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We present a scheme to use physical Majorana quasi-zero modes at each junction of a two-dimensional
nanowire network to build a logical Majorana zero mode, the location of which is controllable through gate
voltages. The wire-network is a way to realize a recent proposal to imprint a Kekulé vortex pattern on a hon-
eycomb lattice via gate voltages. We show that a specific type of junction – other than a naive Y- or T-junction
– is needed to realize, without breaking time-reversal symmetry, an artificial “graphene” system with Majorana
fermions instead of complex ones at each site. The junction we propose (i) traps exactly one physical Majo-
rana (quasi-)zero mode at each site of either a brick wall or honeycomb lattice and (ii) allows this mode to
hybridize with all three neighboring sites. Using a lattice of these junctions and starting from an electronic,
tight-binding model for the wires, we imprint the voltage patterns corresponding to the Kekulé vortex and ob-
serve the emergence of the logical Majorana zero mode at the vortex core. By suitable adiabatic modulations
of gate voltages as a function of time, the positions of individual Kekulé vortices can be moved, and in this
manner, non-Abelian braiding of the logical Majoranas bound to the vortex cores can be performed. We provide
the range of parameters where these excitations could be realized experimentally.

I. INTRODUCTION

Quantum computation has the potential to solve problems
that are intractable in current, classical computers. This poten-
tial will be realized when large-scale, fault-tolerant quantum
computers become available. In the quest for such machines,
two distinct approaches stand out: to increase the number of
physical qubits, so that logical qubits can be created and quan-
tum error correction can be applied [1–3]; or, alternatively, to
build qubits that are intrinsically decoherence-resistant due to
topological protection [4]. In this paper, we explore the latter
but infuse it with elements of the former.

Topological qubits [5–8] based on Majorana zero modes are
an example where the qubit has protection against local noise
because the information is encoded non-locally, shared be-
tween distant localized zero modes. There have been a num-
ber of proposals [9–14] in the last decade on how to realize
phases with Majorana zero modes at the endpoints of one-
dimensional (1D) wires obtained by interfacing superconduct-
ing and semiconducting materials. There have been enormous
progress on engineering these material interfaces, as well as
on characterizing the properties of the 1D wires and detecting
zero-bias peaks at their extremities [15–17]. However, there
are still ongoing debates on the exact nature of the zero modes
in experimental systems [18], as well as on the proper protocol
to separate topological zero-mode states from non-topological
Andreev bound states [19, 20].

In this paper, we use 1D wires as building blocks to con-
struct logical Majorana zero modes on a two-dimensional
(2D) wire network. The location of these logical Majorana
zero modes is controlled by applied gate voltages on the wires
in the network. This construction allows one to create multi-
ple logical Majorana modes and braid them by adiabatically
modulating the gate voltages so as to change the position of
the logical Majoranas as a function of time. Logic quantum
gates can be implemented via braiding by exploring the non-
Abelian statistics of the Majorana zero modes [5]. The logical
Majoranas are topological zero modes, whose splittings are

FIG. 1. A unit cell of the brickwall network. Every junction consists
of five nanowires and the polarity (± signs) correspond to whether
the zero mode at a given endpoint of a wire is even or odd under
time-reversal symmetry. Notice that the five wires are arranged in
such a way that two wires “sister” a (third) central wire in one of the
legs of the brickwall lattice. The presence of a nonzero Majorana
zero mode amplitude at a nanowire end is indicated by a circular line
around a solid circle. The polarities on the nanowires are such that
there is only one zero mode per lattice site, and this mode hybridizes
will all three neighboring sites. The red circle shows a zoom-in of
the interwire couplings at a junction.

(at most) exponentially small in the ratio of the distance be-
tween the logical Majoranas and the characteristic size of the
mode function.

The network that we propose builds on that by Yang et al.
[21], where a hierarchical framework was used to build a log-
ical Majorana zero mode in a two-dimensional (2D) honey-
comb network with links consisting of 1D nanowires. The
proposal contains three steps. In the first step, each finite-
length nanowire in the network is brought to a regime where
there is a single Majorana zero mode at each nanowire ends.
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At the vertices of the network, where three nanowires meet,
the Majorana zero modes hybridize. As a result, two of the
zero modes are gapped out and only one survives, leaving one
Majorana zero mode per vertex. In the second step, by tuning
the gate voltages on each wire, these surviving zero modes are
made to weakly overlap, creating a band. In the third and final
step, a Kekulé vortex modulation [22–24] of gate voltages is
employed to open a spectral gap everywhere but on the vortex,
which binds a topological zero mode.

Two conditions are essential for obtaining a “Majorana
graphene” system on which to build the logical Majorana zero
mode at the vortex core: (i) having a single Majorana mode
on each site of the honeycomb lattice, and (ii) hybridizing this
mode with all three neighboring sites. In Ref. [21] this was
achieved by a fixed pattern of breaking time-reversal symme-
try (TRS) at the junction of the three wires connecting at each
site. While breaking TRS is not a problem in practice, break-
ing it in a prescribed pattern on the lattice – in opposite ways
in the two sublattices of the honeycomb lattice – could be diffi-
cult to achieve. In this paper, we provide a concrete realization
of the “Majorana graphene” system of Ref. [21] that requires
no breaking of TRS. Here we show that it is impossible, in
systems with TRS, to satisfy both conditions (i) and (ii) with
junctions of three wires, such as Y- or T-junctions. To satisfy
both conditions requires the use of junctions with five wires,
where two wires “sister” a third central wire in one of the legs
of the Y- or T-junctions, as depicted in Fig. 1.

