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We examine the physical implications of the viscous redundancy of two-dimensional anisotropic
fluids, where different components of the viscosity tensor lead to identical effects in the bulk of a
system [Rao and Bradlyn, Phys. Rev. X 10, 021005 (2020)]. We first re-introduce the redundancy,
show how it reflects a lack of knowledge of microscopic information of a system, and give microscopic
examples. Next, we show that fluid flow in systems with a boundary can distinguish between
otherwise redundant viscosity coefficients. In particular, we show how the dispersion and damping
of gravity-dominated surface waves can be used to resolve the redundancies between both dissipative
and Hall viscosities, and discuss how these results apply to recent experiments in chiral active
fluids with nonvanishing Hall viscosity. Our results highlight the importance of divergenceless,
magnetization-like contributions to the stress (which we dub “contact terms”). Finally, we apply
our results to the hydrodynamics of quantum Hall fluids, and show that the extra contribution to
the action that renders the bulk Wen-Zee action gauge invariant in systems with a boundary can
be reinterpreted in terms of the bulk viscous redundancy.

I. INTRODUCTION

Viscosity in a fluid describes stresses developed in re-
sponse to time-dependent strains. Viscous forces can
be either dissipative or non-dissipative; The former arise
from the dissipative viscosity, which for an isotropic fluid
consists of the familiar bulk and shear viscosities[1]. The
latter come from the time-reversal odd part of the viscos-
ity tensor called the Hall (odd) viscosity[2, 3], which has
been recently studied in topological phases[4–19] and in
classical chiral active fluids[20–27].

In this work, we expand on and explore the experimen-
tal consequences of the viscous redundancy highlighted in
Ref. 28: in anisotropic systems, there are more viscosity
coefficients than independent bulk viscous forces. We
show that this reflects a lack of experimentally accessi-
ble microscopic information in the bulk of the system.
We derive several implications for our understanding of
hydrodynamics in general, and resolve the redundancy
by studying boundary phenomena. We show that the
dispersion of boundary waves can be used as an experi-
mental probe of viscosity coefficients that cannot be dis-
tinguished in the bulk. Furthermore, we will derive con-
straints on the degree to which power dissipation and
angular momentum conservation can be used to extract
individual viscosity coefficients, absent additional micro-
scopic information.

The viscosity determines fluid flow through the Navier-
Stokes equation

∂tgj + ∂i(τ
i
j + gjv

i) = 0, (1)

where gj is the momentum density, v is the fluid velocity,
and the stress tensor is

τ ij = pδij − ηi kj l∂kv
l, (2)
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with pressure p. Roman indices index the Cartesian di-
rections, and repeated indices are summed. For concep-
tual clarity we maintain the “natural” orientation of up-
per indices for velocity and lower indices for momentum.
This is particularly important since the stress tensor τ ij
is not symmetric for anisotropic fluids; the first index of
the stress tensor denotes which surface on which internal
forces act, while the second index denotes the direction
of the force. We give a complete account of the notation
used in this work in Appendix A.

Since bulk flows are only sensitive to bulk viscous force

fηbulk,j = ∂iη
i k
j l∂kv

l (3)

rather than the individual viscosities themselves, this im-
plies that the viscosity coefficients contain redundant in-
formation.

For the Hall viscosity, this can be seen in fluids with
threefold or higher rotational symmetry, where the Hall
viscosity tensor takes the form

(ηH)i kj l =ηH
(
δikεjl − δjlεik

)
+ η̄H

(
δijε

k
l − δkl εij

)
, (4)

where ηH is the isotropic Hall viscosity, η̄H is a second
angular-momentum nonconserving Hall viscosity, δ is the
Kronecker delta, and ε is the antisymmetric Levi-Civita
symbol. This leads to a bulk viscous force

fH
bulk = (ηH + η̄H)∇2v∗, (5)

where we have defined

v∗,i = εijv
j . (6)

The bulk viscous force is determined by the sum

ηH
tot = ηH + η̄H (7)

of the two Hall viscosity coefficients, and so ηH and η̄H[28,
29] are redundant, as they have the same effect in the bulk
equations of motion. The difference

ηH
diff = ηH − η̄H (8)
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does not enter into the bulk force, and can be shifted by
a “contact”[28] term

δτ ij = C0∂
∗ivj (9)

in the bulk stress tensor, as shown explicitly in Ap-
pendix B. As δτ ij can be written as the curl of a vec-
tor, we can view the contact term as a “magnetization
stress” [7, 30]. Analogous to electrical magnetization, a
uniform magnetization stress has no effect in the bulk but
will give rise to a force on the boundary; thus we expect
the boundary force to depend on ηH

diff . This magnetiza-
tion stress has previously been interpreted as a “torsional
Hall viscosity” [5, 7, 31], which we revisit in Appendix D.

