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We study the correlated insulating phases of twisted bilayer graphene (TBG) in the absence
of lattice strain at integer filling ν = ±3. Using the self-consistent Hartree-Fock method on a
particle-hole symmetric model and allowing translation symmetry breaking terms, we obtain the
phase diagram with respect to the ratio of AA interlayer hopping (w0) and AB interlayer hopping
(w1). When the interlayer hopping ratio is close to the chiral limit (w0/w1 . 0.5), a quantum
anomalous Hall state with Chern number νc = ±1 can be observed consistent with previous studies.
Around the realistic value w0/w1 ≈ 0.8, we find a spin and valley polarized, translation symmetry
breaking, state with C2zT symmetry, a charge gap and a doubling of the moiré unit cell, dubbed
the C2zT stripe phase. The real space total charge distribution of this C2zT stripe phase in the flat
band limit does not have modulation between different moiré unit cells, although the charge density
in each layer is modulated, and the translation symmetry is strongly broken. Other symmetries,
including C2z, C2x and particle-hole symmetry P , and the topology of the C2zT stripe phase are
also discussed in detail. We observed braiding and annihilation of the Dirac nodes by continuously
turning on the order parameter to its fully self-consistent value, and provide a detailed explanation
of the mechanism for the charge gap opening despite preserving C2zT and valley U(1) symmetries.
In the transition region between the quantum anomalous Hall phase and the C2zT stripe phase, we
find an additional competing state with comparable energy corresponding to a phase with a tripling
of the moiré unit cell.

I. INTRODUCTION

Twisted bilayer graphene (TBG) at magic angle hosts
a wealth of correlated insulating and superconducting
phases, and as such is one of the most significant ex-
perimental discoveries in the recent years [1–25]. It also
triggered a number of theoretical studies, in particular
for the emerging strongly interacting insulating phases
at integer fillings [26–54]. Among them, a particularly
interesting case corresponds to filling one of the eight ac-
tive flat bands of TBG, namely the filling ν = −3 (or
its analogue for holes, namely ν = +3). There is a rich
variety of candidate states for ν = ±3 depending on fac-
tors such as the strength of interlayer hoppings, strain of
the lattice, or external fields. The experimental results
at this filling factor also depend on the specific setup:
the quantum anomalous Hall (QAH) effect was observed
when the sample is aligned to the hexagonal boron nitride
(hBN) substrate [16] or subject to an external magnetic
field [9, 19, 23, 25], but not without the hBN alignment
and at zero magnetic field [10, 11].

The nature of the insulating phase at ν = ±3 has been
studied by various theoretical and numerical methods,
including strong coupling expansion [28, 47], mean field
approximation [29, 32, 34, 40, 50, 54], DMRG [40, 41] and
exact diagonalization [45, 49], in which multiple types of

candidate states are proposed. These theoretical stud-
ies have shown that the insulating states are close to
Slater determinant wavefunctions with Chern number
νC = ±1 [32, 34, 40, 41, 45, 47, 49] when the interlayer
hoppings satisfy w0/w1 . 0.5, in which w0 and w1 are
related to the values of AA and AB interlayer hoppings.
However, the nature of the ground state at a larger –
and perhaps more realistic– value of w0/w1 ≈ 0.8 [55–58]
at ν = −3, where the Chern insulator with νC = ±1
disappears, is still a matter of debate [28, 32, 40, 41, 48–
50]. For instance, the charge neutral excitations found
in Ref. [48] by perturbing the Chern insulator wavefunc-
tion with such larger values of w0/w1 contain states with
negative energy at non-zero momentum, in agreement
with exact diagonalization results [49]. Condensation of
such charge neutral modes at finite momentum would
lead to states with broken translation symmetry. In
Ref. [50], mean-field study also suggested Kekulé spiral
state with broken translation symmetry in the presence of
lattice heterostrain, although –in contrast to this work–
no translation symmetry breaking insulating state with
zero Chern number was found without strain. In ad-
dition, semimetal states with broken rotation symmetry
were also found to be highly energetically competitive in
Refs. [40, 41].

To settle this question, we calculate the phase dia-
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gram of interacting TBG at integer filling ν = −3 by
varying the ratio w0/w1 in the absence of strain by us-
ing the self-consistent Hartree-Fock method. The self-
consistent mean field order parameter allows hybridiza-
tion between states with different momenta, which in
turn allows translation symmetry breaking with enlarged
unit cells. When the value of w0/w1 is small, we ob-
serve a QAH state, consistent with the results discussed
in Refs. [34, 40, 41, 45, 47, 49]. Near a realistic value of
w0/w1, we find an energetically preferred phase with bro-
ken translation symmetry and a large charge gap, which,
although similar, differs in detail from the previous pro-
posals by Refs. [28, 40, 54]. This phase strongly hy-
bridizes states whose momenta differ by (π, 0) (M point
of moiré Brillouin zone). Therefore, it has a stripe shape
in real space, and the new unit cell contains two moiré
unit cells. Similar to Refs. [28, 40], the total charge
density distribution is identical in every moiré unit cell
when the dispersion of non-interacting flat bands is ne-
glected, despite translation symmetry being strongly bro-
ken. While the charge density distribution in one layer
has modulation between different moiré unit cells, it is
exactly compensated by the charge in the other layer,
canceling the modulation of the total density. Unlike the
QAH phase, this stripe phase does not break the C2zT
symmetry and therefore it cannot lead to an anomalous
Hall effect. We verify this explicitly by computing the
Wilson loops of the mean field bands, finding that the
stripe phase does not carry a Chern number. We also
study the process of the gap opening without breaking
C2zT symmetry by gradually turning the interaction in-
duced self-energy and moving away from the gapless non-
interacting state. Depending on the path toward the
fully interacting case, we can observe the Dirac points
braiding and annihilation, which was first conjectured
in Refs. [40, 59, 60], and elaborate on the mechanism
of the gap opening and the topology of the resulting
C2zT stripe state. Between the C2zT stripe phase and
the QAH phase, we also find a range of values of w0/w1

with multiple candidate states with comparable energies,
including another translation symmetry breaking phase
tripling the unit cell.

This article is organized as follows. In Sec. II we briefly
review the projected interacting Hamiltonian of TBG.
We also discuss the folded moiré Brillouin zones which
correspond to translation symmetry breaking considered
in this article. Sec. III introduces the notations and con-
cepts which are required to depict the Hartree-Fock mean
field solutions. Then in Sec. IV, we present the broken
symmetries, band structures and topology of the various
phases emerging at different values of w0/w1. We pro-
vide a detailed study of the C2zT stripe phase in Sec. V.
Finally, we summarize and discuss the results in Sec. VI.

II. MODEL

In this section, we briefly introduce the notations of
the interacting Hamiltonian of TBG projected into the
flat bands. We also present the folded moiré Brillouin
zones corresponding to enlarged unit cells that will be
considered in this article.

A. Non-interacting Hamiltonian

We start with a short review of the non-interacting
Hamiltonian of TBG [61]. We will use the same nota-

tions as Ref. [46, 47, 49]: c†k,α,s,` denotes the electron
creation operator, in which k is the electron momen-
tum measured from the single layer graphene Γ point,
α = A,B is the graphene sublattice, s =↑, ↓ is the elec-
tron spin and ` = ±1 refers to the graphene layer. The
low energy behavior of electrons in single layer graphene
is well-captured by the states around the two Dirac points
K and K ′. Thus, it is reasonable to use the basis of the
Bistritzer-MacDonald model. By focusing on one val-
ley K, we define vectors qj = Cj−1

3z (K− − K+), which
represent the difference between Dirac points in top and
bottom layers due to the twisting. The vector K` is
the momentum of the Dirac point K in layer `, and

|K`| = 1.703 Å
−1

. The reciprocal vectors of the moiré
lattice, denoted by Q0, are spanned by basis vectors
b̃1 = q2 − q3 and b̃2 = q2 − q1. The momenta lattices
Q± = Q0 ± q1 form a hexagonal lattice in momentum
space, which stand for the copies of Dirac points from the
top and bottom layers in repeated moiré Brillouin zone,
respectively.

Parameterizing the electron operators as follows:

c†k,Q,η,α,s = c†ηKη·`+k−Q,α,s,η·` if Q ∈ Q` , (1)

in which η = ± stands for the valley index, the second
quantized non-interacting Hamiltonian of TBG can be
written as

Ĥ0 =
∑

k∈MBZ
Q,Q′∈Q±
ηsαβ

[
h

(η)
QQ′(k)

]
αβ
c†k,Q,η,α,sck,Q′,η,β,s , (2)

where MBZ stands for moiré Brillouin zone. The “first
quantized” single-body Hamiltonians of TBG h(η)(k),
which is also known as Bistritzer-MacDonald (BM)
Hamiltonian [61], is given by the following equations:

h
(+)

QQ′(k) = vFσ · (k−Q)δQ,Q′ +

3∑
j=1

TjδQ−Q′,±qj , (3)

h
(−)

QQ′(k) = −vFσ∗ · (k−Q)δQ,Q′ +

3∑
j=1

σxTjσxδQ−Q′,±qj ,

(4)

in which σ = (σx, σy) and σ∗ = (σx,−σy), and Fermi
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velocity vF = 6104.5meV · Å. The matrices Tj , which
describe the strength of the interlayer hoppings, are given
by the following equation:

Tj = w0σ0 + w1

[
cos

2π(j − 1)

3
σx + sin

2π(j − 1)

3
σy

]
. (5)

Here w0 and w1 are proportional to the interlayer tun-
neling amplitudes in the AA and AB stacking regions
in moiré unit cell, respectively. In this paper, we fix
the value of AB hopping w1 = 110 meV and twist angle
θ = 1.07◦, and we use w0/w1 ∈ [0, 1] as a tunable param-
eter of our non-interacting Hamiltonian H0. A realistic
value of w0/w1 is expected to be around 0.7 ∼ 0.8 due to
the lattice corrugation [55–58].

By diagonalizing the single-body Hamiltonian, we can
obtain the band structure εk,m,η and single-body wave-
functions uQα,mη(k) of TBG:∑

Q′β

h
(η)
Qα,Q′β(k)uQ′β,mη(k) = εk,m,ηuQα,mη(k) , (6)

where m is the energy band index. The non-interacting
Hamiltonian can be written in the eigenstate basis:

Ĥ0 =
∑

k∈MBZ

∑
η,s

∑
m6=0

εk,m,ηc
†
k,m,η,sck,m,η,s . (7)

These electron operators in the energy band basis c†k,m,η,s
are given by:

c†k,m,η,s =
∑
Qα

uQα,mη(k)c†k,Q,η,α,s , (8)

c†k,Q,η,α,s =
∑
m

u∗Qα,mη(k)c†k,m,η,s . (9)

We fix the gauge choice of the single body wavefunc-
tions uQα,mη(k) as described in Ref. [46–49], such that
the sewing matrix of C2zT symmetry is given by iden-

tity matrix. Thus, the operators c†k,m,η,s will not change
under C2zT transformation:

(C2zT )c†kmηs(C2zT )−1 = c†kmηs . (10)

Except for C2zT , the single valley non-interacting Hamil-
tonian also has C3z, C2x and a particle hole symmetry
P . These symmetries are discussed in detail in App. B.

As discussed in Ref. [61], there are two flat bands
around the first magic angle at charge neutrality per spin
and valley, separated by a gap from other remote bands.
Therefore, we can project the non-interacting Hamilto-
nian Eq. (7) into these eight total flat bands:

H0 =
∑

k∈MBZ,ηs

∑
m=±1

εk,m,ηc
†
k,m,η,sck,m,η,s . (11)

B. Interacting Hamiltonian

We consider the density-density interaction projected
into the TBG flat bands. The projected interacting
Hamiltonian reads [46]:

HI =
1

2Ωtot

∑
G∈Q0,q∈MBZ

V (q + G)δρq+Gδρ−q−G, (12)

in which V (q) is the Fourier transform of screened
Coulomb potential. In this article, we consider dou-
ble gated TBG, leading to a Fourier transform interac-
tion given by V (q) = πξ2Uξ tanh(ξq/2)/(ξq/2), where
ξ = 10 nm is the distance between the two gates and
Uξ = 24 meV. The operator δρq+G represents the rel-
ative electron density measured from charge neutrality,
after being projected into the TBG flat bands:

δρq+G =
∑

k∈MBZ

∑
mnηs

M (η)
mn(k,q + G)

×
(
c†k+q,m,η,sck,n,η,s −

1

2
δq,0δm,n

)
, (13)

M (η)
mn(k,q+G) =

∑
Qα

u∗Qα,mη(k+q+G)uQα,nη(k) , (14)

where uQα,mη(k) is the wavefunction of the BM Hamil-

tonian defined in Eq. (6). Since δρq+G is defined as the
relative density measured from the charge neutrality, the
interacting Hamiltonian in Eq. (12) has a many-body
particle-hole symmetry, which leads to identical phases
at ν and −ν. As such, our results at ν = −3 will also be
valid for ν = 3. These wavefunctions depend on the in-
terlayer hopping parameter w0/w1. Thus, the interacting
Hamiltonian HI will also depend on w0/w1.

By adding the non-interacting term in Eq. (11), we
obtain the total Hamiltonian:

H = tH0 +HI . (15)

Here we introduce a parameter t ∈ [0, 1] to control the
relative strength of the flat band kinetic energy. In this
article, we will mostly focus on the flat band limit, i.e.,
t = 0, unless otherwise stated.

C. Folded moiré Brillouin zone

As suggested by the presence of Fermi pockets of
charge ±1 excitations, and negative excitations in the
charge neutral spectra for a range of values of w0/w1

away from the chiral limit [48, 49], it is reasonable to
expect that the system will host translation symmetry
breaking ground states. Therefore, we account for trans-
lation symmetry breaking orders by considering enlarged
unit cells, or folded moiré Brillouin zones. Each type of
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notations Q1 Q2 NF

(2× 1) 1
2 b̃1 b̃2 2

(1× 2) b̃1
1
2 b̃2 2

(3× 1) 1
3 b̃1 b̃2 3

(1× 3) b̃1
1
3 b̃2 3

(2× 2) 1
2 b̃1

1
2 b̃2 4

(4× 1) 1
4 b̃1 b̃2 4

(1× 4) b̃1
1
4 b̃2 4

(
√

3×
√

3) 1
3 (b̃1 + b̃2) 1

3 (b̃1 − b̃2) 3

TABLE I. The enlarged unit cell choices. The first column
shows the notation we use for each type of enlarged unit cells.
The second and third columns provide the basis vectors of
the folded moiré Brillouin zones. The fourth column gives the
factor of folding NF , which represents the amount of moiré
unit cells in each enlarged unit cell.

translation symmetry breaking order is associated with
a specific pair of momenta Q1,2. Any two momenta that
differ by an integer multiple of these vectors should be
identified as the same point in the folded Brillouin zone:

k1 − k2 = l1Q1 + l2Q2 l1, l2 ∈ Z . (16)

The vectors Q1,2 are the basis vectors of folded moiré
Brillouin zone. We define the following quantity:

NF = |b̃1 × b̃2|
/
|Q1 ×Q2| , (17)

as the number of times the moiré Brillouin zone is folded,
with b̃1,2 the reciprocal vectors of the original moiré lat-
tice. Therefore, every momentum k ∈ MBZ can always
be represented by a momentum value κ in the folded
(small) moiré Brillouin zone (FMBZ) together with an
integer b (dubbed subband index):

k = κ+ Qb , κ ∈ FMBZ, b = 1, 2, · · · , NF , (18)

in which Qb = l1Q1 + l2Q2 stand for all the NF recip-
rocal vectors of the FMBZ in the 1st MBZ. We focus
on the eight simplest (i.e., the smallest NF values, up to
NF = 4) types of Brillouin zone folding vectors Q1,2, and
their notations and factor of Brillouin zone folding NF
are shown in Table I.

III. HARTREE-FOCK

In this section, we provide an overview of the con-
cepts and notations that will be required to describe the
Hartree-Fock results in Sec. IV. We perform the numeri-
cal Hartree-Fock mean field calculation on a C3z rotation
symmetric discrete NL×NL momentum lattice in the un-
folded MBZ. For convenience, we define the total amount
of momentum points in MBZ as NM = N2

L. Hence, the

momentum values in MBZ are given by the following set:

MBZ =

{
k
∣∣∣k =

k1
NL

b̃1 +
k2
NL

b̃2; k1, k2 = 0, 1, · · · , NL − 1

}
.

(19)

Thus, there will be NM states in each energy band. In
this article, we mostly focus on the integer filling fac-
tor ν = −3. At this filling factor, the total number of
electrons in the narrow bands is N = NM .

As shown in Eq. (18), for a given choice of enlarged unit
cell, the FMBZ is a subset of MBZ, and each momentum
k ∈ MBZ can be represented by a momentum κ ∈ FMBZ
and a subband index b. Thus, a single body state can be
represented by five quantum numbers: momentum κ ∈
FMBZ, subband index b = 1, 2, · · · , NF , energy band
index m = ±1, valley η = ± and spin s =↑↓.