For systems with TRS, one can define two opposite polari-
ties for the zero modes at the endpoints of a wire, correspond-
ing to whether the zero modes are even (+) or odd (−) under
reversal of time. (Which end is assigned + or − depends on
the couplings in the Hamiltonian, for example, the sign of the
superconductor order parameter, as we discuss in the paper.)
The number of zero modes at a junction of n = n+ + n−
wires, with n+ of positive and n− of negative polarity, is given
by the integer-valued index ν = |n+ − n−|. (The supercon-
ducting 1D wires with TRS are in symmetry class BDI [25],
which is indexed by a topological invariant ν ∈ Z; interac-
tions, which we do not include, break the classification down
to Z8 [26].) Satisfying the condition (i) above is thus possible
with three wires if two have one polarity, and one the other, so
that ν = |2 − 1| = 1. However, as we discuss in this paper,
the wave function for the zero mode has amplitude only on
the majority wires, i.e., only on ρ = max(n+, n−) wires (far
away from the junction). In the case of the junctions of the
three wires above, the wave function on one site would leak to
only ρ = max(2, 1) = 2 out of the three neighbors, yielding
a system of decoupled 1D Majorana chains. Therefore it is
condition (ii) that poses an obstruction to constructing a 2D
system of “Majorana graphene” with Y- or T-junctions. With
five-wire junctions as depicted in Fig. 1 we solve the problem
with n± = 3 and n∓ = 2 on the two sublattices of the brick-
wall lattice, so that ν = |3−2| = 1 and max(3, 2) = 3, which
satisfy both conditions (i) and (ii).

Using the geometry of Fig. 1, we then construct an elec-
tronic tight-binding model of the nanowires and junctions that
realize an effective honeycomb lattice of Majorana quasi-zero
modes. We implement a Kekulé modulation on the potential

of the tight-binding nanowires that opens a bulk spectrum gap
and create a vortex that binds a single zero mode to a particu-
lar location. Numerical simulations confirm the exact location
of the vortex and the ability to move the zero mode around
the lattice by a simple change in the gate voltage modulation.
To show the presence of a logical Majorana quasi-zero mode,
we compute the exact local density of states in the nanowire
network in the presence of a vortex. We use our results to
estimate the parameters required for an experimental realiza-
tion and discuss whether the detection of the logical Majorana
mode is possible. One of the most important takeaways of
this approach of building a logical Majorana zero mode from
a collection of physical Majorana quasi-zero modes is that we
can afford less stringent conditions on the physical Majoranas
at the nanowire level. The individual nanowires do not need
to provide two highly localized zero modes at both ends of the
wire; in fact, we exploit the opposite, that in experiments, the
nanowire zero modes likely hybridize.

The paper is organized as follows. In Sec. II we present the
design rationale for the wire network in Fig. 1. In Sec. III, we
discuss a simple model of the 1D quantum wires, and present
numerical studies with junctions of three and five wires that
support and justify our choice of wire network in Fig. 1, which
we then study in Sec. IV, where we introduce the Kekulé
modulation of the network to gap the zero modes in the bulk
and then demonstrate the gate voltage modulation required to
imprint a vortex inside the lattice. In Sec. V we describe
the realistic parameters necessary for the experiments. We
conclude in Sec. VI with a summary and a discussion of open
questions.

II. THE NANOWIRE NETWORK DESIGN RATIONALE

In this section, we justify the design of the nanowire net-
work in Fig. 1. Our goal is to obtain an artificial “Majorana
graphene” platform, i.e., a system in which single Majorana
(quasi-)zero mode sits on the sites of a brickwall or a honey-
comb lattice and hybridizes with the three neighboring sites.
This platform shares many of the features of graphene but
with Majorana (not complex) fermions on the sites. The pro-
grammable hoppings (via gate voltages) allow us to imprint
Kekulé vortices in the dimerization pattern, thereby trapping
logical Majorana zero modes.

The conditions to realize the “Majorana graphene” plat-
form, namely, (i) that a single (quasi-)zero mode sits on each
site, and (ii) that these modes hybridize with the three neigh-
bors, and are connected to two indices that we discuss in this
section. Here we shall focus solely on an effective model of
Majorana end modes on the nanowires, without diving into
any microscopic model of the nanowires or the junctions; that
discussion is reserved for the subsequent sections.

Let us start from a single nano wire in a phase in which two
Majorana zero modes sit at the wire endpoints, which we label
γ±. Under the TRS operation T , one of these modes is even
and the other is odd:

T γ± T −1 = ± γ± . (1)
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The ± sign associated with the parity of the endpoint zero
modes can be thought of as a polarity for that endpoint. No-
tice that the only possible coupling that can be added to the ef-
fective model in which there are only the Majorana endpoints
left in the wire is H = i γ+ γ−, which is non-local and gaps
the wire. That γ± have opposite polarity is needed for this H
to be both Hermitian and respect TRS.
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FIG. 2. Schematic illustration of a multi-nanowire junction. n+ (n−)
nanowires have positive (negative) polarity at the inner endpoints,
which are represented by red circles.