Similar considerations also apply to the dissipative vis-
cosity. For an incompressible anisotropic fluid with three-
fold (or higher-than-fourfold) rotational symmetry, the
dissipative viscosity is[28, 32, 33]

(ηD)i kj l = ηsh(σx � σx + σz � σz)i kj l + ηR(ε� ε)i kj l,

where � is the symmetric tensor product. Note that, as
discussed in Appendix B, in general there can also be
an additional contribution ηRC ∝ δ � ε to the viscosity
tensor. However, for an incompressible fluid this cannot
be distinguished from η̄H, and so we will set ηRC = 0
for convenience. See Ref. [34] for a related discussion.
Furthermore, we exclude the unique case of fourfold ro-
tational symmetry where the shear viscosity splits. The
bulk dissipative viscous force is proportional to the sum
of dissipative viscosities,

fdis
bulk =

(
ηsh + ηR

)
∇2v, (10)

illustrating that ηsh and ηR are redundant. The dissipa-
tive contact term (derived in detail in Appendix B 2)

δτ ij = Cdis(∂jv
i − δij∇ · v) (11)

gives a magnetization stress that shifts the difference

ηdis
diff = ηsh − ηR (12)

while leaving the sum

ηdis
tot = ηsh + ηR (13)

fixed. Consequently, considering dissipation fdis · v and
using only the bulk equations of motion[1] requires ηdis

tot >
0; microscopic information other than the flow is neces-
sary to say more[33]. In Appendix C we derive this ex-
plicitly by computing the dissipated power from the mass
and momentum continuity equations.

Unless the bulk stress tensor is directly measurable
(which requires knowledge of microscopics), redundant
viscosity coefficients are indistinguishable through bulk
flow measurements, which probe the force fηbulk,j . As an
example, we note that if the internal angular momentum
Lint and its associated flux M int,k are known (e.g. in a
liquid crystal[35] or spin-orbit coupled electron fluid[36]),

then for an incompressible fluid angular momentum con-
servation

∂tLint(r, t) = εji τ
i
j + ∂kM

int,k (14)

determines the antisymmetric part of the stress tensor.
Combined with Eq. (1), this determines ηH − η̄H and
ηsh − ηR, as shown in Appendix D. For example, in a
fluid with no internal angular momentum, Eq. (14) re-
quires the antisymmetric stress to vanish, telling us that
ηR = η̄H = 0. For a non-rotationally-invariant example,
in Appendix D 1 we contrast a quantum Hall fluid with
mass anisotropy and an isotropic quasi-2D quantum Hall
fluid in a tilted magnetic field. The low-energy spectrum
for these two systems are identical [37]. Furthermore
these two systems have the same bulk Hall viscous forces.
However, as we review in Appendix D 1, the two systems
have different viscosity tensors, due to the magnetization
stresses [10, 19]. Absent knowledge of the microscopic
Hamiltonian, bulk flow measurements cannot distinguish
between these two systems. Thus, the viscous redun-
dancy can be experimentally resolved, and the value of
the magnetization stress fixed, if the microscopic internal
degrees of freedom of the fluid can be directly measured
or inferred.

Similarly, Ref. [33] argued that the redundancy in the
dissipative viscosity can be resolved through measure-
ments of local heating. As we show in Appendix C, how-
ever, this relies on knowing the microscopic form of the
bulk energy current. Without this microscopic knowl-
edge, the local heating rate suffers from the same am-
biguity as the force density, essentially since the local
heating rate in the bulk is proportional to fηbulk · v. For
the same reason, the local heating rate cannot be used
as a probe of the Hall viscosity.