The Hartree-Fock order parameter with broken trans-
lation symmetry has the following form:

∆bmηs;b′nη′s′(κ) =〈c†κ+Qb,mηs
cκ+Qb′ ,nη

′s′〉

− 1

2
δbb′δmnδηη′δss′ , κ ∈ FMBZ .

(20)

For each momentum κ, the order parameter ∆(κ) is
a 8NF × 8NF matrix. The Hartree-Fock Hamiltoni-

ans H(HF )
bmηs;b′nη′s′(κ), which are also 8NF × 8NF matri-

ces, can be written as functions of momentum κ and
the order paramter ∆(κ). The explicit expression of
the Hartree-Fock Hamiltonians and the iterative self-
consistent method are discussed in detail in App. A. By
diagonalizing the Hartree-Fock Hamiltonian, we obtain
the Hartree-Fock band dispersion Ei(κ) and its corre-
sponding HF wavefunction φbmηs,i(κ):

Ei(κ)φbmηs,i(κ) =
∑
b′nη′s′

H(HF )
bmηs;b′nη′s′(κ)φb′nη′s′,i(κ) .

(21)

To characterize a given Hartree-Fock mean field solu-
tion, we define several quantities. The first quantity is
the translation symmetry breaking strength T which is
defined as the norm of the off-diagonal elements of the or-
der parameter in the subband indices. It can be written
as:

T =
1

NM

∑
κ∈FMBZ

∑
b6=b′

∑
mn,ηη′,ss′

|∆bmηs;b′nη′s′(κ)|2 .

(22)
For a translation symmetric solution, the off-diagonal el-
ements in b, b′ vanish and T = 0. When T 6= 0, the
solution breaks the translation symmetry by one moiré
unit cell.

We can also define a quantity to measure the strength
of C2zT symmetry breaking. The projected interacting
Hamiltonian is written by fermion operators with fixed
C2zT sewing matrices. Thus, the creation/annihilation
operators are invariant under the C2zT transformation as
shown in Eq. (10). It is also an anti-unitary transforma-
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tion. Hence, a mean-field state is invariant under C2zT
only when its order parameter has no imaginary part.
However, the C2zT symmetry is defined from the non-
interacting TBG Hamiltonian for single spin and valley,
it is actually a spinless operation. Due to the spin and
valley U(4) symmetry at the flat band limit [28, 30, 46],
imaginary parts can be introduced into the spin and val-
ley components of the order parameter under certain
U(4) rotation without breaking C2zT . Therefore, we first
do a partial trace over the spin, valley and subband in-
dices of the order parameter, and then we use the norm
of the imaginary part of this reduced order parameter to
measure the strength of C2zT symmetry breaking. It can
be defined as the following equation:

C =
1

NMNF

∑
κ∈FMBZ

∑
mm′

(
Im
∑
bηs

∆bmηs;bm′ηs(κ)

)2

.

(23)
If the solution does not break the C2zT symmetry, then
the reduced order parameter will be real, and thus we
have C = 0.

Another quantity we use to describe the mean field so-
lution is the charge gap EG. For integer filling ν = −3,
once the moiré Brillouin zone is folded by NF times,
there will be NF bands occupied in the folded Brillouin
zone. For these symmetry breaking solutions, we define
the charge gap as the difference between the bottom of
the lowest conduction band ((NF + 1)-th band from bot-
tom) and the top of the highest valence band (NF -th
band from bottom).

IV. PHASE DIAGRAM

In Sec. IV A, we discuss the ground states appearing
with different values of w0/w1, their broken symmetry
and the band structures. We also study the C2zT sym-
metry and the topology of these states in Sec. IV B.

A. Ground states and band structures

By performing the mean field calculation using the
Hartree-Fock Hamiltonians with different choices of Q1,2

vectors shown in Table I, and comparing the energy of
different solutions, we are able to obtain a phase dia-
gram with a varying value of w0/w1. In the following
paragraphs, we ignore the effect of the flat band disper-
sion (t = 0) and assume our order parameter ∆(κ) is
polarized in valley η = +, unless otherwise stated. More
precisely, we assume that the order parameter satisfies
the following condition:

〈c†κ+Qbmηs
cκ+Qb′m

′η′s′〉 = 0 , if η = − or η′ = − . (24)

For each enlarged unit cell choice and value of w0/w1,
we choose 10 random initial conditions and perform self-

consistent iterations to ensure the solutions are converg-
ing properly.

1. Ground states

In Fig. 1 (a), we show the energy (compared to the
solution without translation symmetry breaking) as a
function of w0/w1 ∈ [0.4, 1] for different choices of en-
larged unit cells on a 12 × 12 momentum lattice, which
are represented by using different colors. We are able
to identify three different regions, which are labeled by
light blue, purple and red in Fig. 1 (a). When w0/w1 .
0.5 (represented by light blue), the ground state corre-
sponds to the Chern insulator Slater determinant state,
i.e., with no translation symmetry breaking and Chern
number νC = ±1 (see Sec. IV B), in agreement with
Refs. [32, 34, 40, 41, 45, 47, 49]. While it is not shown,
this region actually extends to the chiral limit w0/w1 = 0.
In the interval 0.5 . w0/w1 . 0.65 (represented by pur-
ple), the energies of translation symmetry breaking solu-

tions with enlarged unit cells such as (
√

3×
√

3) and (2×1)
become lower than the energy of the translation invariant
solution. We also notice that the solutions with enlarged
unit cell (

√
3×
√

3) is usually energetically preferred: its
energy is around 0.01 meV per moiré unit cell lower than
the states with enlarged unit cell (2× 1). Note that the
Chern insulator solution without translation symmetry
breaking still remains competitive in this intermediate
region with an energy difference of only 0.05 meV per
moiré unit cell. Therefore, competing states may coexist
in the purple region of the phase diagram, and it is dif-
ficult to conclude what is the exact nature of this phase
from Hartree-Fock, as already hinted by the exact diag-
onalization [49] and DMRG results [40].

If we further increase the value of w0/w1 to the inter-
val 0.7 . w0/w1 . 0.9 (represented by red), the (2 × 1)
enlarged unit cell solution (or solution with (1×2) which
can be related by C3z rotation) clearly has the lowest
ground state energy. The unit cell (2 × 1) implies that
it breaks the translation symmetry of the original moiré
unit cell (see Sec. V B), and therefore we call the red
region as C2zT stripe phase, whose properties will be
discussed in Sec. V. Except for this C2zT stripe phase,
another state with (3 × 1) unit cell also has a lower en-

ergy than the state with (
√

3 ×
√

3) enlarged unit cell.
The energy difference between the state with (3× 1) en-
larged unit cell and the C2zT stripe state is ∼ 0.08 meV
per moiré unit cell, which is clearly larger than the en-
ergy difference between the (2 × 1) and (

√
3 ×
√

3) en-
larged unit cell states in the purple (intermediate) region.
Therefore, the C2zT stripe phase in the red region is un-
ambiguously preferred, as opposed to the situation in the
intermediate (purple) region. When w0/w1 & 0.9, the en-
ergies with different enlarged unit cells become compara-
ble again, which leads to strong competition between the
states with (

√
3×
√

3) unit cells and (2× 1) unit cells.
We also notice that the solutions using (1× 2), (4× 1)
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FIG. 1. (a) We provide the energy difference per moiré unit cell (E−Esym) of density wave states with different possible enlarged
unit cell choices as a function of w0/w1, calculated on 12 × 12 momentum lattice, in which Esym is the energy of translation
symmetric solution. The shaded colors in the background represent different phases when the value of w0/w1 changes. In the
region labeled by light blue, the mean field solution does not break the translation symmetry. In the purple region, the state
we obtained with the lowest energy has enlarged unit cell (

√
3×
√

3). However, the energy with (2× 1) unit cell is only slightly
higher, which means the purple region has competing states with different enlarged unit cells. In the red region, the ground
states we obtained has enlarged unit cell (2 × 1), which is a stripe phase in real space. (b) The strength of the translation
symmetry breaking T of the two types of enlarged unit cells as a function of w0/w1. (c) The Hartree-Fock band gap EG of
the two types of enlarged unit cells ((

√
3×
√

3) and (2× 1)) as a function of w0/w1. (d) The energy difference per moiré unit
cell of density wave states with enlarged unit cell choices (2× 1), (3× 1) and (

√
3×
√

3) as a function of w0/w1 on a 18× 18
momentum lattice. In subfigures (e-f), we also show the Hartree-Fock band gap EG and the symmetry breaking strength T
and C as functions of w0/w1 on the 18× 18 momentum lattice with two enlarged unit cell choices (2× 1) and (

√
3×
√

3).

and (1× 4) unit cells always have the same ground state
energy, implying that they are all equivalent solutions
under certain C3z rotation or moiré unit cell transla-
tion. For the enlarged unit cell choice (2 × 2), we ob-
tained a solution whose energy per moiré unit cell is
only 0.003 meV (0.0013%) lower than the (2 × 1) solu-
tion at w0/w1 = 0.6, and the difference is barely visible
in Fig. 1(a). But for all the other values of w0/w1 that
we have considered, the enlarged unit cell (2 × 2) gives
us the same solution as (2× 1), (1× 2), (4× 1) or (1× 4)
unit cell choices.

Among the eight types of enlarged unit cells defined
in Table I, we found (2 × 1) and (

√
3 ×
√

3) are ener-
getically preferred in our phase diagram. Moreover, the
state with (3 × 1) enlarged unit cell is also a relevant
candidate in the red region. For this reason, we solely
focus on these three foldings to study the finite size ef-
fect, by solving the energies of self-consistent equations
on a larger momentum lattice (18×18) in Fig. 1 (d). The
phase diagram on the 18× 18 lattice is qualitatively sim-
ilar to the results on the 12× 12 momentum lattice. The
QAH state can still be observed in the light blue region

(w0/w1 . 0.5), and multiple competing states in the pur-
ple region (0.5 . w0/w1 . 0.65). The C2zT stripe phase
is still clearly preferred in the red region. The state with
(3 × 1) enlarged unit cell, although having a relatively
low energy in the red region (0.7 . w0/w1 . 0.9), is still
around ∼ 0.1 meV higher than the C2zT stripe phase.
Thus, the C2zT stripe phase is indeed the best candidate
ground state when 0.7 . w0/w1 . 0.9.

In spite of the fact that the phase diagrams obtained
on 12× 12 and 18× 18 lattices are qualitatively similar,
the details of these phases are slightly different, espe-
cially in the purple region. For example, the state with
(
√

3 ×
√

3) enlarged unit cell has a lower energy than
the translation invariant solution on the 18 × 18 lattice,
but no translation symmetry breaking is observed on the
12× 12 lattice.



7

FIG. 2. The Hartree-Fock band structures obtained on 18×18 momentum lattice at flat band limit. (a) The HF band structure
without translation symmetry breaking at w0/w1 = 0.4. (b) The HF band structure with enlarged unit cell (

√
3 ×
√

3) at
w0/w1 = 0.6. (c) The HF band structure with enlarged unit cell (2 × 1) at w0/w1 = 0.6. (d) The HF band structure with
enlarged unit cell (2 × 1) at w0/w1 = 0.8. The definitions of high symmetry points of these folded moiré Brillouin zones are
shown in Fig. 3.

b̃1

b̃2

MBZ

Γ

K

M

K ′

FMBZ(
√

3×
√

3)

γ

κ

µ

FMBZ(2× 1)

γ x

y
µ

FIG. 3. The moiré Brillouin zone (black), the folded Brillouin
zone with (2 × 1) unit cell choice (blue) and the folded Bril-
louin zone with (

√
3×
√

3) unit cell (red). The high symmetry
points of these different Brillouin zones are also represented
by different colors, namely Γ, K, K′ and M for the MBZ, γ,
x, µ and y for the FMBZ of (2× 1) unit cell, and γ, κ, κ′ and

µ for the FMBZ of (
√

3 ×
√

3) unit cell. Vectors b̃1 and b̃2

are the reciprocal lattice basis.

2. Translation symmetry breaking, charge gap and band
structures

From now on, we will only consider the two favored
foldings (

√
3×
√

3) and (2× 1). We calculate the values
of translation symmetry breaking strength T using the
solutions on 12×12 and 18×18 momentum lattices, which
can be found in Figs. 1 (b) and (e). In the intermediate
regime and in the stripe phase (purple and red regions),
the translation symmetry breaking T becomes non-zero
and increases with increasing w0/w1. The values of the
charge gap EG of the solutions on 12 × 12 and 18 × 18
momentum lattice can be found in Figs. 1 (c) and (f). In
the QAH phase (blue region), the charge gap descreases
with the increasing w0/w1, while in the stripe phase (red
region), the gap increases with increasing w0/w1. In the
intermediate region (purple), these competing states all
have small gaps.

In Fig. 2, we provide several Hartree-Fock bands in
the folded Brillouin zones obtained from the simulation
on 18 × 18 momentum lattices to illustrate the typical
HF band structure in the different regions of the phase
diagram. The band structure of the quantum anomalous
Hall state at w0/w1 = 0.4 is shown in Fig. 2 (a), which
agrees with the result obtained in Refs. [48, 51]. Indeed,
the charge excitations shown in Fig. 11b of Ref. [48] also
has 3 particle bands. The QAH state does not break
the translation symmetry, thus the HF bands are shown
along the high symmetry lines in the moiré Brillouin
zone. Figs. 2 (b) and (c) are the Hartree-Fock bands in
the purple region both obtained at w0/w1 = 0.6 with en-

larged unit cell choices (
√

3×
√

3) and (2×1), respectively.
The corresponding high symmetry points are represented
using red and blue greek letters, whose definitions can be
found in Fig. 3. We observe that these two competing
states both have small gap, and they also have similar
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0.4 0.6 0.8 1.0

w0/w1

0.0

0.2

0.4

C

(2× 1)

(
√

3×
√

3)

sym

FIG. 4. The strength of the C2zT symmetry breaking C of
the two types of enlarged unit cells (

√
3×
√

3) and (2×1) as a
function of w0/w1. We also show the value of C for translation
symmetric solution in black. This figure is obtained on a
18× 18 momentum lattice at flat band limit.

band widths. In Fig. 2 (d), we show the HF band struc-
ture in the stripe phase (red region) at w0/w1 = 0.8 with
folded moiré Brillouin zone of unit cell (2 × 1). Clearly,
the charge gap in the stripe phase is much larger than
the intermediate competing region (purple).

We also studied the spin texture of the occupied bands
of the stripe phase – and as discussed below, relaxed the
assumption of valley polarization and exact flat bands
(t = 0) – which shows that the stripe phase is fully spin
and valley polarized. In other words, the order parame-
ter satisfies the following conditions under a proper spin
SU(2) rotation:

〈c†κ+Qb,m,η,s
cκ+Qb′ ,n,η

′,s′〉 = 0 ,

if (η, s) 6= (+, ↑) or (η′, s′) 6= (+, ↑) . (25)

We provide detailed numerical results of the spin distri-
bution of several solutions in App. F 1.

As mentioned previously, these calculations were per-
formed assuming valley polarization and in the flat band
limit. To test these hypotheses, we also performed
Hartree-Fock calculation without these assumptions at
the representative values of the phase diagram w0/w1 =
0.4, 0.6 and 0.8, albeit on a smaller momentum lattice.
We obtain identical phases at these w0/w1 values, ensur-
ing that these assumptions are valid. A detailed study is
also provided in App. F 1.

B. C2zT symmetry and topology

We also evaluated the value of C as a function of w0/w1

for the solutions obtained with enlarged unit cell choices
(2× 1) and

(√
3×
√

3
)

on a 18× 18 momentum lattice.
The results can be found in Fig. 4. In the light blue region
with small w0/w1 . 0.5, the C2zT symmetry is strongly
broken, which is an important property of Chern insula-
tor states. When w0/w1 gets larger, the C2zT breaking

of both
(√

3×
√

3
)

and (2×1) enlarged unit cell solutions
become significantly smaller. More interestingly, for the
solution with unit cell choice (2× 1), the C2zT breaking
strength drops to zero in the stripe phase.

Restoration of C2zT symmetry implies that the Chern
number must vanish in the stripe phase. In addition
to checking the strength of C2zT symmetry breaking,
we are also able to study the topological winding num-
bers directly from the mean field solutions. By using
the Hartree-Fock eigenvectors φbmηs,i(κ) and single body
wavefunctions of BM Hamiltonian uQα,mη(κ + Qb), we
are able to rewrite the wavefunction of an eigenstate
in Hartree-Fock band structure in the plane wave basis
ΦQα,b,η,s;i(k). For enlarged unit cell choices (2× 1) and

(
√

3×
√

3), we use the following notation to parametrize

the FMBZ: κ = κ1

2πQ1 + κ2

2π b̃2. And we evaluate the Wil-
son loop along the direction of Q1 in the NF occupied
HF bands, which we denote by W (κ2). We also provide
a detailed discussion of Wilson loops in App. C.