Consider now a junction where endpoints of multiple wires
come together, of which n+ have positive polarity and n−
have negative polarity, as shown in Fig. 2. The tunneling
Hamiltonian Hjunction is quadratic in γa+, a = 1, . . . , n+

and γb−, b = 1, . . . , n−. Moreover, to respect TRS, Hjunction

must only couple even with odd, or + with −, modes, i.e., the
Hamiltonian must have the form

Hjunction = i

n+∑
a=1

n−∑
b=1

γa+ Γab γb− +H.c. , (2)

where Γab ∈ R. The eigenmodes can be obtained from the
spectrum of the (n+ + n−)× (n+ + n−) matrix

h = i

[
0n+×n+

Γn+×n−

−Γ>n−×n+
0n−×n−

]
, (3)

The number of zero modes of this block matrix (in the generic
case) is given by the index

ν = |n+ − n−| . (4)

One can trace this index to the fact that the system of 1D wires
with TRS symmetry belongs to class BDI in the classification
of topological insulators and superconductors [25]. Class BDI
is indexed by a topological invariant ν ∈ Z. (Interactions,
which we do not include here, break the classification down
to Z8 [26].)

Besides the number of zero eigenvalues, we can also ob-
tain from h in Eq. (3) the number of wires in which the wave
function has support, i.e., the number of non-zero components
of the (n+ + n−)−dimensional eigenvectors with eigenvalue
zero. The number of these non-zero components is given by

ρ = max(n+, n−) . (5)

With the two indices ν and ρ in hand we can justify the
geometry, Fig. 1, that we choose for the wire network. No-
tice that three (vertical) wires comprise one of the links of the
brickwall lattice in Fig. 1, so the lattice connectivity is three
even though five wires meet at each junction. Given the po-
larity assignments of the network, we have at each site of the
brickwall lattice ν = |3 − 2| = 1 and ρ = max(3, 2) = 3.
These values allow us to satisfy both conditions (i) and (ii)
above: we have a single zero mode in each site (ν = 1) and
that mode leaks through three wires, which connect to three
sites (ρ = 3). (Notice that the polarity assignments in the
network are such that each of the three links connecting to a
site has at least one wire with polarity in the majority set for
that site, and hence the wave function of a mode leaks in the
direction of all three neighboring sites.)

We remark that it is not possible to build a nanowire net-
work that only uses three-wire junctions because one cannot
satisfy both conditions (i) and (ii) simultaneously. For exam-
ple, n+ = 2 and n− = 1 yield a single mode at a site, but then
the wave function would only leak to two out of three neigh-
boring sites. In this example, instead of a system with 2D
connectivity, the network would behave as a set of decoupled
1D systems.

The arguments above are our rationale for proposing the
design in Fig. 1 as a way to realize the 2D artificial “Majorana
graphene” platform on which to build logical Majorana zero
modes. In the next sections, we present a detailed analysis of
the wire network using an electronic tight-binding model of
the nanowires and junctions.

III. TIME-REVERSAL SYMMETRIC
SUPERCONDUCTING NANOWIRES AND THEIR

JUNCTIONS

A. Time-reversal symmetric Kitaev chains

Majorana modes appear as zero-energy excitations in a
spinless one-dimensional p-wave superconductor, as shown
by Kitaev [7]. The Hamiltonian model for a 1D chain based
on Kitaev’s idea is given by

HKitaev =

L−1∑
l=1

[
−t(a†l al+1 + a†l+1al) + |∆|(eiφalal+1

+ e−iφa†l+1a
†
l )
]
− µ

L∑
l=1

(
a†l al −

1

2

)
, (6)

where a†l , al are spinless fermion creation and annihilation op-
erators, |∆| and φ are the chain’s superconductor order param-
eter amplitude and phase, respectively, t is the hopping ampli-
tude between the nearest-neighbor sites, and µ is the chemical
potential. For this Hamiltonian, provided that |µ| < 2t, it can
be shown that the two Majorana zero modes are localized at
both endpoints of the chain within a characteristic length

`0 = max(`+0 , `
−
0 ) , (7)
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where

`±0 =

∣∣∣∣∣ln | − µ±
√
µ2 − 4t2 + 4|∆|2|

2(t+ |∆|)

∣∣∣∣∣
−1

. (8)

Thus, for a finite chain there is always some residual interac-
tion between the two zero modes at the chain endpoints.

Under the TRS symmetry operation, the spinless fermionic
operators transform as

T al T −1 = al (9)
T a†l T

−1 = a†l , (10)

while a scalar z transforms as

T z T −1 = z∗. (11)

Therefore, applying the TRS operation on the chain Hamilto-
nian we obtain

T HKitaev T −1 =

L−1∑
l=1

[
−t(a†l al+1 + a†l+1al)

+ |∆|(e−iφalal+1 + eiφa†l+1a
†
l )
]

− µ
L∑
l=1

(
a†l al −

1

2

)
. (12)

We can easily verify that in order for the Hamiltonian to be
time-reversal symmetric we must have φ = πn, where n =
0,±1,±2, . . . . In this case, we can write ∆ = ±|∆| (positive
or negative). However, since alal+1 = −al+1al, we can turn
a “negative” sign in ∆ into a positive one by running the index
l from L to 1 instead of 1 to L. Therefore, the orientation of
the hopping in the superconductor term and the sign of ∆ are
related. We can take this into account by classifying the time-
reversal symmetric Kitaev chain into two classes: “right” and
“left”. Thus, in general, for time-reversal symmetric chains,
we have

HKitaev =

L−1∑
l=1

[
−t(a†l al+1 + a†l+1al)

+ η|∆|(alal+1 + a†l+1a
†
l )
]

− µ
L∑
l=1

(
a†l al −

1

2

)
, (13)

where η = ±1. In fact, we can introduce the concept of chain
“polarity”, see Fig. 3, where ± signs are associated with the
endpoints of the chain (i.e, site coordinates l = 1 or l = L), as
well as an arrow, depending on the sign of η. As we showed
in Sec. II, the polarity of the chain is connected to how the
Majorana zero modes at the chain endpoints transform under
time reversal.