In the absence of experimental or theoretical access
to microscopic information, we can use boundary effects
to resolve the viscous ambiguity, as redundant viscos-
ity coefficients provide unique forces on a fluid bound-
ary. Independently, viscous boundary effects have been
an interesting area of study[38], especially for the Hall
viscosity[21, 39–44]. The Hall viscosity ηH is often viewed
as “trivial” in the bulk of an incompressible fluid, since
it can be absorbed into a redefinition of the pressure;
on the boundary it provides a nontrivial effect[43, 44].
In field theories of hydrodynamics[40], Hall viscosity is
encoded in geometric terms in the bulk and boundary
action for the fluid[9]. We will show how this reflects the
redundancy between ηH and η̄H. From an experimen-
tal perspective, boundary effects of ηH have been studied
through free surface waves[39, 41], culminating in one of
the first measurements of the Hall viscosity in a colloidal
chiral fluid[21].

Here we consider boundary effects to resolve the vis-
cous ambiguity. We interpret magnetization stresses
through the language of stress boundary conditions, and
describe a trade-off between modified boundary condi-
tions and no-stress boundary conditions with a bulk con-
tact term. We show how surface wave dispersion rela-
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tions disambiguate redundant viscosities, both dissipa-
tive and non-dissipative. We relate this to recent exper-
iments examining Hall viscosity in chiral active fluids.
We then revisit the effective description of quantum Hall
fluids, showing how the boundary term added to the ac-
tion to preserve gauge invariance[9] can be interpreted as
a (gauge-noninvariant) magnetization stress, revealing a
new perspective on this system.

II. BOUNDARY FORCES

We begin by computing the boundary viscous forces
for an incompressible fluid. The boundary Hall viscous
force is

fH
bdd,j = n̂i(τ

H)ij , (15)

with ni the unit boundary normal vector. For an incom-
pressible fluid, we find from Eq. (4) that

fH
bdd =

[(
ηH

tot + ηH
diff

) (
∂svn +

vs
R

)
+ ηH

totω
]
n̂

+
[(
ηH

tot + ηH
diff

) (
∂svs −

vn
R

)]
ŝ,

(16)

where ŝ = −n̂∗ is the boundary tangent vector, ω =
εij∂iv

j is the vorticity, and R = 1/κ is the local radius of
curvature of the boundary[9, 21]. The pressure-like con-
tribution ηH

totωn̂ in Eq. (16) is the bulk force restricted
to the boundary and can be captured by defining the
modified pressure[39, 40, 42] p̃ = p − ηH

totω. This re-
flects a more general sentiment from previous works that
the only bulk effect of the Hall viscosity is to modify
the pressure[21, 43, 44]. We see from Eq. (16) that the
boundary force has additional terms, including contribu-
tions dependent on ηH

diff and therefore on C0.
Analogously, the boundary dissipative viscous force is

fdis
bdd =

[(
ηdis

tot + ηdis
diff

)
∂nvn

]
n̂

+
[
ηdis

totω + (ηdis
tot + ηdis

diff)
(
∂nvs −

vs
R

)]
ŝ.

(17)

The boundary force depends on both the bulk observable
ηdis

tot, and the difference ηdis
diff . In order for the differences

ηH
diff and ηdis

diff to have a measurable effect on flows, we
must consider systems with a boundary.

A. Stress Boundary Conditions

We now relate the viscous redundancy to boundary
conditions on the stress tensor[12, 38, 42, 45]. The no-
stress boundary condition, relevant for the free surface
considered later, is given by,

n̂iτ
i
j = −pn̂j + fH

bdd,j + fdis
bdd,j = 0, (18)

for a fluid with pressure p. For the sake of brevity we ig-
nore surface tension, which would modify the tangential

component of Eq. (18) We see that both the tangent and
normal components of Eq. (18) depend on the differences
ηdis

diff and ηH
diff , and therefore the no-stress boundary con-

ditions are sensitive to the magnetization stresses and in
turn to the contact terms C0 and Cdis.

The normal component of Eq. (18) requires that
the modified pressure balance the viscous forces at the
boundary. It was previously thought that balancing the
tangential no-stress condition for an isotropic fluid with-
out dissipation would require finite curvature R[21, 39].
Here in contrast, we see the tangential component in
Eq. (18) can be balanced if ηH

diff = −ηH
tot even if R→∞.