The Wilson loop matrixW (κ2) is unitary and its eigen-
values are always given by e−iχ, χ ∈ [−π, π). We numer-
ically calculate the Wilson loop eigenvalue exponents χ
on 18 × 18 momentum lattice. The Wilson loop eigen-
value exponents at w0/w1 = 0.4, 0.6 and 0.8 can be found
in Fig. 5. Fig. 5 (a) shows the Wilson loop in the light
blue region at w0/w1 = 0.4. The non-trivial winding
number confirms that the light blue region is indeed a
quantum anomalous Hall phase, which has already been
widely studied previously [34, 40, 41, 49]. Figs. 5 (b) and
(c) show the Wilson loops of the two low energy states at

w0/w1 = 0.6 with enlarged unit cell choices (
√

3 ×
√

3)
and (2 × 1), respectively. We found that the non-zero
Chern number has already vanished in this competing
region. Finally in Fig. 5 (d), we present the Wilson loop
for the C2zT stripe phase at w0/w1 = 0.8. The eigenval-
ues of Wilson loop spectrum in the C2zT stripe phase is
completely flat, which is a consequence of the C2zT sym-
metry [59, 62, 63] and the translation symmetry breaking
along ã1, as discussed in App. D.

As we mentioned in Sec. IV A, the charge gap of the
mean field solutions is small in the competing region be-
tween the QAH and C2zT stripe phases. Therefore the
wavefunctions are varying fast around the γ point in the
FMBZ. Hence, we should use a denser momentum mesh
for calculating the Wilson loops in the competing region.
We evaluated the Wilson loops of the mean-field solu-
tions with enlarged unit cell (

√
3 ×
√

3) on 24 × 24 mo-
mentum lattice at w0/w1 = 0.5 and 0.55, which can be
found in Fig. 6. Both the solutions at these two values of
w0/w1 have non-vanishing break the translation symme-
try (T 6= 0). We find that the Hartree-Fock bands still
carry non-zero winding number at w0/w1 = 0.5, but the
winding number vanishes at w0/w1 = 0.55. This obser-
vation implies that the disappearance of Chern number
happens in the competing region of the phase diagram.
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FIG. 5. Wilson loop eigenvalue exponents of mean-field energy bands evaluated on 18× 18 momentum lattices. Top panel: (a)
The Wilson loops of the lowest HF band at w0/w1 = 0.4. At this value of w0/w1, the translation symmetry is not broken, and
the non-trivial winding number shown by the Wilson loop indicates that this state is a quantum anomalous Hall state. (b) The
Wilson loop of the three lowest bands with enlarged unit cell (

√
3×
√

3) at w0/w1 = 0.6. (c) The Wilson loop of the two lowest
bands with enlarged unit cell (2× 1) at w0/w1 = 0.6. (d) The Wilson loop eigenvalues of the two lowest bands with enlarged
unit cell (2× 1) at w0/w1 = 0.8. The perfectly flat Wilson loop is an important property of the C2zT symmetry in the C2zT
stripe phase.

FIG. 6. Wilson loop eigenvalue exponents of mean-field en-
ergy bands evaluated on 24 × 24 momentum lattice with en-
larged unit cell (

√
3 ×
√

3) at w0/w1 = 0.5 (a) and w0/w1 =
0.55 (b).

V. C2zT STRIPE PHASE

In this section, we discuss the C2zT symmetric stripe
phase that we obtained for w0/w1 & 0.65. As mentioned
in Sec. IV A 2 and discussed in App. F 1, the C2zT stripe
phase is spin and valley polarized regardless of whether
the flat band kinetic energy is taken into account or ne-
glected. Therefore, we are able to perform the mean field
calculation on a even larger momentum lattice by assum-
ing that the system is fully polarized in valley η = + and
spin s =↑, and the following discussion is based on our
numerical solution on a 36 × 36 momentum lattice. We
characterize this phase by studying its symmetries and
real space charge distributions. Moreover, we propose a
mechanism based on Dirac nodes motion to understand
the development of charge gap in the C2zT stripe phase.

A. Symmetry

First, we analyze the real space lattice symmetries of
the self-consistent Hartree-Fock solution. Since the C2zT

FIG. 7. The symmetry breaking strength values G(C3z,κ),

G(T̂ã1 ,κ) and G(P,κ) calculated from the Hartree-Fock so-
lution at w0/w1 = 0.8 at flat band limit on a 36 × 36 lat-
tice. We also numerically checked the values of G(C2zT,κ),

G(C2x,κ) and G(T̂ã1P,κ) are equal to zero up to machine

precision (< 10−15) in the FMBZ. Although both T̂ã1 and P

symmetries are broken, their product T̂ã1P is still conserved.

stripe phase at around w0/w1 = 0.8 is spin and valley
polarized as observed in the numerical simulation, we
only focus on the lattice symmetries for the single valley
Hamiltonian: C2zT , C3z, C2x and P (particle-hole sym-
metry). Notice that C2zT , C3z and C2x commute with
both the kinetic Hamiltonian H0 and the interacting part
of the Hamiltonian HI , while the particle-hole symme-
try P only commutes with HI but anti-commutes with
H0. In addition to these symmetries, the Hamiltonian
also has moiré lattice translation symmetry T̂ã1 . How-

ever, since we fold the moiré Brillouin zone along b̃1, the
moiré unit cell will be enlarged along ã1 direction, and it
could lead to the spontaneous breaking of T̂ã1

. In Table
II, we summarize the commutation properties of these
symmetries, and their actions in real space, momentum
space, sublattice and layer indices.

In order to measure the symmetry breaking of a given
symmetry g, we define the following quantity for a mo-
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g C2zT C3z C2x T̂ã1
P T̂ã1

P

[H0, g]ζ + + + + − −
[HI , g]ζ + + + + + +

coordinate r −r C3zr C2xr r + ã1 −r −r− ã1

momentum k k C3zk C2xk k −k −k
sublattice α −α α −α α α α

layer ` ` ` −` ` −` −`
stripe

w0

w1
= 0.8, t = 0

3 7 3 7 7 3

stripe
w0

w1
= 0.8, t = 1

3 7 3 7 7 7

QAH
w0

w1
= 0.4, t = 0

7 3 7 3 3 3

QAH
w0

w1
= 0.4, t = 1

7 3 7 3 7 7

TABLE II. Six types of lattice symmetries of the projected
interacting Hamiltonian of TBG: C2zT , C2x, C3z, P and T̂ã1

and T̂ã1P for the spin and valley and polarized mean-field so-
lutions. The first and second rows indicate whether a given
symmetry g is commuting (+, [H, g] = 0) or anti-commuting
(−, {H, g} = 0) with the kinetic and interacting Hamiltonian.
The third to sixth rows show how the real space coordinate
r, momentum k, sublattice α and graphene layer ` change
under the given symmetries. The seventh to tenth rows show
whether this symmetry is conserved in the mean field solu-
tions for C2zT stripe and QAH phases without and with ki-
netic energy, respectively.

mentum point κ ∈ FMBZ:

G(g,κ) =
∑

bm,b′m′

∣∣∣〈c†κ+Qb,m,+,↑cκ+Q′b,n,+,↑〉

− 〈gc†κ+Qb,m,+,↑g
−1gcκ+Q′b,n,+,↑g

−1〉
∣∣∣2 , (26)

which actually measures how much the order parameter
∆(κ) changes through certain transformation g. We pro-
vide a detailed discussion about the transformations of
the electron operators in App. B. Note that the transla-
tion symmetry breaking strength defined in Eq. (22) can
also be written as:

T =
1

4NM

∑
κ∈FMBZ

G(T̂ã1 ,κ) . (27)

Thus, G(T̂ã1 ,κ) gives a more detailed description of the
translation symmetry breaking than T .

We numerically calculated the symmetry breaking
strength G(g,κ) of the five symmetries mentioned above,

i.e., C2zT , C3z, C2x, T̂ã1 and P , and another combined

symmetry T̂ã1
P on a 36×36 lattice at the flat band limit

with w0/w1 = 0.8. In Fig. 7, we provide the values of

G(C3z,κ), G(T̂ã1
,κ) and G(P,κ) in the FMBZ. The peak

of translation breaking is around µ point in its FMBZ,
showing a strong hybridization between the two M points
in the MBZ. However, the values of G(C2zT,κ), G(C2x,κ)

FIG. 8. Total charge distribution in real space at flat band
limit and w0/w1 = 0.8. The numbers are the total charge in
the corresponding unit cell Q defined in Eq. (31).

and G(T̂ã1P,κ) are equal to zero for any κ ∈ FMBZ up to
machine precision (< 10−15). Thus, the stripe phase at

flat band limit does not break C2zT , C2x and T̂ã1
P sym-

metries, although both T̂ã1
and P symmetries are broken.

The list of the conserved symmetries of the stripe phase
with t = 0 can be found in the 8th line of Table II. As
a reference, we also provide the list of conserved sym-
metries of the stripe phase with kinetic energy (t = 1),
the QAH phase with and without kinetic energy (t = 0
and t = 1) in the 9th to 11th lines of Table II. App. F 2
provides a detailed discussion of these solutions.

B. Real space charge distribution

We now turn to study the real space distribution of
the electron density from the mean field order parameter.
The electron operators in real space can be written as:

c†α`s(r) =
1√
Ωtot

∑
k∈MBZ
η,Q∈Qη`

m

c†k,m,η,suQα,mη(k)e−i(k−Q+ηK)·r ,

(28)
in which the vector K is the momentum of K point in the
Brillouin zone of single layer graphene. Thus, the real
space electron density distribution of a spin and valley
polarized state (η = +, s =↑) is given by the following
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FIG. 9. The electron density distribution in real space at flat band limit and w0/w1 = 0.8, obtained on a 36× 36 momentum
lattice. ` = t represents the top graphene layer and ` = b represents the bottom layer. The two red arrows represent the
Bravais lattice basis of the moiré lattice, and white dashed lines depict moiré unit cells centered around AA stacking regions,
and the red/blue numbers represent the integral of the corresponding component of density in the unit cell Qα` (see Eq. (32))
in each moiré unit cell. The blue and red numbers are only differed by 10−9 numerically.

FIG. 10. The translation symmetry breaking of the density
distribution at flat band limit and w0/w1 = 0.8. (a) The value
of D1(r), which equals zero only when all the four sublattice

and layer components are invariant under the translation T̂ã1 .
(b) The value of D2(r), which measures the electron charge
density change in the top layer when shifted by r → r + ã1.
The average value of D2(r) in a moiré unit cell is around 0.026.

equation:

ρα`(r) =〈c†α`↑(r)cα`↑(r)〉

=
1

Ωtot

∑
κ∈FMBZ
bb′mm′

∑
Q,Q′∈Q`

〈c†κ+Qb,m,+,↑cκ+Qb′ ,m
′,+,↑〉

× u∗Qα,m+(κ + Qb)uQ′α,m′+(κ + Qb′)

× e−i[(Qb−Qb′ )−(Q−Q′)]·r , (29)

where the summation over κ is in the folded moiré Bril-
louin zone. Since the solutions are spin and valley polar-
ized at filling factor ν = −3, we drop the spin indices s
for convenience in the following discussion.

By using the order parameter ∆(κ) solved at w0/w1 =
0.8 with flat bands (t = 0) on the 36× 36 lattice, we are
able to calculate the electron density in real space. Fig. 8
provides the total density in real space over several moiré

unit cells, which is defined as:

ρtot(r) =
∑
α`

ρα`(r) . (30)

The moiré unit cells are chosen to be the hexagon region
around AA stacking sites, represented by white dashed
lines. We can also define the total charge in each unit
cell as follows:

Q =

∫
c

d2r ρtot(r) , (31)

and the values of Q in each unit cell is labeled by blue and
red numbers in Fig. 8. In Sec. V A, we have shown that
the order parameter ∆(κ) has strong translation sym-
metry breaking along ã1 direction. However, the total
electric charge in every moiré unit cell Q has the same
value Q = 1. We also find that the total charge density
satisfies ρtot(r+ã1) = ρtot(r) (up to numerical accuracy).
There are still one electron per moiré unit cell, thus this
state does not modulate the total charge on AA stacking
regions [28, 40]. From Table II, we know this translation

symmetry breaking solution has C2zT , C2x, and T̂ã1P
symmetries. Consequently, the wavefunction of the C2zT
stripe phase is invariant under the product of C2zT and
T̂ã1

P . This combined symmetry C2zT T̂ã1
P transforms

the real space coordinate as r → r + ã1, and flips both
the graphene layer index ` and the sublattice index α.
Thus, the symmetry C2zT T̂ã1

P ensures that the charge
density ρα`(r) is invariant under coordinate translation
r→ r+ ã1 when both α and ` are flipped, letting the to-
tal charge density unchanged under the translation along
ã1.

We also study the charge density components for each
sublattice and layer index. We provide the values of
ρα`(r) in Fig. 9. The red/blue numbers represent the
charge Qα` in the two types of nonequivalent moiré unit
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cells in the enlarged unit cell:

Qα` =

∫
c

d2rρα`(r) . (32)

We notice that Qα` for a given sublattice α and layer ` in
the unit cell around r = 0 (red) and r = ã1 (blue) are the
same (differ by 10−9 numerically). However, the charge
distributions differ. For example, in the top layer with
α = A, the charge center in the unit cell around r = 0
is in the lower half of the unit cell, while in the unit cell
around r = ã1, the charge center is in the upper half of
the unit cell. Moreover, we also numerically confirmed
that the charge distribution of layer ` = t, sublattice
α = A and layer ` = b, sublattice α = B are identical
with a real space translation r→ r+ ã1, as we concluded
from C2zT T̂ã1P symmetry in the last paragraph.

To quantify the charge modulation between two moiré
unit cells, we first define the following dimensionless
quantity:

D1(r) = Ωc

√∑
α`

|ρα`(r)− ρα`(r + ã1)|2 , (33)

in which Ωc is the volume of one moiré unit cell. This
quantity equals zero only when all of the four components
of ρα`(r) are not changed under translation r→ r+ã1. It
also has the same periodicity as the original moiré super-
lattice by definition, therefore we only have to calculate
the values within a single moiré unit cell. In Fig. 10 (a),
we provide the values of D1(r) in a moiré unit cell. As
can be observed, the charge density components per sub-
lattice and layer are not invariant under the translation.

Similarly, we can also define the following quantity to
quantify the charge density modulation in a single layer
(for example, the top layer) under the translation r →
r + ã1:

D2(r) = Ωc

∣∣∣∑
α

ρα`=t(r)−
∑
α

ρα`=t(r + ã1)
∣∣∣ . (34)

D2(r) = 0 only when the top layer charge density dis-
tributions are the same in two moiré unit cells. A
plot of D2(r) is provided in Fig. 10 (d). It shows that
charge distribution for a single layer is not invariant un-
der r → r + ã1. Therefore, it is still possible to observe
a charge density wave by experiments such as scanning
tunneling microscope, which mostly detects signals from
a single layer, although the total charge density does not
have any modulation in AA stacking regions.

We also solved the real space charge distribution of the
C2zT stripe phase at t = 1, i.e., with the kinetic term.
As shown in Table II, this term anti-commutes with P ,
thus the solution does not have the T̂ã1

P symmetry. As
a consequence, the total charge no longer has the same
periodicity as the moiré lattice. However, since the T̂ã1

P
symmetry is only weakly broken, the modulation of total
charge between different unit cells is less than 0.2%. A

detailed study of this solution is provided in App. F 2.

C. The motion of Dirac nodes

For any two-band system, the C2zT symmetry can be
represented by complex conjugation K under proper ba-
sis choice. Therefore, a C2zT symmetric Hamiltonian
will not contain any σy terms, and a single Dirac node
cannot be gapped locally by any perturbation which re-
spects the C2zT symmetry. Instead, such perturbation
can only change the position of the Dirac node in momen-
tum space. The non-interacting TBG flat bands have two
Dirac nodes protected by C2zT symmetry with the same
chirality, while the C2zT stripe phase does not have any
Dirac nodes. However, Dirac nodes can annihilate only
when two nodes carry opposite chirality. The gap open-
ing of the C2zT stripe phase is seemingly at odds with the
Dirac nodes’ chirality of the non-interacting TBG bands.