Although Kitaev’s model describes a platform for the re-
alization of Majorana zero modes in one spatial dimension,
electrons have spin and most superconductors occurring in na-
ture have s-wave pairing. More realistic proposals [9, 11, 13]

L

+γ+ γ−γ−

= 1η = −1η

− +

1 L

+ −

1

γ

FIG. 3. Schematic illustration of the concept of polarity for time-
reversal symmetric Kitaev chains. η = ±1 correspond to whether
the Majorana zero modes at the chain endpoints (here indicated by
γ±)are even/odd or odd/even under time-reversal symmetry.

obtain a topological phase and Majorana boundary modes by
including three ingredients: (i) proximitized s-wave supercon-
ductivity, (ii) Rashba spin-orbit coupling, and (iii) a Zeeman
field.

The continuum Hamiltonian for a single-channel nanowire
with an electron effective mass m∗, Rashba spin-orbit cou-
pling λ and applied Zeeman field Bz , proximitized with an
s-wave superconductor with a pairing amplitude ∆s, with a
chemical potential µw can be written as

Hwire =
1

2

∫
dxΨ(x)†

[(
−~2∂2

x

2m?
− iλ∂xσy − µw

)
τz

+
gµB |Bz|

2
σz + ∆sτx

]
Ψ(x) (14)

in the Bogoliubov-De Gennes (BdG) formulation. Here we
use the Nambu spinor formulation where

Ψ(x)T = (ψ↑(x), ψ↓(x), ψ†↓(x),−ψ†↑(x)) (15)

and ψ†σ(x) and ψσ(x) are fermionic creation and annihilation
field operators. As discussed in Ref. 9, it can be shown that
within the limits |∆s| < gµB |Bz|/2 and gµB |Bz| � m?λ2

the Hamiltonian in Eq. (14) can be projected to a single-
band effective low-energy Hamiltonian that matches Kitaev’s
model in Eq. (6). Upon diagonalization, it can be shown that
the nanowire Hamiltonian in Eq. (14) can be driven to a topo-
logical phase when

gµB |Bz|
2

>
√

∆2
s + µ2

w. (16)

Experimentally, the chirality of the nanowire can be con-
trolled by strain, which defines the sign of the Rashba spin-
orbit coupling in Eq. (14). The direction of the effective
electric field due to the strain, Eeff , enters into the spin-orbit
Hamiltonian as follows

HRashba =
gµB
2mc

(σ × p) ·Eeff . (17)

The interplay between the spin-orbit coupling and the s-wave
superconductivity makes the sign of the effective p-wave or-
der parameter directly depends on the relative direction of the
strain-induced electric field with respect to a fixed crystal di-
rection ẑ,[9] namely,

η|∆| ∼=
λ ·∆s

gµBBz
, (18)

leading to

η = sgn (Eeff · ẑ) . (19)
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Hence the sign of the effective-p-wave pairing, which is given
by η, determines the polarity of the nanowire. Given the
strong connection between the physics encoded in the realis-
tic model represented by Eq. (14) and the Kitaev Hamiltonian
in the topological regime, in this paper we adopted the latter
for our modeling and analysis of nanowires. This assumption
simplifies the calculations without affecting the generality of
our conclusions. In Sec. V, we return to the continuum model
to connect our results to the experimental parameter space.

B. Electronic tight-binding model of nanowires and junctions

We start by investigating junctions of time-reversal sym-
metric Kitaev nanowires. We only consider junctions in the
all-connected configuration, where all nanowire endpoints are
coupled to each other.

We employ an electronic, single-band electronic tight-
binding model based on the Hamiltonian of Eq. (6) to model
nanowires and their junctions. We adopt a BdG representation
for the fermion operators

ψl,α =

(
al,α
−a†l,α

)
, ψ†l,α =

(
a†l,α −al,α

)
, (20)

where l = 1, . . . , L is the site coordinate and α = 1, . . . , n
is the nanowire index. We number the sites by starting from
the junction end of the nanowire. The total Hamiltonian of a
n-nanowire junction system is written as

Htotal =

n∑
α=1

Hα +Hjunction, (21)

where

Hα =

L−1∑
l=1

ψ†l,α (−t τz + iηα|∆|τy)ψl+1,α

−µ
2

L∑
l=1

ψ†l,α τz ψl,α (22)

describes the α-th wire and

Hjunction = −1

2

∑
α 6=β

Γαβψ
†
1,α τz ψ1,β (23)

describes the couplings at the junction, where Γαβ is the pair-
wise hopping amplitude between the endpoints of the α-th
and β-th nanowires. For the simulations discussed in this sec-
tion, we adopt µ = 0.5t, L = 20 and ∆ = 0.5t, which sets
the nanowires in the topological regime and exponentially lo-
calize the Majorana zero modes at the nanowire ends, with
`0 ≈ 1.82. We have performed all the numerical simulations
in this paper by implementing the tight-binding Hamiltonian
of Eq. (21) in Kwant [27].

C. Majorana junctions of 3 wires

We note that for two Majorana zero modes on different
time-reversal symmetric nanowires to hybridize and combine
into a finite-energy fermion, they must be of different polarity.
This restricts how the zero modes can be distributed among
the junction nanowires. In the case of a three-wire junction,
two possible cases exist. When all the Majorana zero modes
in the junction are of the same polarity, none of the zero modes
couple, and all six zero modes on the ends of three nanowires
survive. However, when one of the nanowires has a differ-
ent polarity than the other two nanowires, for example, in a
(+ + −) or (− + −) configuration, there is only one zero
mode at the junction and the wave function amplitude for that
zero mode is shared between the majority polarization sites.