The boundary force allows us to probe the values of
ηH

diff and ηdis
diff , which we can view as intrinsic properties

of the fluid. Alternatively, changes to the difference vis-
cosities (and hence changes to the magnetization stress)
can be absorbed into a modification of the boundary con-
ditions. This trade-off reflects a broader statement that
changing the microscopic definition of the magnetization
stress in the bulk modifies the notion of no-stress bound-
ary conditions. This has implications for unambiguously
determining the viscosity coefficients when the boundary
conditions are not well controlled (as in electron hydro-
dynamics) and when the bulk stress tensor cannot be
directly measured. We will see a concrete example of
this trade-off in quantum Hall fluids. First we explore
the implications of Eq. (18) for surface waves.

III. SURFACE WAVES

The viscous redundancy can be translated into a phys-
ical effect by considering surface waves on an incompress-
ible, anisotropic fluid with Hall viscosity. We consider lin-
earized waves on the surface of a half plane with height
h(x, t), in the presence of a gravitational field −gŷ. A
linearized kinematic boundary condition

∂th = vy(y = h), (19)

ensures the continuity of the velocity at the boundary.
We also have the no stress condition Eq. (18), where to
linear order

n̂ = ŷ, (20)

ŝ = −x̂. (21)

We take a wave ansatz

v ∝ exp[i(kx− Ξt)] (22)

and solve for the dispersion

Ξ(k) = ξ(k)− iΓ(k), (23)

where ξ(k) is the frequency and Γ(k) the damping rate.
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A. Gravity-dominated waves

When the gravitational force is the dominant scale, we
can follow the approach of Ref. [39]. We introduce the
dimensionless parameter

β2 = ηdis
totk

2/
√
gk. (24)

Gravity dominated waves occur when β << 1, with all
viscosities treated as small comparatively. In Appendix E
we show that in this limit the dispersion relation for sur-
face waves is given by

ξ±(k) = ±
√
gk − 2ηHk2, Γ±(k) = 2ηshk2. (25)

We see that Γ±(k) depends on ηdis
diff through ηsh, whereas

ξ±(k) depends on ηH
diff via ηH. Note that we obtain the

same results to leading order in k, even without consid-
ering the viscosities to be small. Eq. (25) agrees with
Ref. [39] despite our additional nonzero viscosity coeffi-
cients.

We thus propose that the damping rate gives an ex-
perimental measure of the difference between dissipative
viscosities,

Γ±
k2
− ηdis

tot = ηdis
diff . (26)

Similarly, ξ can be used to experimentally measure the
difference between non-dissipative viscosities,

ηH
diff = ±

√
g

k3/2
− ξ±
k2
− ηH

tot. (27)

Recall that ηH
tot and ηdis

tot can in principle be determined
from independent bulk measurements: Eqs. (26) and (27)
allow us to determine ηH

diff and ηdis
diff , and therefore resolve

the viscous ambiguity.
It is possible for the damping Γ± = 0 even in a dissi-

pative fluid provided ηdis
diff → −ηdis

tot, i. e. if all dissipation
is due to rotational viscosity. Alternatively, we can get
the same result for a fluid with no rotational viscosity
by viewing the magnetization stress as modifying the no
stress boundary conditions; it is only when the bound-
ary conditions are fixed that Γ resolves the dissipative
ambiguity. This can also be viewed as a modification of
Eq. (18), interpreting Cdis as an anomalous stress at the
boundary.

Furthermore, when ηsh < 0 our surface waves grow
exponentially in time. This implies that the fluid surface
is unstable at the linearized level. Thus non-negativity
of the shear viscosity alone is dictated by stability of the
free surface, while the bulk equations of motion require
ηdis

tot ≥ 0; there is no further constraint on ηR from this
setup.

B. Chiral Viscosity Waves

We next consider g = 0 and find chiral waves propa-
gating along the boundary of the half plane, in agreement

with previous work[21, 42]. The details of the calculation
are given in Appendix E 2. To leading order in ηdis

tot, the
dispersion is given by

Ξ = −2ηHk2 − 2ik2
√
|ηH|ηdis

tot. (28)

This indicates that the chiral waves move in a direction
set by the Hall viscosity. Importantly, it is only the
component ηH rather than ηH

tot that sets the direction.
Hence the direction of the waves cannot be determined
from bulk data alone, or equivalently that the expression
above is sensitive to the non-dissipative contact term.
Because we assumed that the dissipative viscosities were
small in this derivation, we do not find a dependence of
the dispersion relation on the dissipative contact term at
this order.