In this section, we study this process and focus on the
C2zT stripe solution with flat band kinetic energy (t = 1)
at w0/w1 = 0.8 on a 36 × 36 momentum lattice. To
analyze the gap opening within the C2zT stripe phase,
we first introduce the interpolation Hamiltonian with pa-
rameters λ1 and λ2:

Hbmηs;b′nη′s′(k, λ1, λ2)

=εk+Qb,m,ηδbb′δmnδηη′δss′

+ λ1δbb′
(
H(H)(κ) +H(F )(κ)

)
bmηs,b′nη′s′

+ λ2 (1− δbb′)
(
H(H)(κ) +H(F )(κ)

)
bmηs,b′nη′s′

,

(35)

in which λ1 stands for the interpolation coefficients for
the translation symmetry preserving part of the self-
consistent HF Hamiltonian, and λ2 the translation sym-
metry breaking part of the HF Hamiltonian. Thus, the
Hamiltonian at λ1 = λ2 = 0 gives us the band structure
of the non-interacting bands, while λ1 = λ2 = 1 gives us
the HF bands of the C2zT stripe phase. In Fig. 11(a),
we show the value of the band gap between the second
and the third bands of the Hamiltonian H (κ, λ1, λ2).
Clearly, the gap opens when both the λ1 and λ2 exceed
a critical value. However, different path choices in the
(λ1, λ2) space can correspond to different mechanisms of
gap opening. In the following paragraphs, we illustrate
how the gapless non-interacting TBG bands become the
C2zT stripe phase with a large charge gap along three dif-
ferent paths in this (λ1, λ2) parameter space: one path
with non-abelian braiding, one path with annihilation of
Dirac nodes from the strong interacting bands, and one
path with Dirac nodes annihilation when crossing the
Brillouin zone border due to the π Berry phase as dis-
cussed in Sec. IV B [59].
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FIG. 11. (a) The minimum direct charge gap between the second and the third bands of the hamiltonian H (κ, λ1, λ2) as a
function of λ1 and λ2. (b) The direct gap between the second and the third bands in the FMBZ when λ1 = λ2 = 0. The
direct gaps between the second and the third bands in the FMBZ at λ1 = 0, λ2 = 1 and at λ1 = 1, λ2 = 0 are also shown in
subfigures (c) and (d). The red symbols ⊕ and 	 represent the Dirac nodes and their chiralities in subfigures (b-d). Due to the
finite 36× 36 mesh in the Brillouin zone, the minimum direct gap is in general not strictly equal to zero (at machine precision).
Nevertheless we have checked at several places of the phase diagram by refining the mesh with the non-self-consistent-field
method discussed in App. A 2 near the nodes that we indeed have direct gap closing, for example, two Dirac nodes can be
observed near the γ point at (λ1, λ2) = (0, 1). In subfigures (b-d), the values of the direct gap are represented in meV in the
colorbars.

FIG. 12. (a-c) The direct gap between the second and the
third bands of H (κ, λ1, λ2) in the FMBZ patch around γ
point (see App. E 2) with λ1 = 0, 0.03, 0.06 and λ2 = 1. (d-
f) The direct gap between the first and the second bands in
same the FMBZ patch. The chiralities of the Dirac nodes in
the dashed circles are represented by red symbols ⊕ and 	.
The values of the direct gap are represented in meV in the
colorbars.

1. Non-Abelian Dirac node braiding

The first path we study is along the following direc-
tion: (λ1, λ2) = (0, 0)→ (0, 1)→ (1, 1). The direct gaps
between the second and the third bands in the FMBZ
at (λ1, λ2) = (0, 0) and (0, 1) are shown in Figs. 11(b)
and (c). The Dirac nodes are labeled by red ⊕ and 	
symbols in these figures. Along this first segment of
the path, these two Dirac nodes labeled on the figure
move to a region around the γ point [see Figs. 11(b) and
(c)]. By using the non-self-consistent-field method dis-

cussed in App. A 2, we can solve the band structures of
H (κ, λ1, λ2) in a small patch around the γ point with a
45 times higher resolution than the original 36 × 36 lat-
tice, without solving the self-consistent solution on such
a dense momentum lattice. We are also able to evalu-
ate the chirality of Dirac nodes by the method discussed
in App. E 1, and we provide a detailed numerical study
about the chirality of Dirac nodes in App. E 2 a. We now
focus on the second segment of the path. In Fig. 12, we
show the position and the chirality of the Dirac nodes
between the first and the second bands, and between
the second and the third bands at λ1 = 0, 0.03, 0.06 and
λ2 = 1. Fig. 12(a) shows the zoom-in direct gap plot
around the γ point of Fig. 11(a), and the two Dirac nodes
with the same chirality becomes clearly visible. When the
value of λ1 is increased to 0.03, one of the nodes flipped
its chirality. And these two Dirac nodes annihilate with
each other and the charge gap opens when λ1 > 0.055, as
shown in Figs. 12(b) and (c). Meanwhile, another pair of
Dirac nodes are created between the first and the second
bands, which can be observed in Figs. 12(d-f). The two
nodes carry opposite chiralities when λ1 = 0.03, and one
of them flips the chirality when λ1 is increased to 0.06.
The chirality change of Dirac nodes in different bands
is a signature of the non-Abelian nature of the braiding
between Dirac nodes in multi-band systems [40, 59, 60].

2. Strong correlated bands

The second path is along the direction: (λ1, λ2) =
(0, 0)→ (1, 0)→ (1, 1). When λ1 continuously increases
from 0 to 1, the Hamiltonian does not break the trans-
lation symmetry, and thus we can still study the bands
in the MBZ. Since the Coulomb interaction dominates
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FIG. 13. (a) The direct gap between the second and the
third bands of H (κ, λ1, λ2) in the FMBZ patch around the
x point at λ1 = λ2 = 0.035. (b) The direct gap between
the second and the third bands in the FMBZ patch around γ
point at λ1 = λ2 = 0.058. Dirac nodes and their chiralities
are represented by the red ⊕ and 	 symbols in subfigures
(a-b). (c) The motion of Dirac nodes in the FMBZ along
the third path in the (λ1, λ2) plane. The three Dirac nodes
represented by blue dots will merge into one node and move
leftward, while the Dirac node represented by red dot moves
rightward. The two blue dashed squares represent the FMBZ
patches shown in subfigures (a-b). The values of the direct
gap are represented in meV in the colorbars.

over the kinetic energy of the narrow bands, the Hamil-
tonian is in the strong coupling limit when λ1 is large
enough, especially at λ1 = 1. As discussed in Ref. [51]
and App. E 2 b, the bands are degenerate at the high
symmetry points, Γ, M , and K. The degeneracy at Γ is
protected by the C2zT and the particle-hole symmetry,
carrying the winding number of +3. The MBZ contains
three different M points, related by C3z symmetry. Sim-
ilar to the Γ point, the degeneracy at M is also protected
by C2zT and particle-hole, but carries the winding num-
ber of −1. The degeneracy at K and K ′ points, however,
is protected by C2zT and C3z symmetry, and carries the
winding number of 1. So the total winding number is 2,
reflecting the nontrivial topological properties of the flat
bands around the charge neutral point.

For the second part of the path, i.e., (1, 0) → (1, 1),
the starting point is the previously described strong in-
teracting band structure of H (κ, 1, 0), but folded into
the FMBZ. There, the two Dirac nodes originally at dif-
ferent M points are moved to the µ point. In contrast,
the third M point will be moved to the γ point, and it
becomes a Dirac node between the first and the second
bands. Therefore, there are four Dirac nodes between
the second and the third bands. The two nodes at the µ
point carry opposite chirality from the nodes at K and
K ′ point. When increasing λ2, these four nodes move to-
wards y point in FMBZ and annihilate with each other.
Thus, the Brillouin zone folding is also necessary along
the second path for gap opening between the second and
the third bands, although there is no non-Abelian braid-
ing involved. We also provide detailed discussion of the
motion and chirality of these nodes in App. E 2 b.

3. Brillouin zone border

Our third path is a linear interpolation along the direc-
tion (λ1, λ2) = (0, 0)→ (1, 1). As soon as we move away
from (0, 0), the two Dirac nodes of the non-interacting
Hamiltonian between the second and third bands start
moving in the FMBZ. Around λ1 = λ2 = 0.03, the two
nodes with the same chirality move to the proximity of
x point of the FMBZ (see Fig. 3). Another pair of Dirac
nodes with opposite chiralities are also created in this re-
gion. As shown in Fig. 13 (a), there are four Dirac nodes
around the x point when λ1 = λ2 = 0.035. By using
the method discussed in App. E 1, we are able to evalu-
ate the chiralities of these Dirac nodes. The three nodes
on the left will merge into one node once the values of
λ1 and λ2 are increased to 0.04 (see App. E 2 c). Thus,
there will be two nodes with both +1 chirality moving
leftward and rightward from the x point when increasing
the values of λ1 and λ2. The path of these nodes wrap
around the FMBZ along the axis b̃1, and they move to-
wards the proximity of γ point around λ1 = λ2 = 0.05.
In Fig. 13 (b), we observe these nodes in the FMBZ
patch near the γ point at λ1 = λ2 = 0.058. The rela-
tive chirality of different Dirac nodes is well-defined on
local patches in the FMBZ. For nodes far apart from each
other, finding such a single large patch is problematic (see
App. E 1), which is why we resort only to local patches
once they contain the two nodes. Interestingly, as implied
by the analysis in App. D, the relative chirality of a Dirac
node can flip once it encircles the FMBZ (see also Ref.[59]
for a simple example of a checkerboard lattice with C2T
symmetry and unobstructed single quadratic band touch-
ing). As shown in Fig. 13 (b), the two Dirac nodes carry
the opposite chiralities when they meet near the γ point
in FMBZ, which is different from the +2 chirality when
they were in the proximity of x point. The nodes annihi-
late with each other at around λ1 = λ2 = 0.06, and the
gap between the second and the third bands is opened.
We also demonstrate the paths of these nodes wrapping
around the FMBZ in Fig. 13 (c), where the blue (red)
dots and arrows stand for the motion of left (right) mov-
ing Dirac nodes. Detailed numerical results about the
Dirac nodes and chiralities along this path can also be
found in App. E 2 c.

VI. CONCLUSION

Using the translation symmetry breaking Hartree-Fock
calculation, we have mapped the phase diagram of TBG
at filling factor ν = −3 (or ν = +3 thanks to the particle-
hole symmetry) as a function of w0/w1. Our results show
that the quantum anomalous Hall state obtained at the
chiral limit is still the self-consistent solution when the
interlayer hopping ratio w0/w1 is smaller than a criti-
cal value of 0.5. Around the more experimentally realis-
tic value w0/w1 ≈ 0.8, a translation symmetry breaking
phase with C2zT symmetry, a doubled moiré unit cell and
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a large charge gap, which we dub as C2zT stripe phase,
becomes energetically preferred. By computing its Wil-
son loop, we also found the C2zT stripe phase carries
zero Chern number, which is different from the quantum
anomalous Hall phase. The vanishing Chern number and
the large charge gap imply that this C2zT stripe phase
could depict the insulating state at ν = +3 filling ob-
served in experiments [10, 11]. In the region between
the quantum anomalous Hall and the C2zT stripe phases
with an intermediate value 0.5 . w0/w1 . 0.65, we also
find that these states and another phase with a tripling
of the moiré unit cell all have competitive energy. The
candidate states in this intermediate region have small
charge gaps, whereas large charge gaps can be observed
away from the intermediate region.

Compared to the states proposed in previous studies,
the C2zT stripe phase we obtained does not require any
strain [50]. This C2zT stripe phase is invariant under

T̂ã1P transformation, and, although similar, it is differ-
ent from the translation breaking phase in Refs. [40],

which has the T̂ã1C2x symmetry that does not enforce
the invariance of the total charge density ρtot(r) at each
r when translating by a moiré unit cell. The real space
charge distribution in this C2zT stripe phase is also eval-
uated from the mean field order parameter. We discov-
ered that the total charge density in the flat band limit
does not have modulation in different moiré unit cells be-
cause of a new non-symmorphic symmetry T̂ã1

P symme-
try, although the C2zT stripe phase itself strongly breaks
the translation symmetry T̂ã1

. This non-symmorphic
symmetry is no longer fulfilled when the flat band ki-
netic terms are considered, yet it is only weakly violated.
Meanwhile, the charge density in a single layer still has
a clear modulation even in the flat band limit, and it
is experimentally testable by scanning tunneling micro-
scope, which only detects the electron states from a single
layer. We also analyze how the non-interacting TBG flat
bands with two Dirac nodes with the same chirality are
deformed into the C2zT stripe phase with a large charge
gap. The gap opening mechanism depends on the path
selected to connect these two extreme cases. In particu-
lar, moving to the strongly correlated bands regime first
and then breaking the translation symmetry unveils the

non-Abelian nature of Dirac nodes’ charge in multi-band
systems.

The existence of the C2zT stripe phase at ν = −3
naturally raises the question of a similar phase at in-
teger filling ν = −1. Indeed, this filling factor shares
similarities with ν = −3, with only quantum anomalous
Hall states in the chiral flat band limit, as opposed to
even integer fillings which have exact eigenstates with
zero Chern number [28, 30, 47]. We did solve the self-
consistent equation at another odd integer filling ν = −1
and w0/w1 = 0.8, and translation symmetry breaking is
not observed. We leave the search for possible symme-
try breaking phases at ν = −1 filling and perturbations
which would stabilize them to further works.
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1273 (2019).

[61] R. Bistritzer and A. H. MacDonald, Proceedings of the
National Academy of Sciences 108, 12233 (2011).

[62] Z. Song, Z. Wang, W. Shi, G. Li, C. Fang, and B. A.
Bernevig, Physical Review Letters 123, 036401 (2019).

[63] F. Xie, Z. Song, B. Lian, and B. A. Bernevig, Phys. Rev.
Lett. 124, 167002 (2020).

https://doi.org/10.1038/s41586-020-03159-7
https://doi.org/10.1038/s41586-020-03159-7
https://www.nature.com/articles/s41586-019-1695-0
https://science.sciencemag.org/content/363/6431/1059.abstract?casa_token=lunm_WUYs2YAAAAA:VYMQ9xKAP9yNieasreqWu0I0g8sN82wxfevMxLMfsegLO9RZtKOt45kmqcsGZAKERIiy2VDY21ejfWs
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1038/s41567-020-0928-3
https://doi.org/10.1038/s41586-020-2459-6
https://doi.org/10.1038/s41586-020-2473-8
https://doi.org/10.1126/science.aay5533
https://doi.org/10.1103/PhysRevLett.124.076801
https://doi.org/10.1038/s41567-019-0596-3
https://doi.org/10.1038/s41567-019-0596-3
https://doi.org/10.1038/s41567-020-01129-4
https://doi.org/10.1038/s41567-020-01129-4
https://doi.org/10.1038/s41567-021-01186-3
https://doi.org/10.1038/s41586-021-03409-2
https://doi.org/10.1038/s41586-021-03409-2
https://doi.org/10.1038/s41563-020-00911-2
https://doi.org/10.1038/s41586-021-03366-w
https://doi.org/10.1126/science.abc2836
https://doi.org/10.1103/PhysRevLett.128.217701
https://doi.org/10.1103/PhysRevLett.128.217701
https://doi.org/10.1103/PhysRevB.98.081102
https://doi.org/10.1103/PhysRevB.98.081102
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevLett.122.246401
https://doi.org/10.1103/PhysRevLett.122.246401
https://doi.org/10.1103/PhysRevLett.124.097601
https://doi.org/10.1103/PhysRevLett.124.097601
https://doi.org/10.1103/PhysRevX.10.031034
https://doi.org/10.1103/PhysRevX.10.031034
https://doi.org/10.1103/PhysRevB.103.035427
https://doi.org/10.1103/PhysRevResearch.3.013242
https://doi.org/10.1103/PhysRevResearch.3.013242
https://doi.org/10.1103/PhysRevB.102.045107
https://doi.org/10.1103/PhysRevB.102.035136
https://doi.org/10.1103/PhysRevB.102.035136
https://doi.org/10.1103/PhysRevResearch.3.013033
https://doi.org/10.1103/PhysRevResearch.3.013033
https://doi.org/10.1103/PhysRevB.98.121406
https://doi.org/10.1103/PhysRevB.98.121406
https://doi.org/10.1103/PhysRevLett.123.157601
https://doi.org/10.1103/PhysRevLett.123.157601
https://doi.org/10.1103/PhysRevX.11.011014
https://doi.org/10.1103/PhysRevX.11.011014
https://doi.org/10.1103/PhysRevB.102.035161
https://doi.org/10.1103/PhysRevB.102.205111
https://doi.org/10.1103/PhysRevLett.124.187601
https://doi.org/10.1103/PhysRevLett.124.187601
https://doi.org/10.1073/pnas.2014691117
https://doi.org/10.1073/pnas.2014691117
https://doi.org/10.1126/sciadv.abf5299
https://doi.org/10.1103/PhysRevLett.127.147203
https://doi.org/10.1103/PhysRevLett.127.147203
https://doi.org/10.1103/PhysRevB.103.205413
https://doi.org/10.1103/PhysRevB.103.205414
https://doi.org/10.1103/PhysRevB.103.205414
https://doi.org/10.1103/PhysRevB.103.205415
https://doi.org/10.1103/PhysRevB.103.205416
https://doi.org/10.1103/PhysRevX.11.041063
https://doi.org/10.1103/PhysRevX.11.041063
https://doi.org/10.1103/PhysRevLett.127.266402
https://doi.org/10.1103/PhysRevLett.127.266402
https://doi.org/10.1103/PhysRevB.105.L121110
https://doi.org/10.1103/PhysRevB.105.L121110
https://doi.org/10.1103/PhysRevX.12.011061
https://arxiv.org/abs/2105.12112
https://doi.org/10.1103/PhysRevLett.128.247402
https://doi.org/10.1103/PhysRevLett.128.247402
https://doi.org/10.1103/PhysRevB.90.155451
https://doi.org/10.1088/2053-1583/2/3/034010
https://doi.org/10.1088/2053-1583/4/1/015018
https://doi.org/10.1088/2053-1583/4/1/015018
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevLett.123.036401
https://doi.org/10.1103/PhysRevLett.124.167002
https://doi.org/10.1103/PhysRevLett.124.167002


17

Appendix A: Hartree-Fock Method

In this appendix, we discuss the details of Hartree-Fock mean field theory with folded moiré Brillouin zones in
App. A 1. We also show a method to obtain a smooth visualization of mean field band structure along high symmetry
lines in App. A 2.