This analysis in terms of Majorana operators is corrobo-
rated by a numerical simulation of the underlying electronic
system. The results are presented in Fig. 4, where the elec-
tronic local density of states (LDOS) at zero energy for the
(−−−) and (−++) junction configurations are shown when
Γαβ = (1−δα,β)Γ with Γ = t. It is clear that for the (−−−)
configuration a total of six Majorana zero modes are present,
including three at the junction. For the (−++) configuration,
there is a single zero mode at the junction and it is shared only
by the nanowires with majority polarity.

The wave function distribution in the majority-polarized
nanowires makes it impossible to satisfy simultaneously the
two necessary conditions for the realization of a single-band
Majorana network. This illustrated in Fig. 5 where a brick-
wall network out of the nanowires with only one Majorana
zero mode at each junction is shown. The Majorana zero
mode located on the majority nanowires of a junction is dis-
connected from the zero mode on the junction across the mi-
nority nanowire. As a result, when hybridization within the
nanowires is turned on, the network breaks up into an array of
disconnected chains with no inter-chain coupling.

D. Majorana junctions of five nanowires

We now consider the case of five nanowires and when
n+ = 2 and n− = 3. We simulate such a junction similarly
to the three-nanowire junction using the following choice for
the Γαβ coupling parameters:

Γαβ =
Γ√
6
×


0 0 1 1 −2

0 0
√

3 −
√

3 0

1
√

3 0 0 0

1 −
√

3 0 0 0

−2 0 0 0 0

 . (24)

This choice of coupling matrix elements lifts all by one mode
from zero energy. The remaining zero mode has equal am-
plitude among the three majority-polarity nanowires. The re-
sults are shown in Fig. 6. In this case, the single Majorana
zero mode wave function is distributed among the negative
endpoints of the majority polarization nanowires in the junc-
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Eigenstate number

Eigenstate number

FIG. 4. Numerical results for a three-wire junction with two different choices of polarity. Solid lines indicate the location of the nanowires
(site coordinates are shown), while dotted lines connect neighboring nanowire endpoints. To facilitate visualization, neighboring endpoints are
set farther apart than one chain lattice constant unit. In panels (a) and (b) the electronic local density of states (LDOS) at zero energy and the
energy eigenstates are plotted, respectively, for the (−−−) case, while in panels (c) and (d) the same quantities are plotted for the (− + +)
case. The wires are identified by the subscripts A,B,C. In (a), it is noticeable that the zero-energy wave function has amplitude in the three
junction sites and the total number of zero modes is six, with three sitting at the junction and three other modes sitting at the outer ends of
the wires. In (c), the zero-energy wave function has amplitude in the majority polarity sites of the junction but there is only zero mode at the
junction. The other three modes sit at the outer ends of the nanowires.

FIG. 5. Schematic illustration of a brickwall network of nanowires
with well-defined polarizations and three-wire junctions of the (−+
+) and (+ + −) types. The presence of a nonzero Majorana zero
mode amplitude at a nanowire end is indicated by a circular line
around a solid circle. Nanowire polarities are indicated by arrows
and ± signs.

tion, fully connecting the three links of the network that em-
anate from the junction and condition (i) of Sec. II is sat-
isfied. Moreover, all junction zero modes can be connected
to zero modes located at the outer endpoints of the junc-
tion nanowires, satisfying condition (ii). This configuration is
therefore chosen for the simulation of a “Majorana graphene”

network, which we discuss in the following section. While
others choices of coupling matrix elements are possible, as
long as the diagonal blocks in Eq. (24) are zero, only one zero
mode exists at the junction. Small deviations from the cou-
pling matrix elements in Eq. (24) are possible: due to TRS,
Dirac cones in the dispersion relation survive as long as the
matrix elements satisfy the triangle rule, which says that the
magnitude of each of the tunnel couplings is smaller than the
sum of the magnitudes of the other two couplings [28]. More-
over, Dirac cones are also robust to inhomogeneities in Γ from
one junction to another, as there is no equivalent to on-site dis-
order in a Majorana “graphene” system.

IV. MAJORANA NETWORK

In Sec. III D, we established that, using a five-wire junc-
tion, it is possible to (i) have a single Majorana (quasi-)zero
mode per site of the brickwall lattice, and (ii) hybridize this
mode with those on the three neighboring sites. These results
justify using the brickwall structure in Fig. 1 to realize the
“Majorana graphene” network. Here we proceed to construct
the logical Majorana zero mode using this structure, model-
ing every nanowire in the network by the Kitaev Hamiltonian
in the BdG formulation, as in Eq. (22). (In the next section
we discuss the connection to a more experimentally realistic



7

Eigenstate number

FIG. 6. Numerical results for a five-wire junction consisting of two positive and three negative polarity nanowires coupled according to Eq.
(24). The same conventions as in Fig. 4 are followed here. In panel (a), the electronic local density of states (LDOS) at zero energy is plotted
while in panel (b) the relevant energy eigenstates are plotted. The wires are identified by the subscripts K,L,M,N,O. It is clear from the
electronic LDOS that the zero energy wave function in the junction has nonzero amplitude only in the majority polarity sites. There is no
impediment for the zero mode located at a junction can hybridize with the zero modes in neighboring junctions.

model.)