C. Chiral Active Fluids

So far we have considered a fluid with an external
mechanism of time-reversal symmetry breaking, such as
a magnetic field. Recent experiments on colloidal chi-
ral active fluids, however, break time-reversal via a local
rotation rate Ω for fluid particles[21]. This changes the
constitutive relation for the stress tensor to measure vor-
ticity as a deviation from 2Ω. As shown in Appendix F,
this allows for a steady state vorticity which takes the
value ωs = ηRΩ/ηdis

tot at y = 0. We also introduce a fric-
tional force µ between the fluid and the substrate, which

introduces a hydrodynamic length δ =
√
ηdis

tot/µ. In the
long wavelength kδ << 1 limit where gravity is small
compared to other scales, we show in Appendix F that
there are two physical modes

Ξ1g(k) = 2(iηH − ηsh)
2ΩδηR

iηdis
tot

k3 − igkδ√
ηdis

totµ

Ξ2g(k) = −iµ− 2ΩηR

ηdis
tot

kδ +
igkδ√
ηdis

totµ
.

(29)

The Ξ2,g mode is strongly overdamped at small k. De-
spite the inclusion of the additional Hall viscosity η̄H, the
Ξ1,g=0(k) mode matches the dispersion relation found in
Ref. [21] in the absence of gravity. We see that the fluid
surface is stable only if sign(ηHηRΩ) < 0, in order to en-
sure perturbations decay exponentially in time. We see
that the Ξ1,g=0 mode is sensitive to contact terms via

ξ1,g=0(k) = −
(
(ηdis

tot)
2 − (ηdis

diff)2
) Ωδk3

µηdis
tot

Γ1,g=0(k) = −(ηH
tot + ηH

diff)(ηdis
tot − ηdis

diff)
Ωδk3

µηdis
tot

.

(30)

Finally, we note that there is a crossover to gravity-
dominated waves for sufficiently large g (β � 1):

Ξ1/2,g → ξ∓ − iΓ∓ − (iµ+ kδωs)/2, (31)

with ξ±,Γ± from Eq. (25). We show the dispersion for
various g in Fig. 1.
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FIG. 1. Dispersion relation for surface waves with gravity and
time-reversal breaking from a local rotation rate Ω. The red
plot has g = 10, the blue plot has g = 1 and the orange has
g = 1.2. The other parameters are fixed at ηsh = 0.1, ηR =
0.5, ηH = 0.3,Ω = −0.6 and µ = 1. We see that as g increases,
the dispersion relations begin to converge to the Lamb wave
dispersion of ±

√
gk.

IV. QUANTUM HALL REGIME

Finally, we examine quantum Hall fluids. The quan-
tum Hall fluid is dissipationless and rotationally invari-
ant, and thus we only consider the isotropic Hall viscos-
ity. Although the quantum Hall fluid is rotationally in-
variant, we will see that there are boundary forces which
have the appearance of magnetization stress. In this sec-
tion we work in 2+1 dimensions and use Greek works for
spacetime indices (see Appendix A). The Hall viscosity
is given by[2, 15, 46]

ηH
WZ =

νs̄

4π
B, (32)

where, ν is the filling fraction[47], −s̄ is the average or-
bital spin per particle and B is the magnetic field. The
Hall viscosity derives from the Wen-Zee (WZ) action[48]

SWZ =
νs̄

2π

∫
M
A ∧ dω̄. (33)

The WZ term couples geometry (SO(2) spin connection
ω̄) to the U(1) electromagnetic vector potential A. Ab-
sent a boundary, the variation of SWZ with respect to the
geometry with fixed (reduced) torsion[7, 49] yields the
bulk Hall viscous stress. To see this, we consider a strain
perturbation eaµ = δaµ + uaµ(t) with traceless spatially-
uniform deformation tensor uaµ = ∂µu

a(t). The nonva-
nishing component of the spin connection is[7, 31, 49]
ω̄0 = 1

2ε
abeµa∂te

b
µ, and the corresponding bulk stress re-

sponse is

(τWZ)ij = ηH
WZ

(
∂iv∗j + ∂∗ ivj

)
. (34)

With a boundary present, the Wen-Zee action Eq. (33)
is no longer invariant under U(1) gauge transformations
of the vector potential, and to preserve gauge invariance
we must add the boundary action[9]

SBT =
νs̄

2π

∫
∂M

A ∧K, (35)

!!
!!