1. Hartree-Fock Hamiltonian with folded moiré Brillouin zone

Here, we provide the explicit expression for the Hartree-Fock Hamiltonian with folded moiré Brillouin zones that
was sketched in Sec. III. We first rewrite the projected interacting Hamiltonian using the following alternative form:

HI =
1

2Ωtot

∑
k,k′,q∈MBZ

∑
ηη′,ss′

mnm′n′

U
(ηη′)
mn;m′n′(q;k,k′)

(
c†k+q,mηsck,nηs −

1

2
δq,0δmn

)(
c†k′−q,m′η′s′ck′,n′η′s′ −

1

2
δq,0δm′n′

)
,

(A1)

in which the interacting elements U
(ηη′)
mn′m′n′(q; ,k,k′) are defined as:

U
(ηη′)
mn;m′n′(q;k,k′) =

∑
G∈Q0

V (q + G)M (η)
mn(k,q + G)M

(η′)
m′n′(k

′,−q−G) . (A2)

Here M (η)(k,q + G) is the form factor defined in Eq. (14) in the main text. By using the mean field approximation,
the interacting Hamiltonian can be written into the Hartree and Fock terms:

H(H) =
∑

κ∈FMBZ

∑
bb′,mn,ηs

H(H)
bmηs;bnηs(κ)

(
c†κ+Qb,mηs

cκ+Qb′ ,nηs −
1

2
δbb′δmn

)
, (A3)

H(F ) =
∑

κ∈FMBZ

∑
bb′,ηη′,mn,ss′

H(F )
bmηs;bnη′s′(κ)

(
c†κ+Qb,mηs

cκ+Qb′ ,nη
′s′ −

1

2
δbb′δmnδηη′δss′

)
. (A4)

The matrices H(H)(κ) and H(F )(κ) can be written as:

H(H)
bmηs;b′nη′s′(κ) =

1

Ωtot

∑
κ′∈FMBZ

∑
bb′b′′b′′′

∑
η′′s′′

∑
mnm′n′

UHbmηs,b′nηs;b′′m′η′′s′′;b′′′n′η′′s′′(κ,κ
′)∆b′′m′η′′s′′;b′′′n′η′′s′′(κ

′)δηη′δss′

(A5)

H(F )
bmηs;b′nη′s′(κ) = − 1

Ωtot

∑
κ′∈FMBZ

∑
bb′b′′b′′′

∑
mnm′n′

UFbmηs,b′nη′s′;b′′m′η′s′;b′′′n′ηs(κ,κ
′)∆b′′m′η′s′;b′′′n′ηs(κ

′) , (A6)

in which the matrices ∆(κ) is the order parameter defined in Eq. (20) in the main text. We can also use the interaction

elements U
(ηη′)
mn;m′n′(q;k,k′) to represent the coefficients UH(κ,κ′) and UF (κ,κ′) as follows:

UHbmηs,b′nηs;b′′m′η′s′;b′′′n′η′s′(κ,κ
′) = U

(ηη′)
mn;m′n′(Qb −Qb′ ;κ+ Qb′ ,κ

′ + Qb′′′)
∑

G∈Q0

δQb−Qb′+Qb′′−Qb′′′ ,G (A7)

UFbmηs,b′nη′s′;b′′m′η′s′;b′′′n′ηs(κ,κ
′) = U

(η′η)
m′n;mn′(κ

′ − κ+ Qb′′ −Qb′ ;κ+ Qb′ ,κ
′ + Qb′′′)

∑
G∈Q0

δQb−Qb′+Qb′′−Qb′′′ ,G .

(A8)

We can also write down the total mean field Hamiltonian by adding the kinetic term:

H(0)
bmηs;b′nη′s′(κ) = εκ+Qb,m,η δbb′δmnδηη′δss′ , (A9)

HHF (κ) = tH(0)(κ) +H(H)(κ) +H(F )(κ) . (A10)

For convenience, we have introduced a parameter t to go from the flat band limit (t = 0) to the full fledged kinetic
term (t = 1). As discussed in Sec. III, we use φbmηs,i(κ) to represent the eigenstates of the Hamiltonian HHF (κ). By
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using φbmηs,i(κ), we can also obtain the self-consistent condition for the order parameter:

∆bmηs;b′nη′s′(κ) =
∑

i∈occupied

(
φ∗bmηs,i(κ)φb′nη′s′,i(κ)

)
− 1

2
δbb′δmnδηη′δss′ . (A11)

Since we solely focus on the filling factor ν = −3, only the NM states with the lowest eigenvalues Ei(κ) among all
eigenstates are counted as occupied states. We start from a randomized initial order parameter, and we build HHF (κ)
from this order parameter. We can then solve the new order parameter from the self-consistent condition Eq. (A11)
until both the order parameter and Hamiltonian converge. For a given self-consistent solution, the total energy can
be evaluated by the following equation:

Etot =
∑

κ∈FMBZ

Tr

[(
H(0)(κ) +

1

2

(
H(H)(κ) +H(F )(κ)

))
∆T(κ)

]
. (A12)

2. Band structure along high symmetry lines

In this subsection, we discuss the non-self-consistent-field method we use to obtain a smooth visualization of HF
band structure without solving the self-consistent equation on a dense momentum lattice. Solving the self-consistent
equation on a dense momentum lattice discretizing the (folded) moiré Brillouin zone requires a large amount of
computing resources. The storage requirement for saving the coefficients UH,F (κ,κ′) also grows quadratically with
the lattice size. Thus, our mean field solutions are obtained on relatively small lattices, such as 12 × 12, 18 × 18 up
to 36 × 36. However, there are only a few points of this discretized mesh that are along the high symmetry lines on
such small momentum lattice. These points are not dense enough to obtain a smooth visualization of the mean field
band structure along these high symmetry lines.

We choose our C2zT stripe phase solution at w0/w1 = 0.8 on 18× 18 momentum lattice as an example. As shown
in Fig. 14 (a), we simply diagonalize the Hamiltonian HHF (κ) on this momentum lattice, and we show the energy
spectra for κ along the high symmetry lines. Albeit the shape of the bands and the charge gap can be roughly
observed in this plot, the details, such as band crossing points, cannot be easily identified due to the large distances
between these momentum points.

FIG. 14. The Hartree-Fock band structure of the C2zT stripe phase along the high symmetry lines. (a) The HF band structure
obtained directly from the solution on 18 × 18 momentum lattice. (b) The “continuum” HF band structure along the high
symmetry lines. We used the order parameter on the same 18× 18 momentum lattice as in subfigure (a) to calculate the HF
Hamiltonians along these high symmetry lines.

In order to solve the energy spectra for any given momentum κ along the high symmetry lines, we can still use Eqs.
(A5) and (A6). These equations show that the Hartree Fock Hamiltonian HHF (κ) has a summation for κ′ ∈ FMBZ.
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For an arbitrary value of κ, we can enforce that the summation of κ′ is always on the sparse momentum lattice.
Therefore, for the purpose of building the HF Hamiltonian along a dense high symmetry line, we have to know the
order parameter ∆(κ′), and the HF coefficients UH,F (κ,κ′) with κ along these dense high symmetry lines and κ′

on this sparse lattice. To obtain all of these coefficients, we only need to solve the single body wavefunctions of the
BM model on the sparse lattice and along the dense high symmetry line, instead of the wavefunctions on a dense
momentum lattice. The storage requirement for saving these HF coefficients becomes linear with the lattice size, and
thus we are able to enhance the point density along the high symmetry lines at a moderate cost. Once we obtain
the HF Hamiltonian, we are also able to get its eigenstate φbmηs,i(κ) and order parameter ∆(κ) along the dense high
symmetry line. Fig. 14 (b) shows the HF band structure we calculated using the order parameter on the 18 × 18
momentum lattice, which is the same as the one we used in Fig. 14 (a). The band structure plot in Fig. 14 (b) has
the same shape qualitatively as in Fig. 14 (a), while it also provides more details like the band crossing point along
the γ-x line. The plots in Fig. 2 in the main text have also been obtained by this method.

This method is not limited to studying the band structure along high symmetry lines. We can also replace the
momentum points κ along the high symmetry lines by momentum points on a small patch in the FMBZ. Thus, we
are also able to study the band structure and the HF wavefunctions in a small region of the FMBZ without solving
the self-consistent equation on a dense lattice. This technique was used in Sec. V C to get an accurate result for
the Dirac nodes motions around the γ point in the C2zT stripe phase. The HF Hamiltonians HHF (κ) built in the
small FMBZ patch retain the symmetries of the order parameter ∆(κ′) on the sparse momentum lattice. Therefore,
the Dirac nodes in the FMBZ patch, which are protected by the C2zT symmetry, should be well-captured by the
non-self-consistent-field method.

Appendix B: Symmetries and sewing matrices

In this appendix, we review the representation of several symmetries of the single valley TBG Hamiltonian, which
is mentioned in Sec. II and used in Sec. V A in the main text. As discussed in Refs. [46, 59, 62], the single valley TBG
Hamiltonian has C2zT , C3z, C2x and P symmetries. The representations of these symmetries are given by:

DQ,Q′(C2zT ) = σxδQ,Q′ , (B1)

DQ,Q′(C3z) = exp

(
i
2πη

3
σz

)
δQ,C3zQ′ , (B2)

DQ,Q′(C2x) = σxδQ,C2xQ′ , (B3)

DQ,Q′(P ) = ζQδQ,−Q′ , (B4)

where ζQ = 1 when Q ∈ Q+, and ζQ = −1 when Q ∈ Q−. Both C3z and C2x are unitary symmetries which
commute with the non-interacting Hamiltonian. In contrast, particle hole symmetry P is a unitary symmetry which
anti-commute with the non-interacting Hamiltonian. Unlike the other three, C2zT is an anti-unitary symmetry, which
also contains a complex conjugation operation. These representation matrices describe the transformation of electron
operators in plane wave basis under these transformations:

g−1c†k,Q,η,α,sg =
∑
Q′β

D∗Qα,Q′β(g)c†gk,Q′,η,β,s (B5)

Therefore, the non-interacting Hamiltonian will transform as follows under these symmetries:

D(C2zT )−1h(η)∗(k)D(C2zT ) = h(η)(k) , (B6)

D(C3z)
−1h(η)(k)D(C3z) = h(η)(C3zk) , (B7)

D(C2x)−1h(η)(k)D(C2x) = h(η)(C2xk) , (B8)

D(P )−1h(η)(k)D(P ) = −h(η)(−k) . (B9)

Notice that on the left hand side of Eq. (B6), we transform the complex conjugation of the Hamiltonian by matrix
D(C2zT ) because of the anti-unitary nature of C2zT transformation. For each unitary symmetry g, we can define the
sewing matrix Bg(k) as:

Bgmn(k) =
∑

Qα,Q′β

u∗Qα,mη(k)DQα,Q′β(g)uQ′β,nη(gk) , (B10)
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and this matrix has the following property:∑
m

uQα,mη(k)Bgmn(k) =
∑
Q′β

DQα,Q′β(g)uQ′β,nη(gk) . (B11)

Similarly, for anti-unitary symmetry C2zT , we can define its sewing matrix as:

BC2zT
mn (k) =

∑
Qα,Q′β

u∗Qα,mη(k)DQα,Q′β(C2zT )u∗Q′β,nη(k) . (B12)

For each given unitary symmetry, the electron operators will transform as their sewing matrices:

g−1c†k,mηsg =
∑
Qα

uQα,mη(k)g−1c†k,Q,η,α,sg

=
∑
Qα

uQα,mη(k)
∑
Q′β

D∗Qα,Q′β(g)c†gk,Q′,η,β,s

=
∑
Q′β

∑
n

uQ′β,nη(gk)Bg∗mn(k)c†gk,Q′,η,β,s

=
∑
n

Bg∗mn(k)c†gk,n,η,s . (B13)

Similar result can also be derived for anti-unitary symmetry C2zT . As mentioned in Refs. [46–49], we fix the gauge
choice of the wavefunctions such that the sewing matrices BC2zT

mn (k) = δmn. Thus, the electron operators are trans-
formed as:

(C2zT )−1c†k,mηs(C2zT ) = c†k,mηs . (B14)

Except for these symmetries, this Hamiltonian also has the translation symmetries along the basis vectors ã1,2 of

the moiré superlattice, which we denote by T̂ã1,2
. For each electron operator, it will gain a phase factor under such

translation transformation as shown:

T̂−1
ã1,2

c†k,m,η,sT̂ã1,2 = eik·ã1,2c†k,m,η,s . (B15)

We obtained the values of G(g,κ) shown in Fig. 7 in the main text by applying Eqs. (B13), (B14) and (B15) to its
definition Eq. (26).

Appendix C: Wilson loops in folded MBZ

In this appendix, we discuss the method to represent the HF wavefunctions using the plane wave basis and we
derive the expression of the non-Abelian Wilson loops, which is used in Sec. IV B in the main text. We start with
the mean field Hamiltonian HHF (κ) = H(H)(κ) + H(F )(κ). By diagonalizing this Hamiltonian, we can obtain the
eigenvectors: ∑

b′m′η′s′

H(HF )
bmηs;b′m′η′s′(κ)φb′m′η′s′,i(κ) = Ei(κ)φbmηs,i(κ) . (C1)

where φbmηs,i(κ) is the Hartree-Fock band wavefunction of the i-th mean field band. We can write the wavefunction
into the following format:

|φi(κ)〉 =
∑
bmηs

φbmηs,i(κ)c†κ+Qbmηs
|0〉. (C2)
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In order to compute the Wilson loops or Berry connection of these Bloch wavefunctions, we have to rewrite these
states using the plane wave basis of the continuum model [61]:

|φi(κ)〉 =
∑
bmηs

φbmηs,i(κ)
∑

Q∈Q±,α

uQα,mη(κ+ Qb)c
†
κ+Qb,Q,η,α,s

|0〉 . (C3)

Therefore, to represent the Bloch wavefunction of the mean field bands by the plane wave basis, we introduce the
coefficients ΦQα,b,η,s;i(κ):

ΦQα,b,η,s;,i(κ) =
∑
m

φbmηs,i(κ)uQα,mη(κ+ Qb) , (C4)

|φi(κ)〉 =
∑

Q∈Q±,α

∑
bηs

ΦQα,b,η,s;i(κ)c†κ+Qb,Q,η,α,s
|0〉 . (C5)

The eigenvectors φbmηs,i(κ) are not periodic in the FMBZ. When the momentum κ ∈ FMBZ is shifted by a reciprocal
vector of FMBZ (κ→ κ+ g), the subband index b of φbmηs,i(κ) will be transformed by the embedding matrix Vg as
follows:

φbmηs,i(κ+ g) =
∑
b′

(Vg)bb′φb′mηs(κ) , (C6)

in which the matrix Vg is given by:

(Vg)bb′ =
∑

G∈Q0

δg+Qb,Qb′+G . (C7)

Therefore, the subband index b in the Bloch wavefunction coefficients ΦQα,b,η,s;i(κ) also has to be shifted accordingly:

ΦQα,b,η,s;i(κ+ g) =
∑
m,b′

∑
G∈Q0

δg+Qb,Qb′+Gφb′mηs,i(κ)uQα,mη(κ+ g + Qb) . (C8)

We also use Φi(κ) to denote the vector made of the coefficients ΦQα,b,η,s;i(κ). Thus, we are able to define the non-

Abelian Wilson loop of the mean field bands. For the two types of favored foldings (
√

3×
√

3) and (2×1), we represent

the momentum in FMBZ by κ = κ1

2πQ1 + κ2

2π b̃2, in which Q1 is the basis vectors of the reciprocal lattices of the folded

Brillouin zones defined in Table. I and b̃2 is the reciprocal vector of the original moiré Brillouin zone. We evaluate
the Wilson loops along the direction of Q1 with the lowest NF bands:

Wij(κ2) =

NF∑
i1,i2,···in−1=1

[
Φ†i (κ1 = 0, κ2)Φi1(κ1 = δκ, κ2)Φ†i1(κ1 = δκ, κ2) · · ·

×Φin−1
(κ1 = 2π − δκ, κ2)Φ†in−1

(κ1 = 2π − δκ, κ2)Φj(κ1 = 2π, κ2)
]
, δκ =

2π

n
. (C9)

Here the integer n is the number of points along the direction of Q1 on the discretized momentum lattice in the
FMBZ. The winding of Wilson loop eigenvalue exponent, computed by this expression, contains the information of
the band topology, as discussed for the plots in Figs. 5 and 6 in the main text.