A. “Majorana graphene” network

The characteristic length of the zero modes in the Kitaev
nanowires depends on the chemical potential, as indicated in
Eq. (7). It is thus possible to increase the overlap between the
zero modes in neighboring sites of the network, i.e., effective
hopping of the Majorana zero modes in the brickwall lattice,
by controlling a gate voltage Vg in every nanowire.

We consider first the case with uniform hopping matrix el-
ements (i.e., uniform gate voltages) across the entire network.
In this case, the Majorana system on the brickwall lattice con-
tains features similar to those of graphene, such as a Dirac-
type dispersion. To illustrate this point, we computed the
electronic energy bands of an infinite honeycomb network of
5-nanowire junctions. In Fig. 7a we show the energy bands
close to zero energy, where the six pairs of Dirac cones at
the K± points are clearly visible. The nanowire parameters
are L = 20, ∆ = 0.5t, and µ = 0.5t; the junction cou-
plings follow Eq. (24), with Γ = t. In Fig. 7b, we show that
the Fermi velocity for the Dirac dispersion depends on the
nanowire chemical potential, which in turn controls the effec-
tive hopping amplitude between Majorana zero modes located
at the opposite ends of the nanowire.

Returning to the finite-size network of Fig. 1 with open
boundaries, in Fig. 8 we show its electronic LDOS at zero
energy for the network when µ = 0.4t, ∆ = 0.8t, and Γ = t
, employing the junction coupling matrix of Eq. (24). The
LDOS shows zero energy modes at the boundary and in the
bulk of the system. These zero modes correspond to the states
at the Dirac nodes (i.e., the apexes of the cones in the energy
bands of Fig. 7). Due to the open boundary conditions, zero
modes appear at the boundary sites. They can be removed by

switching to periodic boundary conditions, as we show in Fig.
9.

B. Kekulé modulation in the brickwall lattice

Introducing a Kekulé dimerization pattern in a graphene
lattice opens up a gaps in the Dirac spectrum [21, 22]. The
Kekulé modulation can be realized by imposing the follow-
ing perturbation to the local chemical potential (via gate volt-
ages):

µ = µ0 + δµr,α, (25)

where

δµKekule
r,α = µK cos (ϕr,α) . (26)

and

ϕr,α = K+ · sα + (K+ −K−) · r. (27)

To implement this modulation, we return momentarily to the
equivalent honeycomb lattice and its coordinate system. The
position vector r has a fixed (arbitrary) origin and points to
the sites of one of the triangular sublattices. The three vec-
tors sα(α = x, y, z) connect sites of that sublattice to their
nearest neighbors on the other sublattice. K+ = −K− are
the distinct vectors connecting the Γ to the K points in the
reduced Brillouin zone in reciprocal space for the honeycomb
lattice. In Fig. 10 we show the pattern induced by the Kekulé
distortion.

In Fig. 11, we show the effect resulting from the Kekulé
dimerization pattern on the electronic LDOS at zero energy
for the wire network in Fig. 1. For these calculations, the
junction coupling amplitude Γ = t, the superconductor order
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FIG. 7. (a) Electronic energy bands near zero energy for an infinite network of five-wire junctions consisting of two positive and three negative
polarity nanowires. The nanowire parameters are L = 20, ∆ = 0.5t, and µ = 0.5t. The junction coupling parameters are chosen according
to Eq. (24) with Γ = t. The brickwall lattice is reshaped as a honeycomb lattice in order to create a triangular reciprocal lattice unit cell to
facilitate visualization of the bands. (b) Energy bands along the reciprocal space dashed line path are shown in the inset. Bands are various
chemical potential values are shown to illustrate their impact on the Fermi velocity at the K± points.
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FIG. 8. Electronic LDOS for a 7 × 10 brickwall lattice of Majorana
nanowires with open boundary conditions and a single zero mode
at each junction. Horizontal links in the lattice consist of a single
nanowire while vertical links contain three wires. Every nanowire is
described by a Kitaev chain Hamiltonian with L = 5 sites, µ = 0.4t,
and ∆ = 0.8t. Junction couplings follow Eq. (24) with Γ = t.

parameter amplitude ∆ = 0.8t, and the chemical potential pa-
rameters are set as µ0 = t and µK = 0.98t. We choose the
maximum value of the chemical potential (µmax = µ0 +µK)
to be very near the boundary of the topological range, µmax =
1.98t < µc = 2t to ensure a sizable overlap between the Ma-
jorana zero modes on both ends of the same nanowire, with
the Majorana characteristic length reaching `0 ≈ 80 on those
nanowires [see Eq. (7)]. Notice that the bulk zero modes are
now absent because of the bulk gap, while the boundary zero
modes remain. The boundary zero modes disappear under pe-
riodic boundary conditions. To illustrate this point, in Fig. 12
we show the energy eigenvalues of a Majorana zero-mode lat-
tice of 4 layers with each layer consists of 5 horizontal wires
with periodic boundary conditions in the presence and in the

FIG. 9. Electronic LDOS for a 3 × 4 brickwall lattice of Majorana
nanowires similar to that of Fig. 8 but with periodic boundary con-
ditions and L = 8. Notice the absence of zero modes at the bound-
aries. The smaller lattice has been used to show that the boundary
Majorana-zero modes disappear when using periodic boundary con-
ditions.

absence of the Kekulé modulation. We adopt the same param-
eters as in Fig. 8 and Fig. 11. for the absence and presence of
Kekulé modulation respectively.

