameters U/t = 6, t′/t = −0.25, T/t ≈ 0.22. d, e,
momentum-space susceptibilities for spin and charge respectively for various doping concentrations. Solid lines indicate fits to
periodic Lorentzian functions (see Supplement C [35]). No stripes are present at p = 0.05, and the Lorentzian fit to χc(q) is
poor and not shown. f, Spin and charge incommensurabilities as a function of doping, obtained from fits to the momentum-
space susceptibilities. Dashed and dotted lines indicate q = p and q = p/2, corresponding to the spin incommensurabilities of
half-filled and filled stripes, respectively.

where hr′ = cr′↑c
†
r′↑cr′↓c

†
r′↓ ensures the presence of a hole

on site r′. In Fig. 3a we first plot 〈mz
rm

z
0〉 〈hr′〉 to demon-

strate how the 3-point correlation function would appear
if spin and charge were entirely decoupled. By transla-
tion symmetry, 〈hr′〉 is a constant and Fig. 3a thus simply
shows the spin correlation function. Figure 3b shows the
full 3-point correlation function, with the axes and letter
“h” indicating the coordinates of r and r′ respectively. In
these 3-point correlation functions, it is clear that while
the periodicity of spin stripes is unaffected, there is a
strong tendency for the antiphase domain walls to lie
adjacent to the hole. This establishes definitively that
although both the spin and charge stripes seen in Figs. 1
and 2 are short-ranged and fluctuating, they remain mi-
croscopically interlocked. This close interplay between
fluctuating spin and charge stripes in our finite tempera-
ture calculations indicates that the notion of intertwined
orders is not unique to the pseudogap regime of the phase
diagram.

In the data presented thus far, we have focused on
results at a temperature T/t ≈ 0.22, near the lowest ac-
cessible in our simulations due to the fermion sign prob-
lem. In Fig. 4, we discuss the evolution of the strength
of the fluctuating stripes with temperature and doping.
We consider the value of the spin and charge suscepti-
bilities at the nearest vertical neighbor, χs(r = ŷ) and
χc(r = ŷ), as simple estimates of the magnitude of the
fluctuating stripes (see Supplement A5 [35]). The dop-

ing and temperature dependence of χc,s(r = ŷ) is plotted
in Fig. 4a. For doping concentrations or temperatures
where χc(r = ŷ) < 0, the patterns in the charge sus-
ceptibility do not resemble stripes (Fig. S6). We observe
that the spin stripes weaken monotonically with increas-
ing doping and increasing temperature, but the charge
stripes display a non-monotonic doping dependence with
a maximum at p = 1/8. This peak is highly reminis-
cent of 1/8-anomalies in cuprate superconductors, where
charge stripes have also been observed to have maximal
strength at p = 1/8, with a concomitant suppression
of superconductivity. The broad peak at p = 1/8 is
also reminiscent of a similar peak seen in a q = 0 ne-
matic susceptibility reported previously for the Hubbard
model [37].

Both spin and charge stripes grow in intensity as
temperature decreases. While there is no sharp defi-
nition for the onset temperature of fluctuating stripes,
given their short-ranged nature, we generally find that
modulations indicative of charge stripes onset at lower
temperatures than spin stripes. Our findings are sum-
marized in a temperature-doping “phase diagram” in
Fig. 4b, where the color intensity corresponds to the
magnitude of χs(r = ŷ) in the yellow/green background,
on top of which a blue region around p = 1/8 corre-
sponding to χc(r = ŷ) is overlaid. In general, we find
that incommensurate spin correlations indicative of spin
stripes become visible below roughly T/t ≈ 0.6. Charge
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FIG. 3. Holes pin antiphase domain walls. a, Uncorre-
lated value 〈mz

rm
z
0〉 〈hr′〉 demonstrating expectations if spin

and charge were decoupled. As in Figs. 1 and 2, a staggering
factor (−1)rx+ry is included for clarity. b, Full spin-spin-hole
correlation function 〈mz

rm
z
0hr′〉 indicating spin correlations in

the presence of a hole. The location of the hole on r′ is in-
dicated by the letter ‘h’. The antiphase domain walls (green
dashed lines) move as r′ is varied. Parameters are U/t = 6,
t′/t = −0.25, p = 0.125, T/t = 0.22. Additional plots for
other locations of the hole may be found in Fig. S8.

stripes become visible at lower temperatures, for instance
T/t ≈ 0.5 at p = 1/8 (see Supplement D [35] and refer-
ences [6, 19, 38]).

We emphasize that the clear and robust signatures of
interlocked spin and charge stripes occur at temperatures
well above the onset of the pseudogap. The pseudo-
gap crossover temperature T ∗ is estimated by the peak
in the Knight shift χs(q = 0, ω = 0) as a function of
temperature (see Supplement E [35]). T ∗ for different
doping is plotted in Fig. 4b. As T ∗ decreases with in-
creased hole doping, we cannot explore the behavior of
fluctuating stripes below the pseudogap onset temper-
ature within unbiased DQMC simulations. Neverthe-
less we find strong signatures of fluctuating spin and
charge stripes over a significant range of hole doping,
thus demonstrating that the pseudogap is not a prereq-
uisite for intertwined orders. In fact, the temperatures
and doping levels at which our simulations are conducted

lie in the strange metal regime of the phase diagram, as
supported by previous DQMC calculations of the Hub-
bard model finding large, T -linear resistivity [21]. Our
findings motivate further studies and analysis of theories
connecting fluctuating stripes to strange metallic trans-
port [39–42].

The presence of stripes in the strange metal regime
is further substantiated by a number of recent X-ray
scattering experiments finding scattering from fluctuat-
ing charge density waves in optimally and over-doped
cuprate compounds at temperatures approaching room
temperature [22–29]. A recent detailed analysis of Eu-
LSCO [29] showed a nearly temperature-independent in-
tegrated intensity of the charge scattering peak over
range of doping 0.1 ≤ p ≤ 0.2, indicating that the am-
plitude of the charge order onsets above experimentally
accessible temperatures and that stripes persist well into
the strange metal. Interestingly, the same study sug-
gests decoupling of spin and charge stripes at elevated
temperatures, with a charge ordering wavevector that
decreases with increasing doping, highly reminiscent of
the behavior of Y- and Bi- based cuprates. These dif-
ferences are not captured in the Hubbard model and
point toward the importance of effects beyond the lo-
cal Hubbard interaction, including electron-phonon cou-
pling, long-range Coulomb interactions, and effects of the
oxygen orbitals that are not fully contained in a single-
band model. Nevertheless, the concordance of our nu-
merical results on the simplified Hubbard model and re-
cent experimental works[22–30] finding stripes beyond
the pseudogap regime highlights the importance of fluc-
tuating stripes over a larger region of the phase diagram
than previously considered. Their existence over wide
ranges of doping and temperatures is evidence of their
relevance to all electronic properties of cuprates. Our
findings call for further investigations of intertwined or-
der in other strongly correlated materials and strange
metals.
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