Appendix D: Wilson loop of the stripe phase

In this Appendix, we derive the properties of the Wilson loop for the C2zT symmetric stripe phase that was
numerically evaluated in Sec. IV B. For that purpose, we focus on the simple limiting case of a gapped C2zT stripe
with effective Hamiltonian given in Eq. (69) of Ref. [40]. This Hamiltonian has a gap between the band 2 and band
3, and because it is a special case, band 1 is degenerate with band 2, as is band 3 with band 4. This model is enough
to understand the topology of these special subspaces, because, as long as the gap between 1-2 and 3-4 does not
close, the topology must remain, i.e., we cannot change the sign of the determinant of the Wilson loops detW under
continuous deformations which do not close the 2-3 gap.
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1. Simple effective Hamiltonian for the C2zT stripe

For convenience, the Chern states in this Appendix (App. D) are chosen to be the Bloch state basis and their gauge
is fixed as in Ref. [40], i.e. the constructed Chern states are continuous in momentum, but not periodic. To be more
specific, these Chern states satisfy the following boundary conditions:

|ψµ,η,s(k)〉 = |ψµ,η,s(k + b̃1)〉 , |ψµ,η,s(k)〉 = e−iµk·ã1 |ψµ,η,s(k + b̃2)〉 (D1)

where the subscript µ = ±1 is the Chern number of the associated states, η and s are the indices for valley and spin
respectively, and ãi are the moiré lattice vectors defined in Fig. 8. In addition, these Chern states transform under
C2zT as follows,

C2zT |ψµ,η,s(k)〉 = |ψ−µ,η,s(k)〉 . (D2)

Note that the gauge choice in Eq. (D1) is different from the gauge choice that we used for numerical calculations,
which was discussed in Refs. [46–49].

Since the C2zT stripe phase is both spin and valley polarized, we can focus only on a particular spin and valley, and
thus drop the the spin and valley indices in the rest of this appendix. In the C2zT phase, with the four-component

Chern basis
{
|ψ+1(κ)〉, |ψ+1(κ+ b̃1/2)〉, |ψ−1(κ)〉, |ψ−1(κ+ b̃1/2)〉

}
, the effective Hamiltonian Eq. (69) of Ref. [40]

can be written as:

HC2zT
eff (κ) =


ε(κ) 0 0 ∆2(κ)

0 ε(κ+ b̃1/2) ∆2(κ) 0
0 ∆∗2(κ) ε(κ) 0

∆∗2(κ) 0 0 ε(κ+ b̃1/2)

 , (D3)

where the matrix elements satisfy the non-trivial periodicity conditions (with the proper gauge choice listed in Eq. (D1)
and Ref. [40]):

∆2(κ+ b̃1/2) = ∆2(κ) , (D4)

∆2(κ+ b̃2) = −e2iκ·ã1∆2(κ) , (D5)

ε(κ+ b̃1) = ε(κ) . (D6)

The corresponding single particle states for the smooth Chern gauge states built in Eq. (13) of Ref. [40] are:

upper doublet: |φ4(κ)〉 = cos
θ(κ)

2
|ψ+1(κ)〉+ sin

θ(κ)

2
e−iϕ2(κ)|ψ−1(κ+ b̃1/2)〉 , (D7)

|φ3(κ)〉 = sin
θ(κ)

2
eiϕ2(κ)|ψ+1(κ+ b̃1/2)〉+ cos

θ(κ)

2
|ψ−1(κ)〉 , (D8)

lower doublet: |φ2(κ)〉 = − sin
θ(κ)

2
eiϕ2(κ)|ψ+1(κ)〉+ cos

θ(κ)

2
|ψ−1(κ+ b̃1/2)〉 , (D9)

|φ1(κ)〉 = cos
θ(κ)

2
|ψ+1(κ+ b̃1/2)〉 − sin

θ(κ)

2
e−iϕ2(κ)|ψ−1(κ)〉 . (D10)

The quantities θ(κ) and ϕ2(κ) are defined by:

eiϕ2(κ) =
∆2(κ)

|∆2(κ)| , (D11)

cos θ(κ) =
ε′(κ)√

ε′(κ)2 + |∆2(κ)|2
, (D12)

ε′(κ) =
1

2

(
ε(κ)− ε(κ+ b̃1/2)

)
. (D13)

Under C2zT , we have |ψ±(k)〉 → |ψ∓(k)〉 which follows from Eq. (D2). Thus, |φ4(κ)〉 and |φ3(κ)〉 get interchanged
by C2zT (and similarly for |φ1(κ)〉 and |φ2(κ)〉). Now, we are able to construct states which have a diagonal C2zT
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sewing matrix:

upper doublet:

|φ′4(κ)〉 =
|φ4(κ)〉+ e−iϕ2(κ)|φ3(κ)〉√

2
= (D14)

1√
2

(
cos

θ(κ)

2
|ψ+1(κ)〉+ sin

θ(κ)

2
|ψ+1(κ + b̃1/2)〉+ e−iϕ2(κ)

(
sin

θ(κ)

2
|ψ−1(κ + b̃1/2)〉+ cos

θ(κ)

2
|ψ−1(κ)〉

))
, (D15)

|φ′3(κ)〉 =
|φ4(κ)〉 − e−iϕ2(κ)|φ3(κ)〉√

2
= (D16)

1√
2

(
cos

θ(κ)

2
|ψ+1(κ)〉 − sin

θ(κ)

2
|ψ+1(κ + b̃1/2)〉+ e−iϕ2(κ)

(
sin

θ(κ)

2
|ψ−1(κ + b̃1/2)〉 − cos

θ(κ)

2
|ψ−1(κ)〉

))
, (D17)

lower doublet:

|φ′2(κ)〉 =
|φ1(κ)〉+ e−iϕ2(κ)|φ2(κ)〉√

2
= (D18)

1√
2

(
cos

θ(κ)

2
|ψ+1(κ + b̃1/2)〉 − sin

θ(κ)

2
|ψ+1(κ)〉+ e−iϕ2(κ)

(
− sin

θ(κ)

2
|ψ−1(κ)〉+ cos

θ(κ)

2
|ψ−1(κ + b̃1/2)〉

))
,(D19)

|φ′1(κ)〉 =
|φ1(κ)〉 − e−iϕ2(κ)|φ2(κ)〉√

2
= (D20)

1√
2

(
cos

θ(κ)

2
|ψ+1(κ + b̃1/2)〉+ sin

θ(κ)

2
|ψ+1(κ)〉+ e−iϕ2(κ)

(
− sin

θ(κ)

2
|ψ−1(κ)〉 − cos

θ(κ)

2
|ψ−1(κ + b̃1/2)〉

))
.(D21)

2. Periodicity of wavefunctions |φ′i(κ)〉

We now study the periodicity of the eigenstates |φ′i(κ)〉 along the both directions of the FMBZ. We start our

discussion with the direction along b̃1/2 axis. In order to understand what happens to |φ′i(κ)〉 under κ→ κ+ b̃1/2,
where i = 1, 2, 3, 4, we first note that

eiϕ2(κ+b̃1/2) = eiϕ2(κ) , (D22)

which follows from the definition of ϕ2 in Eq. (D11) and the property of ∆2(κ) given by Eq. (D4). Now, from
Eq. (D13) we clearly have

ε′(κ+ b̃1/2) = −ε′(κ)⇒ cos θ(κ+ b̃1/2) = − cos θ(κ) . (D23)

The spherical polar coordinate is defined in θ ∈ [0, π). Therefore, the angle θ(κ) will transform as:

θ(κ+ b̃1/2) = π − θ(κ) (D24)

cos

[
θ(κ+ b̃1/2)

2

]
= sin

[
θ(κ)

2

]
, sin

[
θ(κ+ b̃1/2)

2

]
= cos

[
θ(κ)

2

]
. (D25)

The wavefunctions |φ′i(κ)〉 will transform accordingly:

upper doublet: |φ′4(κ+ b̃1/2)〉 = |φ′4(κ)〉 , (D26)

|φ′3(κ+ b̃1/2)〉 = −|φ′3(κ)〉 , (D27)

lower doublet: |φ′2(κ+ b̃1/2)〉 = −|φ′2(κ)〉 , (D28)

|φ′1(κ+ b̃1/2)〉 = |φ′1(κ)〉 . (D29)

We see that one component is periodic (|φ′1(κ)〉 and |φ′4(κ)〉) and one anti-periodic (|φ′2(κ)〉 and |φ′3(κ)〉) in each
doublet. To adopt the same boundary conditions, say periodic, we multiply the anti-periodic state with a smooth
phase eiχ(κ) such that χ(0) = 0 and χ(κ+ b̃1/2) = χ(κ) + π. For example, we can choose this gauge phase factor as:

χ(κ) = κ · ã1 . (D30)
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So, finally, we define the periodic single particle states along κ→ κ+ b̃1/2 as follows:

upper doublet: |φ′′4(κ)〉 = |φ′4(κ)〉 , (D31)

|φ′′3(κ)〉 = eiχ(κ)|φ′3(κ)〉 , (D32)

lower doublet: |φ′′2(κ)〉 = eiχ(κ)|φ′2(κ)〉 , (D33)

|φ′′1(κ)〉 = |φ′1(κ)〉 . (D34)

These states transform as follows under C2zT transformation:

upper doublet: C2zT |φ′′4(κ)〉 = eiϕ2(κ)|φ′′4(κ)〉 , (D35)

C2zT |φ′′3(κ)〉 = e−2iχ(κ)ei(ϕ2(κ)+π)|φ′′3(κ)〉 , (D36)

lower doublet: C2zT |φ′′2(κ)〉 = e−2iχ(κ)eiϕ2(κ)|φ′′2(κ)〉 , (D37)

C2zT |φ′′1(κ)〉 = ei(ϕ2(κ)+π)|φ′′1(κ)〉 . (D38)

The C2zT sewing matrices for the upper and lower doublets can be written as:

BC2zT
upper(κ) =

(
eiϕ2(κ) 0

0 e−2iχ(κ)ei(ϕ2(κ)+π)

)
, (D39)

BC2zT
lower (κ) =

(
e−2iχ(κ)eiϕ2(κ) 0

0 ei(ϕ2(κ)+π)

)
. (D40)

These sewing matrices with this gauge choice can be used to calculate the determinant of the Wilson loop operator
along the b̃1/2 direction.

Next, we study the periodicity of the wavefunctions |φ′i(κ)〉 under transformation κ→ κ+ b̃2. The states |φ′′i (κ)〉
defined in previous paragraphs are periodic along κ → κ + b̃1/2, but they are not periodic along κ → κ + b̃2. In

order to evaluate the Wilson loop along b̃2 direction, we have to find the states which are periodic along κ→ κ+ b̃2,
which are not necessary to be periodic along κ → κ + b̃1/2. From Eq. (D5), we notice that the phase ϕ2(κ) will
transform as follows:

eiϕ2(κ+b̃2) = −eiϕ2(κ)e2iκ·ã1 , (D41)

and the angle θ(κ) is not changed when κ → κ + b̃2. Then, by using Eq. (D1), we can obtain the wavefunctions

|φ′i(κ+ b̃2)〉:

upper doublet: |φ′4(κ+ b̃2)〉 = e−iκ·ã1 |φ′3(κ)〉 , (D42)

|φ′3(κ+ b̃2)〉 = e−iκ·ã1 |φ′4(κ)〉 , (D43)

lower doublet: |φ′2(κ+ b̃2)〉 = −e−iκ·ã1 |φ′1(κ)〉 , (D44)

|φ′1(κ+ b̃2)〉 = −e−iκ·ã1 |φ′2(κ)〉 . (D45)

Similar to the case along b̃1/2 direction, these wavefunctions are not periodic along b̃2 as well. In order to obtain
periodic wavefunctions, we define the following superposition states for both the upper and lower doublet states:

upper doublet: |φ′′′4 (κ)〉 = eiκ·ã2( 1
4 +

κ·ã1
2π )

(
cos

κ · ã2

4
|φ′4(κ)〉 − i sin

κ · ã2

4
|φ′3(κ)〉

)
, (D46)

|φ′′′3 (κ)〉 = eiκ·ã2( 1
4 +

κ·ã1
2π )

(
−i sin

κ · ã2

4
|φ′4(κ)〉+ cos

κ · ã2

4
|φ′3(κ)〉

)
, (D47)

lower doublet: |φ′′′2 (κ)〉 = eiκ·ã2(− 1
4 +

κ·ã1
2π )

(
cos

κ · ã2

4
|φ′2(κ)〉 − i sin

κ · ã2

4
|φ′1(κ)〉

)
, (D48)

|φ′′′1 (κ)〉 = eiκ·ã2(− 1
4 +

κ·ã1
2π )

(
−i sin

κ · ã2

4
|φ′2(κ)〉+ cos

κ · ã2

4
|φ′1(κ)〉

)
. (D49)

It can be easily proved that these states satisfy the periodic condition |φ′′′i (κ + b̃2)〉 = |φ′′′i (κ)〉. Thus, by applying
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the C2zT operator, these states will transform as the following equations:

upper doublet: C2zT |φ′′′4 (κ)〉 = eiϕ2(κ)e−2iκ·ã2( 1
4 +

κ·ã1
2π )|φ′′′4 (κ)〉 , (D50)

C2zT |φ′′′3 (κ)〉 = ei(ϕ2(κ)+π)e−2iκ·ã2( 1
4 +

κ·ã1
2π )|φ′′′3 (κ)〉 , (D51)

lower doublet: C2zT |φ′′′2 (κ)〉 = eiϕ2(κ)e−2iκ·ã2(− 1
4 +

κ·ã1
2π )|φ′′′2 (κ)〉 , (D52)

C2zT |φ′′′1 (κ)〉 = ei(ϕ2(κ)+π)e−2iκ·ã2(− 1
4 +

κ·ã1
2π )|φ′′′1 (κ)〉 . (D53)

And consequently, the C2zT sewing matrices can be written as follows:

BC2zT
upper(κ) =

(
eiϕ2(κ)e−2iκ·ã2( 1

4 +
κ·ã1
2π ) 0

0 ei(ϕ2(κ)+π)e−2iκ·ã2( 1
4 +

κ·ã1
2π )

)
, (D54)

BC2zT
lower (κ) =

(
eiϕ2(κ)e−2iκ·ã2(− 1

4 +
κ·ã1
2π ) 0

0 ei(ϕ2(κ)+π)e−2iκ·ã2(− 1
4 +

κ·ã1
2π )

)
. (D55)

Similar to Eqs. (D39) and (D40), we will use these sewing matrices when evaluating the determinant of the Wilson

loop operators along the b̃2 direction.

3. Computing the determinant of the Wilson loop operator W

The determinant of the Wilson loop operator can be evaluated following the derivation provided in Sec. V C
of Ref. [63]. We first evaluate the Wilson loop along b̃1/2. As defined previously, the basis |φ′′4(κ)〉, |φ′′3(κ)〉 and

|φ′′2(κ)〉, |φ′′1(κ)〉 is periodic under κ → κ + b̃1/2. It can been proved that the C2zT sewing matrix of a two band
system is deeply related tp its non-Abelian Berry connection. If the sewing matrix BC2zT (κ) can be written as:

BC2zT (κ) =

(
eiϑ1(κ) 0

0 eiϑ2(κ)

)
, (D56)

then the non-Abelian Berry connection has the following form:

A(κ) =

(
1
2∂κϑ1(κ) ia(κ)ei

1
2 (ϑ1(κ)−ϑ2(κ))

−ia(κ)e−i
1
2 (ϑ1(κ)−ϑ2(κ)) 1

2∂κϑ2(κ)

)
. (D57)

As we have mentioned in the main text, we use κ1 and κ2 to parameterize the momentum κ in the FMBZ as

κ = κ1

2π
b̃1

2 + κ2

2π b̃2. We choose the path of the Wilson loop c along the direction of b̃1/2 with a fixed value of κ2. The
non-Abelian Wilson loop can be written as:

W (κ2) = P exp

(
−i
∮
c

dκ ·A(κ)

)
= P exp

(
−i
∫ 2π

0

dκ1A1(κ1, κ2)

)
. (D58)

Therefore, the determinant of the lower doublet Wilson loop will be given by:

detW (κ2) = exp

(
−i
∫ 2π

0

dκ1 TrA1(κ1, κ2)

)
= e−

i
2 (ϕ2(b̃1/2)−ϕ2(0)+ϕ2(b̃1/2)−ϕ2(0)−2χ(b̃1/2)+2χ(0))

= ei(χ(b̃1/2)−χ(0))

= −1. (D59)

The C2zT symmetry also requires W (κ2) and W ∗(κ2) to have the same eigenvalue spectrum [63]. Therefore, the only
possible eigenvalues of W are +1 and −1 independent of κ2 for the lower doublet. This is identical to the numerical
evaluation of the Wilson loop of the C2zT stripe phase shown in Fig. 5 (d) of Sec. IV B (see also Fig. 15 (a)). Similarly,
we are also able to show that the two eigenvalues of the the upper doublet Wilson loop are ±1, leading to flat Wilson
loops for both the occupied and unoccupied bands.