C. Zero modes bound to Kekulé vortices

The Kekulé dimerization pattern can support defects in the
form of vortices. As noted in Ref. [21], a vortex can be im-
printed via an additional modulation of the Kekulé pattern,

ϕr,α = K+ · sα + (K+ −K−) · r + ϕvortex
r , (28)
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FIG. 10. The Kekulé dimerization in a honeycomb lattice. The single
(double) links correspond to weak (strong) bond amplitudes. The red
and blue dots represent the two sublattices of the honeycomb lattice.
As a result of the dimerization, three kinds of plaquettes are created
which are labeled by A, B and C.
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FIG. 11. Electronic LDOS of a brickwall network of Majorana
nanowires with a Kekulé distortion on the chemical potentials. Chain
and junction parameters are the same as in Fig. 8, with the base-
line chemical potential µ0 = t and the added Kekulé modulation
µK = 0.98t.

where

ϕvortex
r =

ν∑
n=1

qn arg(r−Rn). (29)

One important advantage of this construction is that the vor-
ticities qn = ±1 (n = 1, · · · ν) and the positions of the vor-
tices Rn are also programmable via the applied gate voltage
on each wire. The Kekulé vortices bind zero energy modes
at their location – these are the logical Majorana zero mode.
These logical Majoranas can be moved by applying gate volt-
ages that correspond to changing the value of Rn in Eq. (28).

In Fig. 13a,c we show the electronic LDOS at zero energy
for the wire network in Fig. 1 with a Kekulé vortex pattern
of applied gate voltages. In Fig. 13b,d we plot the intensity
of eigenfunctions associated to the zero modes bound to the
Kekulé vortex. We choose the vorticity to be −1. Other pa-
rameters are the same as those in Fig. 11

The results described above establish that the wire network
presented in Fig. 1 is a concrete realization of the proposal in

Ref. [21] to obtain logical Majorana zero modes in a hierar-
chical manner. The architecture in Fig. 1 enables the place-
ment of multiple vortices and the movement of those vortices
by simply changing the gate voltage on the wires according
to Eq. (28). In particular, this construction allows the logi-
cal Majorana zero modes to be braided adiabatically by the
modulation of the gate voltages.

V. CONNECTION TO EXPERIMENTAL SETUPS

We now connect the idealized tight-binding model used to
describe the Majorana network with a more realistic model
of semiconductor system proximitized with s-wave supercon-
ductors. We return to the Hamiltonian in Eq. (14) and con-
sider an infinite nanowire in the momentum space representa-
tion, yielding

Hwire =
1

2

∑
k

ψ†kHkψk, (30)

where

Hk = (εk + λkσy − µw)τz + EZσz + ∆sτx, (31)

εk = ~2k2/2m∗, and EZ = gµB |B|/2. The eigenvalues of
this matrix are

Ek = ±
√

(εk − µ)2 + E2
Z + ∆2

s + λ2k2 ± 2Rk, (32)

where

Rk =
√

(εk − µ)2(E2
Z + λ2k2) + ∆2

sE
2
Z . (33)

Each one of the four eigenvalues generates a band in k-space.
The exact shape of these bands depends sensitively on the val-
ues of the parameters m∗, EZ , ∆s, λ, and µw. Therefore,
it is fundamental to seek parameter values that match exper-
imental systems. For that purpose, we choose InSb-NbTiN
hybrid nanowires, which are currently used to realize Majo-
rana zero modes. They have a proximity-effect induced su-
perconductor gap ∆ ≈ 1 meV. The effective mass of bulk
InSb is m∗ = 0.014me, where me is the electron bare mass
[29]. The Rashba spin-orbit coupling parameter for bulk InSb
is λ = 0.1 eV·nm and the g-factor is 50 [30]. Since it is ad-
vantageous to use a large magnetic field and the critical field
for bulk NbTiN is approximately 10 T, we pick this value for
our analysis. Thus, following Eq. (16), the range of chemical
potential values for which the nanowire remains in the topo-
logical phase is |µw| . 11 meV.

After substituting those experimental parameter values into
Eq. (32) we find low-lying energy bands which can we well
approximated by the dispersion relation

Ek ≈
√
α(k ± k0)2 + β, (34)

with α ≈ 0.140 eV2·nm2, k0 ≈ 0.0777 eV2·nm, and β ≈
2.23× 10−7 eV2.
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FIG. 12. The energy spectrum of a brickwall lattice with quasi-Majorana zero modes at each vertex and periodic boundary conditions without
(a) and with (b) a Kekulé modulation for L = 8 and the same network size as in Fig. 9. The parameters used in panels (a) and (b) are the same
as those in Fig. 8 and Fig. 11, respectively.

FIG. 13. Vortex in a Majorana network. The electronic LDOS at zero energy is plotted in panels (a) and (c) for the two different vortex
positions indicated by red circles. The intensity of the eigenstates located within the red circles is plotted in panels (b) and (d). Notice that the
eigenstate are the same for both vortex positions. The Majorana zero modes in the bulk are bound to the Kekulé vortex and they move around
lattice together with the vortex. The location of the vortex is controlled by gate voltages on the nanowires. Here the vortex has charge q = −1.
All other parameters are the same as in Fig. 8.