We can also evaluate the Wilson loop along the other direction. The path of the Wilson loop c is chosen along b̃2
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with a fixed value of κ1, and we choose the basis |φ′′′i (κ)〉, which is periodic along b̃2 direction. Thus, the determinant
of the lower doublet Wilson loop can be expressed as:

detW (κ1) = exp

(
−i
∫ 2π

0

dκ2 TrA2(κ1, κ2)

)
= e−i(ϕ2(b̃2)−ϕ2(0))ei4π(− 1

4 +
κ·ã1
2π )

= −e−2iκ·ã1e−iπe2iκ·ã1

= +1 . (D60)

Thus, the two eigenvalues of W (κ1) are complex conjugation of each other at each κ1 value. This also agrees with
the numerical result we obtained from the self-consistent HF state, as shown in Fig. 15 (b). We can also show that
the determinant of upper doublet Wilson loop is +1 as well.

FIG. 15. The Wilson loops of the two occupied HF bands evaluated from the C2zT stripe phase obtained at w0/w1 = 0.8 at

t = 0. (a) Wilson loop along the b̃1/2 direction. This figure is similar to Fig. 5 (d) but with a mesh in momentum space
doubled in both directions (36 × 36 as opposed to 18 × 18) and assuming spin and valley polarization. (b) Wilson loop along

the b̃2 direction. The results are as expected from the derivation of presented in App. D 3.

Appendix E: Dirac nodes in the C2zT stripe phase

1. Chirality of Dirac nodes

For a two band system, C2zT transformation can be represented by complex conjugation operator K with proper
basis choice. With this basis choice, the σy terms are forbidden in the Hamiltonian. Thus, the chirality of a Dirac
node can be defined by the winding number of the state on the xz plane of the Bloch sphere, along a circle surrounding
the Dirac node.

To identify the chirality of several Dirac nodes between the i-th and (i + 1)-th Hartree-Fock bands, we have to
study the wavefunctions of the HF states around these nodes. We start with finding a patch Π in the Brillouin zone,
in which the two bands are completely gapped from other bands, while also containing all the Dirac nodes between
them. Writing these two bands as an effective two-band Hamiltonian which satisfies C2zT symmetry will help us
determine the chirality of the Dirac nodes. We first represent the HF states wavefunctions as vectors Φi(κ) in the
plane wave basis defined in Eq. (C8) of App. C. Next, we choose a point κ0 in Π as the reference point, and we use
the two band wavefunctions at κ0 as the basis for our effective two-band model on Π. To determine whether κ0 is a
good choice as the reference point, we can define the following quantity Ni(κ) to quantify the wavefunction overlap
between the momentum point κ and the reference point κ0 in the i-th and (i+ 1)-th bands:

Ni(κ) =
1

2

∑
j,k=0,1

|Φ†i+j(κ)Φi+k(κ0)|2 . (E1)
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γ x

y µ
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K ′

FIG. 16. The patch (blue square) around the γ point used to evaluate the Dirac nodes chirality. Data shown in Figs. 12, 18-19
are computed in this patch.

If the value of Ni(κ) is close to 1 on the chosen patch Π, the Hilbert space spanned by the two bands over Π will
also be close to the Hilbert space spanned by the two bands at the reference point κ0. Therefore, it is reasonable to
choose Φi(κ0) and Φi+1(κ0) as momentum independent basis, and we can project the wavefunction Φi(κ) onto these
two states. The two coefficients α and β for such a projection are given by the following equations:

α(κ) = Φ†i (κ)Φi(κ0) (E2)

β(κ) = Φ†i (κ)Φi+1(κ0) . (E3)

Because of the C2zT symmetry, both coefficients are real. Thus, the vector (α, β) will lie in the xz plane of the Bloch
sphere if |α(κ)|2 + |β(κ)|2 = 1. This is usually a reasonable assumption when κ is not far from the reference point κ0,
and it will be checked numerically in the following calculation. Under this assumption, the effective two-band model
can be captured by the Hamiltonian h(κ) = (α2(κ) − β2(κ))σz + 2α(κ)β(κ)σx. We now use the angle ϕi,i+1

xz (κ) to
describe the direction of this Hamiltonian:

ϕi,i+1
xz (κ) = arg

[
(α(κ) + iβ(κ))2

]
. (E4)

This quantity measures the angle between the +z axis and the direction on Bloch sphere. The winding number of
this angle around a Dirac point measures the “chirality” of this node between i-th band and (i+ 1)-th band.

In the following Apps. E 2 b and E 2 a, we use the method discussed in this subsection to study the chiralities of the
Dirac nodes.

2. Motion of Dirac nodes

In this subsection, we provide additional information about the motion and the chirality of the Dirac nodes in the
C2zT stripe phase obtained with flat band kinetic energy (t = 1) and at w0/w1 = 0.8 as completing our discussion in
Sec. V C of the main text.

a. Non-Abelian braiding of Dirac nodes

We first study the Dirac nodes motion in detail along the first path introduced in Sec. V C [(λ1, λ2) = (0, 0) →
(0, 1)→ (1, 1)], where the parameters λ1 and λ2 are defined in Eq. (35) in the main text. As mentioned in the main
text, we start from the non-interacting bands at λ1 = λ2 = 0, which has two Dirac nodes connecting the second
and the third bands with the same chirality at K and K ′ points. When λ1 = 0 and λ2 is increased from 0 to 1,
the two Dirac nodes are moved into a small region around γ point in the FMBZ, and no other Dirac node between
the second and the third bands are generated. Hence, we choose a patch around γ point as shown in Fig. 16, and
we use the method described in App. A 2 to compute the HF bands and wavefunctions in this patch with a higher
resolution. With the increasing value of λ1, the two Dirac nodes move towards each other and annihilated at around
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λ1 ≈ 0.05. Meanwhile, we also observed that there are other pairs of Dirac nodes between the first and second bands,
and between the third and fourth bands, which can be observed in Figs. 18 and 19.

FIG. 17. (a) The direct gap between the second and the third HF bands at λ1 = 0 and λ2 = 1. The symbols ⊕ and 	 in red
represent the Dirac nodes with opposite chiralities. (b) The wavefunction overlap of the first and second HF bands between
a given momentum κ and the reference point κ0 at λ1 = 0 and λ2 = 1. (c) The angle ϕ2,3

xz (κ) computed in the same FMBZ
patch. The black symbols ⊕ and 	 stand for the chirality of the corresponding Dirac nodes. Similarly, subfigures (d-f) are
computed at λ1 = 0.03 and λ2 = 1, and subfigures (g-i) are computed at λ1 = 0.06 and λ2 = 1.

To determine the chiralities of these Dirac nodes between different bands, we choose κ0 = γ as the reference point,
and we computed the values of Ni(κ) and ϕi,i+1

xz (κ) with i = 1, 2, 3 at λ1 = 0, 0.03, 0.06, and λ2 = 1. The results are
shown in Figs. 18, 17 and 19. As shown in Fig. 17(c), the two Dirac nodes between the second and third bands carry
the same chirality when λ2 = 0. However, one of these two Dirac nodes flipped its chirality if λ2 is raised to 0.03 as
shown in Figs. 17(f). Finally, the two Dirac nodes annihilate with each other as shown in Figs. 17(g-i), and thus the
charge gap can be created between the second and the third HF bands. In the meantime, another pair of Dirac nodes
with opposite chiralities are created between the first and the second bands, which are shown in Figs. 18(a) and (d).
And in Figs. 18(g-i), we can also observe that one of the nodes also flipped its chirality with the increased value of λ1.
Another pairs of nodes can also be observed between the first and the second bands. They carry opposite chiralities
when λ1 = 0, and one of them also changed the chirality when λ1 is increased to 0.06, as can be seen in Figs. 18(a),
(d) and (g). We also notice similar phenomenon between the third and four bands. In Fig. 19(a), two nodes with
opposite chiralities can be found when λ1 = 0. And in Fig. 19(g), they carry the same chirality when the value of λ1

increases to 0.06. The change of chiralities demonstrated the non-Abelian nature of the Dirac node charges in C2zT
symmetric multi-band systems.
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FIG. 18. Similar to Fig. 18, subfigure (a-c) provide the direct gap E1,2
G (κ), the wavefunction overlaps N1(κ) and the angle

ϕ1,2
xz (κ) between the second and the third HF bands at λ1 = 0 and λ2 = 1. Subfigures (d-f) are obtained at λ1 = 0.03, λ2 = 1,

and subfigure (g-i) are obtained at λ1 = 0.06, λ2 = 1.

b. Four Dirac nodes annihilation

We also study the Dirac nodes motion and annihilation along the second path introduced in Sec. V C [(λ1, λ2) =
(0, 0) → (1, 0) → (1, 1)]. As mentioned in the main text, when the value of λ1 is increased from 0 to 1, the non-
interacting TBG bands is turned into the “strong interacting bands”. In this case, we will show that the Dirac nodes
are located at the high symmetry momenta Γ, M , and K (and K ′) [51] and calculate the associated winding numbers.
For convenience, the Chern states |ψµ,η,s(k)〉 are chosen to be the Bloch state basis and their gauge is fixed as in
Ref. [40] (also see Sec. D). Under the transformation C2zT ,

C2zT |ψµ,η,s(k)〉 = |ψ−µ,η,s(k)〉 . (E5)

Under the particle-hole transformation,

P |ψµ,η,s(k)〉 = eiθµ(k)|ψµ,η,s(−k)〉 , (E6)

Since P commutes with C2zT , we have θ+1(k) = −θ−1(k). In addition, because P 2 = −1, θµ(k) = π − θµ(−k).

When k = Γ or M , k = −k, and these constraints lead to eiθµ(k) = −e−iθµ(−k). Numerically, we found eiθ+1(Γ) = −i
and eiθ+1(M) = i. Similar to the main text, we introduce the creation and annihilation operators d†k,µ,η,s (dk,µ,η,s) so

that d†k,µ,η,s|∅〉 = |ψµ,η,s(k)〉. Notice that they can be expressed in terms of the creation/annihilation operators of the
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FIG. 19. Subfigure (a-c) provide the direct gap E3,4
G (κ), the wavefunction overlaps N3(κ) and the angle ϕ3,4

xz (κ) between the
third and the fourth HF bands at λ1 = 0 and λ2 = 1. Subfigures (d-f) are obtained at λ1 = 0.03, λ2 = 1, and subfigure (g-i)
are obtained at λ1 = 0.06, λ2 = 1.

eigenstate basis introduced in Eq. 7:

d†k,+1,η,s =
1√
2
eiϑ(k)

(
c†k,1,η,s + ic†k,2,η,s

)
, and d†k,−1,η,s =

1√
2
e−iϑ(k)

(
c†k,1,η,s − ic

†
k,2,η,s

)
(E7)

where the phase factor eiϑ(k) is inserted to guarantee the constructed Chern states are smooth in k and satisfy the
boundary conditions Eq. (D1).

Next, we consider the properties of the Dirac nodes when the system is in the strong coupling limit without breaking
the translation symmetry. As we have mentioned in the main text, when λ1 in Eq. (35) increases from 0 to 1 and λ2

is kept to be 0, the non-interacting TBG bands are turned into the “strong interacting bands” without breaking the
translation symmetry. Because both the spin and valley are polarized for the C2zT stripe phase, H(H) and H(F ) in
Eq. (35) are diagonal in spin and valley indices. Furthermore, in the strong coupling limit, we neglect the dispersion
of the narrow bands, i.e. εk = 0.

Now, we focus on the translationally invariant part of the Hamiltonian in the strong coupling limit,
i.e. δbb′

(
H(H)(κ) +H(F )(κ)

)
bmηs,b′nη′s′

in Eq. (35). As opposed to Sec. II in the main text, here we use the Chern

basis described above to study the properties of this part of the Hamiltonian. Since it does not break the translation
symmetry, we can remove the b subscript and replace the label κ for momentum in FMBZ by k that ranges over the
whole MBZ. For particular spin s and valley η,

(
H(H)(k) +H(F )(k)

)
mηs,nηs

becomes a 2 × 2 matrix. Thus, in the
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basis of Chern states, the effective Hamiltonian containing only this translationally invariant part can be written as

Heff =
∑

k∈MBZ,η,s

∑
µν

d†k,µ,η,s~n(k) · ~σµνdk,ν,η,s (E8)

For simplicity, we drop the valley and spin indices from the vector ~n. Since the Chern basis is continuous but
not periodic in k, the same is true for the vector ~n(k). Because Heff is invariant under C2zT transformation,
~n(k) = (n1(k), n2(k), 0), i.e., the third component of ~n(k) must vanish.

Here, we outline the argument for the winding numbers at the high symmetry momenta, while the details can be
found in the appendix of Ref. [51].

When k is near Γ, we expand the two components of ~n(k) to the powers of k :

ni(k ≈ Γ) = n
(0)
i +

∑
a

n
(1)
i,aka +

∑
a,b

n
(2)
i,abkakb +

∑
abc

n
(3)
i,abckakbkc +O(k4) (E9)

Since Heff is the effective Hamiltonian in the strong coupling limit, it is particle-hole symmetric. Under the particle-

hole transformation P , dΓ,µ,η,s −→ i(σ3)µνdΓ,ν,η,s and k −→ −k. As a consequence, n
(0)
i = 0 and thus a Dirac node

appears at Γ. In addition, the particle-hole symmetry also gives n
(2)
i,ab = 0. Furthermore, the Bloch states at Γ are

invariant under C3 transformation, leading to n
(1)
i,a = 0. This implies that the effective Hamiltonian close to Γ is

dominated by k3 terms, giving the winding of ±3 for the Dirac node at Γ.

FIG. 20. (a) The phase ϕ(k) of n1(k) + in2(k) over the first and extended MBZs. (b) the contours where (red) n1(k) and
(blue) n2(k) vanish and their signs in different region. The two bands become degenerate and a Dirac node appears at the
intersection point of the ed and blue curves. The winding numbers of the Dirac nodes are shown in dark green.

Similarly, due to the particle-hole symmetry, the winding number of the Dirac node at M can be shown to be ±1.
Additionally, the Dirac node at K also has a winding number of ±1 by C3 symmetry. However, we emphasize that
this argument does not give the sign of the winding numbers at these high symmetry momenta. With the Chern
basis constructed in Ref. [40], the winding numbers of Dirac nodes can be numerically obtained. Since the detailed
calculation has already been presented in Ref. [40], here we will only summarize the results in Fig. 20. In Fig. 20 (a),
we plotted the phase ϕ(k) = arg(n1(k) + in2(k)) with −π < ϕ(k) ≤ π. Fig. 20 (b) shows the colored curves along
which n1(k) = 0 and n2(k) = 0. Fig. 20 has demonstrated clearly that the the Dirac nodes at Γ, M , and K have the
winding numbers of +3, −1, and +1 respectively.

As we have just shown, the band structure at λ1 = 1 and λ2 = 0 resembles these strong interacting bands. By
folding this band structure into the FMBZ, we can get four Dirac nodes between the second and the third bands.
Nodes at K and K ′ points with the same chirality in the original MBZ are folded into the FMBZ, which are also
labeled by K and K ′ in Fig. 21(a). The other two nodes are close to the µ point on the corner of the FMBZ, which
comes from the two different M points in the original MBZ. The third M point is folded together with the Γ point,
which becomes a Dirac node between the first and the second bands. In Figs. 21(b-d), we provide the band gap
between the second and third bands in the FMBZ when λ1 = 1 and λ2 = 0.05, 0.1 and 0.15. It can be observed
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FIG. 21. The band gap between the second and the third bands of the interpolated Hamiltonian H (κ) for λ1 = 1 and
λ2 = 0, 0.05, 0.1 and 0.15. The color code represents the gap between the second and the third bands. Red symbols ⊕ and 	
stand for the Dirac nodes with opposite chiralities. As shown by the red dashed circle in subfigure (c), the four Dirac nodes
are in a patch around y point, and they move towards a point close to y with an increasing λ2.