We can similarly derive a low-lying band structure from the
Kitaev chain Hamiltonian in Eq. (13). In the long wave-length
limit, we find an expression that matches Eq. (34), allowing
us to connect its coefficients with the Kitaev chain parameters
as follows:

t a2 =

√
α

k0
, (35)

t− µ

2
− ∆2

t
=

√
αk0

2
, (36)

and

β =
∆2

2t

[
2t− µ− 2∆2

t

]
, (37)

where a is the chain lattice constant. These relations are ob-
tained under the assumption that µ < 2t−∆2/t. Inserting the
experimental values for α, k0, and β into these relations, we
find that a realistic Kitaev model parameters satisfy

t a2 ≈ 4.8 eV · nm2 (38)
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and

t− µ

2
− ∆2

t
= 0.015 eV. (39)

Let us consider the case when ∆ = 0.5t and µ = 0.5t, cor-
responding to the regime of Figs. 4 and 6. Substituting these
values into the above equations we find t = 7.3 meV and
a = 26 nm; the latter value, when combined with a length of
20 sites (L = 20) yields a wire of approximately 500 nm in
length, which is quite reasonable when considering a realistic
nanowire. Equation (37) serves as a consistency check: The
r.h.s. yields 1 meV, which is about 5 times larger than the fit-
ted value for β. This discrepancy comes primarily from ∆,
which is set to a relatively high value in the numerical calcu-
lations to keep the Majorana zero modes sufficiently isolated
at the ends of the chains. Smaller values of ∆ could be imple-
mented at the expense of using longer chains (i.e., more sites)
and performing exact diagonalizing of larger systems. How-
ever, given that the values obtained for a and t in comparison
to the realistic nanowire model are reasonable, and they de-
pendent only weakly on ∆ when ∆ � t, our considerations
show that it is possible to achieve the necessary conditions for
the realization of Majorana zero modes in current experimen-
tal setups.

Eigenstate number

FIG. 14. Energy eigenstates for the brickwall lattice in the presence
of a vortex. The E1913 eigenstate along with its particle-hole partner
is the vortex eigenstate. The closest state which does not contribute
to the boundary zero modes is the state E1930.

Another important aspect to consider in connection to the
experimental observation of Majorana zero modes is the nec-
essary energy resolution. In Fig. 14, we show a portion of
the energy spectrum for the brickwall lattice for the specific
vortex position in Fig. 13a. We notice that the difference in
energy between the nearest bulk zero mode state is 0.00257t.
Using the value of t obtained from the fitting to the realistic
nanowire model, this energy separation equals approximately
19 µeV, or, equivalently, 220 mK, which is a very accessible
temperature.

In the context of experimentally realizing the nanowire net-
work, both intrawire and interwire chemical potential fluctua-
tions are important. In the interwire case, it is straightforward

to compensate for it by readjusting the local chemical poten-
tial of the k-th wire,

µeff
k = µ+ V intr

k , (40)

where µeff
k is the effective chemical potential and V intra

k is
the local potential fluctuations. All of our results stand after
µ→ µeff

k . However, in the intrawire case, disorder and chem-
ical potential fluctuations can lead to ambiguous signatures of
MZMs. Nonetheless, recent experimental work has demon-
strated zero-bias conductance peaks [18] that pass stringent
tests for false positives [31]. That the experimental setup in
Ref. [18] likely shows signatures of MZMs over a wide range
of parameters indicates that one is reaching a point where in-
trawire inhomogeneities are no longer a limiting factor. These
newer setups are suitable for building the networks we pro-
pose.

VI. SUMMARY

In this work we present a nanowire architecture, shown in
Fig. 1, where it is possible to realize logical Majorana zero
modes that are movable in 2D by changing gate voltages on
the nanowires. This architecture realizes the hierarchical con-
struction of Ref. [21], without the need for breaking time-
reversal symmetry (TRS).

The basis for building the logical Majorana zero modes is
a programmable “Majorana graphene” platform, where a sin-
gle Majorana quasi-zero mode at each site of a brickwall or
of a honeycomb lattice hybridizes with modes on the three
neighboring sites. The degree of hybridization, and hence the
effective hopping, is controlled by gate voltages. To arrive
at the geometry in Fig. 1, we showed that junctions of five
nanowires meeting at each site are necessary so that (i) there
is a single (quasi-)zero mode in each site; and (ii) this single
mode hybridizes with the three neighboring sites. The number
of nanowires needed at the junction follows from two indices
constructed from the polarities of the zero modes at the end
of nanowires. (A positive polarity corresponds to zero modes
that are even under TRS, while a negative polarity corresponds
to modes that are odd under TRS.) For a junction where n+

positive and n− negative polarities meet, the number of zero
modes at the junction is ν = |n+ − n−| and the wave func-
tion of the zero modes spread over ρ = max(n+, n−) wires.
We thus satisfy conditions (i) and (ii) with either n+ = 3 and
n− = 2, or n+ = 2 and n− = 3, which are the cases in the
two sublattices of the brickwall network shown in Fig. 1. In
the paper, we show numerical results obtained from electronic
tight-binding models of nanowire junctions are in agreement
with this counting.

We further carried out numerical studies of a tight-binding
model for all nanowires and junctions of the network in Fig. 1.
In particular, we decorated the tight-binding model with a
Kekulé dimerization pattern and showed that it is possible to
make the bulk of the system gapped. We achieved the final
stage in the hierarchical construction of Ref. [21] by includ-
ing vortices in the Kekulé dimerization pattern and showed
that there exists a zero mode – the logical Majorana mode –
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at the core of the Kekulé vortex. Finally, we provided esti-
mates of the experimental values for the parameters used in
the numerical calculations and argued that it is possible to de-
tect the logical Majorana zero modes using low-temperature
local probes.

In closing, we stress that the construction of movable logi-
cal Majorana zero modes in 2D would enable direct and con-
trollable experiments where Majoranas are braided.
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J. Suter, V. Svidenko, S. Teicher, M. Temuerhan, N. Thiyagara-
jah, R. Tholapi, M. Thomas, E. Toomey, S. Upadhyay, I. Ur-
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