FIG. 22. (a) The middle two bands’ wavefunction overlap between a given momentum κ and the reference point κ0 = y at
λ1 = 1 and λ2 = 0.1. (b) The angle ϕ2,3

xz (κ) at λ1 = 1, λ2 = 0.1 in a rectangular patch around y in the FMBZ. The patch Π is
represented by the black rectangle in subfigure (a). Black symbols ⊕ and 	 represent the Dirac nodes. (c-d) are calculated at
λ1 = 1, λ2 = 0.15.

that the four Dirac nodes move away from K, K ′ and µ points towards a point close to (but not exactly at) y point
when the value of λ2 is increased. The four Dirac nodes will meet with each other and annihilate, and the band gap
between the two will open at around λ2 = 0.14.

We also used the method discussed in App. E 1 to determine the chirality of these Dirac nodes. Since the nodes
annihilate around the point y, it is natural to choose κ0 = y as the reference point of the basis. In Fig. 22 (a), we
computed the values of N2(κ) over the FMBZ using y as the reference point at λ2 = 0.1. It can be seen that the
value of N2(κ) is relatively large around y, including the four Dirac nodes represented by black crosses. Therefore,
as we have discussed in App. E 1, we can represent the wavefunctions of the states around these Dirac nodes by the
wavefunctions at κ0. In Fig. 22 (b), we calculated the direction of the wavefunctions on the Bloch sphere ϕ2,3

xz (κ) on a
rectangular patch around the reference point. This patch is also represented by the black solid line in Fig. 22 (a). As
shown by the winding direction of ϕ2,3

xz (κ), we find that the two Dirac nodes along γ-x carry the same chirality, while
the other two nodes close to K, K ′ points carry the opposite chirality. This result agrees with the strong interacting
bands picture we discussed previously in this Appendix.

Thus, the four nodes can annihilate when they meet with each other. We also computed the value of N2(κ) and
ϕ2,3
xz (κ) at λ2 = 0.15, which can be found in Figs. 22 (c-d). All the four Dirac nodes are gapped at this point, and

there is no winding of ϕ2,3
xz (κ).
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FIG. 23. Subfigures (a-c) provide the direct gap E2,3
G (κ), the wavefunction overlaps N2(κ) and the angle parameter ϕ2,3

xz (κ)
between the second and the third bands at λ1 = λ2 = 0.035 in the proximity region of x point. Subfigures (d-f) are obtained
at λ1 = λ2 = 0.04 in the same FMBZ patch around the x point. The results in subfigures (g-i) are obtained in another FMBZ
patch around the γ point at λ1 = λ2 = 0.058. The FMBZ patch choices are shown in Fig. 13 (c) in the main text.

c. Brillouin zone border

In this subsection, we provide detailed numerical results about the Dirac nodes motion along the third path
introduced in Sec. V C, namely the direct path [(λ1, λ2) = (0, 0)→ (1, 1)]. We have mentioned in the main text that the
two nodes of the non-interacting bands move into the proximity of the x point in the FMBZ around λ1 = λ2 = 0.035,
while another pair of nodes are also created in this region at the same time. Similar to App. E 2 a, we use the method
described in App. E 1 to evaluate the chiralities of these nodes. As shown in Figs. 23 (c), we observe this pair of nodes
created around the x point with opposite chiralities along the γ-x line. One of these two nodes with −1 chirality is
close to the other nodes with the same chirality +1. The other node with +1 chirality is on the right of x point.
With increasing values of λ1 and λ2, the three left-moving nodes merge into one node with chirality +1, and the
right moving mode also carries +1 chirality, which can be seen in Fig. 23 (f). These two nodes move apart from each
other as λ1 and λ2 get larger. Their path wrap around the FMBZ and they approach each other again around γ
point when λ1 = λ2 ≈ 0.055. In Fig. 23 (i), we provide the value of ϕ2,3

xz (κ) in a FMBZ patch around the γ point at
λ1 = λ2 = 0.058, and we find that these two Dirac nodes carry opposite chiralities after they went across the FMBZ
along the b̃1 axis. Thus, band gap between the second and the third bands can be opened after these two nodes
annihilate with each other.
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FIG. 24. The HF band structure and spin valley polarizations close to flat band limit (t = 0.01). (a-d) The spin polarization
si,z(κ) of each HF band state. (e-h) The valley polarization vi(κ) of each HF band states. We use “◦” to represent the states
with sz,i(κ) or vi(κ) > 0 and “×” to represent states with sz,i(κ) or vi(κ) < 0, such that the degenerate states with opposite
spin or valley indices become visible.

Appendix F: Additional numerical results

In this appendix, we provide additional numerical results that were mentioned in Secs. IV and V. In particular,
we discuss the spin and valley polarization in various phases in App. F 1, and symmetries and real space charge
distributions in C2zT stripe and QAH phases in App. F 2.

1. The effect of kinetic energy & spin and valley polarization

In Sec. IV of the main text, we have shown the phase diagram and the representative Hartree-Fock band structures
by assuming valley polarization and flat band limit (t = 0). In this subsection, we will provide the self-consistent
solutions of various phases without assuming flat band limit or any spin or valley polarization, albeit these solutions
are obtained on a slightly smaller 12× 12 momentum lattice. The spin and valley polarization of these states can also
be computed. We found that all these states are spin and valley fully polarized, including the QAH phase, the C2zT
stripe phase, and the competing states with intermediate values of w0/w1.

For each state in the HF bands φbmηs;i(κ), we can calculate its spin and valley polarization. The spin vector is
given by:

~si(κ) =
∑
bmη

∑
ss′

(~s)ss′φ
∗
bmηs;i(κ)φbmηs′;i(κ) , (F1)

in which ~s = (sx, sy, sz) are the Pauli matrices of spin indices. Similarly, we can also define the valley polarization as
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FIG. 25. The HF band structure and spin valley polarizations with kinetic energy considered (t = 1). (a-d) The spin polarization
si,z(κ) of each HF band state. (e-h) The valley polarization vi(κ) of each HF band states. We use “◦” to represent the states
with sz,i(κ) or vi(κ) > 0 and “×” to represent states with sz,i(κ) or vi(κ) < 0, such that the degenerate states with opposite
spin or valley indices become visible.

follows:

vi(κ) =
∑
bms

∑
ηη′

(τz)ηη′φ
∗
bmηs;i(κ)φbmη′s;i(κ) , (F2)

in which τz is the Pauli z matrix acting in valley indices. By studying the values of ~si(κ) and vi(κ) of the occupied
states, we can determine whether the solution is spin and valley fully polarized or not, and validate the polarization
assumptions in Secs. IV and V.

Since the interacting Hamiltonian of TBG has the spin SU(2) symmetry, the spins of the self-consistent solutions
could be along any direction due to the random initial conditions. For that reason, we rotate the direction of the spin
of the lowest energy band at Γ (when considering the MBZ) or γ (for the FMBZ) point to +z direction. We also add
a small term ∆Hbmηs;b′nη′s′(κ) = ε δbb′δmnδηη′(sz)ss′ with ε ≈ 10−6 to lift the degenerate bands with opposite spins
when evaluating the values of si,z(κ) for each band. Similarly, we also add a term ∆Hbmηs;b′nη′s′ = ε δbb′δmn(τz)ηη′δss′
to lift the degeneracy of bands from opposite valleys when solving the values of vi(κ).

In the flat band limit, the symmetry of the interacting Hamiltonian is enhanced to U(4) [28, 30, 46]. Thus, the
spin and valley indices could be mixed together due to the randomized initial condition. We solve the self-consistent
equation without assuming spin and valley polarization at both t = 0 and t = 0.01. With the kinetic energy being
slightly turned on, we can lift the spin and valley degeneracy due to the U(4) symmetry, while the band structures
are not strongly affected. Numerical solutions also shows that the energy of the HF energy bands are only changed
by 0.014 meV at most. In Fig. 24, we provide the HF band structures at w0/w1 = 0.4, 0.6 and 0.8 with t = 0.01.
More precisely, the color code represents the spin of each state sz,i(κ) in Figs. 24 (a-d). It can be observed that the
NF occupied bands are fully spin polarized in the QAH phase, C2zT stripe phase and intermediate states. Similarly,
the values of valley polarization vi(κ) are represented by the color code in Figs. 24 (e-h), and we also found that the
valley is fully polarized in all these three phases.
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We also solved the self-consistent solutions with the kinetic energy considered (t = 1) at w0/w1 = 0.4, 0.6 and
0.8. The HF band structures and the spin valley polarization of these states are shown in Fig. 25. Similar to the
solutions in the flat band limit, the NF occupied bands are all spin and valley fully polarized as can be seen by the
color code. Moreover, the energy of the states with (

√
3×
√

3) enlarged unit cell is still slightly lower than the state
with (2× 1) enlarge unit cell by ∼ 0.013 meV per moiré unit cell at w0/w1 = 0.6, which is comparable to the results
in the competing region at flat band limit. Furthermore, the energy (per moiré unit cell) of C2zT stripe phase at
w0/w1 = 0.8 and t = 1 is ∼ 0.21 meV lower than the translation symmetric solution, and ∼ 0.13 meV lower than the

(
√

3×
√

3) enlarged unit cell state, which also echo the values shown in Fig. 1 (a). In conclusion, the self-consistent
solutions at t = 1 demonstrate the stability of the C2zT stripe phase against the perturbation from the kinetic energy.

2. Symmetries and real space charge distributions of C2zT stripe and QAH phases

a. C2zT stripe phase

As shown in App. F 1, the C2zT stripe phase is spin and valley polarized. Therefore, we can perform the self-
consistent mean field solution in the presence of kinetic term H0 (i.e., when t = 1) at w0/w1 = 0.8 on a much larger
36× 36 momentum lattice by assuming spin and valley polarization to study the properties of the C2zT stripe phase.

FIG. 26. The symmetry breaking strength of six types of lattice symmetries G(g,κ) calculated from the Hartree-Fock solution
at w0/w1 = 0.8 on 36× 36 momentum lattice. Unlike Fig. 7, the kinetic Hamiltonian is considered here. The maximum value

of G(T̂ã1P,κ) is around 0.006 in subfigure (f). Note that (a), (c) and (f) use log scale for G(g,κ).

In Fig. 26, we first present the symmetry breaking strength G(g,κ) for the six types of lattice symmetries given in
Table II. Similar to the flat band results, both C2zT and C2x symmetries are preserved. However, since the kinetic
Hamiltonian satisfies [H0, P ] 6= 0 and {H0, P} = 0, the total Hamiltonian does not commute with the particle-hole
transformation, therefore there is no particle-hole symmetry. In Fig. 26 (f), we find that the presence of kinetic energy

also breaks T̂ã1
P symmetry, although the symmetry breaking is very weak (maximum value of G(T̂ã1

P,κ) is around

0.006). We expect that some properties of the real space density distribution which requires T̂ã1P symmetry are no
longer strictly correct, but will be approximately satisfied.

Similar to Fig. 8 in main text, Fig. 27 presents the total electron density in real space. We can already notice
that the total charge Q in the unit cell around r = 0 is different from the Q in the unit cell around r = ã1. The
charge on every AA stacking site is slightly modulated, although the total charge difference between two moiré unit
cells are differed by less than 0.2%. This could also be observed in the charge density for different sublattice and
layer components in Fig. 28. Indeed, the electron density in sublattice A top layer ρα=A,`=t(r) is not equal to the

density distribution in sublattice B bottom layer ρα=B,`=b(r + ã1) due to the weakly breaking T̂ã1
P , although these

two values are very close to each other.

To quantify the change of charge density distribution under translation transformation r→ r+ ã1, we evaluate the
values of the functions D1(r) and D2(r) defined in Eqs. (33) and (34) for the C2zT stripe phase solution with kinetic

energy. Since the symmetry T̂ã1
P symmetry is broken, this state is not invariant under the transformation C2zT T̂ã1

P ,
and the total charge density will no longer be the same under translation r→ r+ ã1, as we have discussed in Sec. V B.
To measure the change of the total charge density under such translation, we can also define the following quantity:

D3(r) = Ωc

∣∣∣∣∣∑
α`

[
ρα`(r)− ρα`(r + ã1)

]∣∣∣∣∣ . (F3)
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FIG. 27. The total charge distribution in real space at w0/w1 = 0.8, with kinetic energy considered. The numbers are total
electron numbers in each moiré unit cell, in which we observe a charge “density wave”. The modulation of total charge between
difference unit cells is less than 0.2%.

FIG. 28. The electron density distribution in real space at w0/w1 = 0.8, and the kinetic energy is considered. Similar to Fig. 9,
the numbers represent the total electron charge for each component Qα` in each moiré unit cell.

Clearly D3 = 0 when the total charge distribution is exactly the same in two moiré unit cells. We evaluate the values
of D1(r), D2(r) and D3(r) over a moiré unit cell, and the results can be found in Fig. 29. From Figs. 29 (b) and (c),
we find that both the total charge density and single layer charge density are changed notably after the real space
translation. The maximum value of total charge density change between moiré unit cells as measured by D3(r) is
around 0.016, as expected by the weak breaking of the P symmetry due to the kinetic term.

b. QAH phase

We have also analyzed the symmetries and the real space charge distributions of the quantum anomalous Hall states
at t = 0, 1 and w0/w1 = 0.4 on a 36× 36 momentum lattice. Similar to the C2zT stripe phase, this state is also spin
and valley polarized as shown in App. F 1.

The QAH state does not break the translation symmetry. Therefore, we use k to represent the momentum in moiré
Brillouin zone, instead of κ. Eq. (26) in the main text can also be defined for the MBZ. In Fig. 30, we provide the
values of the symmetry breaking strength of the QAH state at the flat band limit. Here we consider four types of single
valley symmetries: C2zT , C3z, C2x and P . The results show that this QAH state breaks C2zT and C2xsymmetries,
while it is invariant under C3z and P transformation. We also provide the symmetry breaking strength values of the
QAH state with kinetic terms in Fig. 26. The C3z symmetry is still fulfilled, but all other three symmetries are broken
after we add the kinetic term into consideration. It is reasonable to observe strong C2zT symmetry breaking in both
Figs. 30 (a) and 26 (a), since the breaking of C2zT is a property of states with nonzero winding numbers. Besides,
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FIG. 29. The translation symmetry breaking of the density distribution at w0/w1 = 0.8 when the kinetic Hamiltonian is
included. The definition of each quantity shown in the three subfigures (D1(r), D2(r) and D3(r) respectively) are given by
Eqs. (33), (34) and (F3). Note that (b) and (c) use color log scale.

FIG. 30. The symmetry breaking strength of four types of single valley symmetries (C2zT , C3z, C2x and P ) calculated from
the QAH state solution at flat band limit (t = 0) and w0/w1 = 0.4 on 36× 36 momentum lattice. The black dashed line stands
for the moiré Brillouin zone. Note that we use log scale for G(C3z,k) (b) and G(P,k) (d). We found that this QAH state has
broken C2zT and C2x symmetries, while it is still invariant under C3z and P transformations.

FIG. 31. The symmetry breaking strength of four types of symmetries calculated from the QAH state solution with kinetic
energy terms (t = 1) at w0/w1 = 0.4 on 36 × 36 momentum lattice. Similar to Fig. 30, we use log scale in subfigures (b) and
(d). When the kinetic terms are considered, the QAH state breaks the P symmetry, and the maximum value of G(P,k) is
about 0.35.

the P transformation commutes with the projected interacting Hamiltonian HI and anti-commutes with the kinetic
Hamiltonian H0, and therefore the total Hamiltonian at t = 1 does not commute with P . Hence, the QAH state at
t = 1 is not symmetric under the P transformation, as shown in Fig. 26 (d).

We can also apply Eq. (29) to these QAH states to obtain the charge distributions in real space. In Figs. 32 and
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FIG. 32. The electron density distribution of the QAH state in real space at flat band limit and w0/w1 = 0.4. The numbers
represent the total electron charge of the corresponding component Qα` in each moiré unit cell.

FIG. 33. The electron density distribution of the QAH state at t = 1 and w0/w1 = 0.4. The numbers represent the total
electron charge of each component Qα` in every moiré unit cell.

33, we provide the numerical results of ρα`(r) of each sublattice and layer components for the QAH states at t = 0
and t = 1, respectively. The white numbers represent the total charge of each component in every moiré unit cell
Qα`, which is defined in Eq. (32) in the main text. In both of the cases, the electrons can be found on A sublattices
with a much higher probability than on B sublattices, since the Chern band wavefunctions in TBG has a substantial
sublattice polarization, as discussed in Ref. [30].
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