""

FIG. 2. Schematic of the two views of quantum Hall flu-
ids presented. Left: fluid with Hall viscosity and a modified
normal stress at the boundary and Right: fluid with Hall vis-
cosity and a bulk contact term, with zero normal stress at the
boundary.

where the extrinsic curvature one-form K =
nµ∂λs

µdxλ [9, 40]. Eqs. (33) and (35) combine to
yield the fully gauge invariant action

S =
νs̄

2π

∫
M
ω̄ ∧ dA− νs̄

2π

∫
∂M

A ∧ dα. (36)

Above, α is the angle between the boundary frame {n, s}
and eaµ

∣∣
∂M [50].

The first term in Eq. (36) is equivalent to Eq. (33) in
the bulk. The bulk stress response is therefore given by
Eq. (34). The first term in Eq. (36) does not contribute
to the boundary stress tensor. However, for a half plane
geometry Ref. 40 showed that the second term in Eq. (36)
gives a viscous force

fBT
n = −2ηH

WZ∂svn (37)

normal to the boundary that modifies the boundary con-
ditions. We have chosen the gauge A = −Bydx [39]. The
total boundary force is now n̂iτWZ

ij + fBT
n n̂j . We may in-

terpret the boundary term in Eq. (36)—and hence the
boundary force—as arising from a contact term, choos-
ing (in this gauge) C0 = −2ηH

WZ. To this end, we can
reinterpret the stress tensor of the system with the con-
tact term added as

(τWZ)ij + (τC0)ij = ηH
WZ

(
∂iv∗j − ∂∗ ivj

)
. (38)

The stress tensor is no longer symmetric, and appears
to break U(1) gauge invariance in the bulk. The ef-
fective stress Eq. (38) reproduces the normal boundary
force n̂in̂jτWZ

ij + fBT
n with a modification to the (already

non-universal) tangential boundary condition. This is de-
picted in Fig. 2. The stress tensor Eq. (38), corresponds
to viscosities ηH = 0, η̄H = ηH

WZ: all of ηH
tot comes from

the rotational symmetry-breaking coefficient η̄H . In the
language of Refs. [34, 40], this means the boundary term
has the effect of shifting the Hall viscosity into the “odd
pressure” η̄H. Rotational symmetry is restored by the
additional tangential boundary force −n̂iŝjτC0

ij .
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V. OUTLOOK

We have seen that waves at a free surface provide
an experimentally accessible way to distinguish between
(dissipative and Hall) viscosity coefficients that produce
identical bulk flows. Our work is directly applicable
to experiments in chiral active fluids. Additionally, as
showed in detail in Appendix D, the nondissipative mag-
netization stress is intimately related to “torsional Hall
viscosity”[5, 31]. Our results thus serve as a guide to
probing torsional response in two-dimensional fluids.

Going forward, our approach extends to fluids
with twofold rotational symmetry, where additional
anisotropic viscosities appear. Additionally, exploring
surface waves in compressible fluids could be relevant for
both classical active fluids and composite Fermi liquid
states. For compressible fluids, the dissipative viscous re-
dundancy involves ηsh, ηR, and the bulk viscosity ζ, as we
discuss in Sec. B 2. We expect that the interplay between

Hall viscosity and odd torque[34] will play a larger role
in the free surface properties of compressible fluids. Our
analysis can be straightforwardly generalized to analyze
partial-slip boundary conditions[12] relevant for electron
hydrodynamics and quantum Hall transport. Lastly, our
work highlights the importance of local spin imaging[36]
as a probe of the viscous redundancy in electron fluids.
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Appendix A: Notation and Conventions

We denote two dimensional spatial indices by letters i, j, k, l, ... which label the Cartesian coordinates i ∈ {x, y}.
We use an Einstein summation convention to sum over contracted indices i.e.

aibi = axbx + ayby. (A1)

For Sec. IV, we require an additional type of index for the flat internal space, which we denote a, b, c, ... = 1, 2. In that
section we also require a covariant notation for the external space-time manifold, and use Greek letters µ, ν = t, x, y
to denote external space-time indices.

In all sections, external spatial indices are raised and lowered with the flat space metric δij , since we are working
with linearized (time-dependent) perturbations around flat space. Where possible, we retain the distinction between
upper and lower indices in order to emphasize the different meaning of the indices in the stress tensor and viscosity
tensor. As an example of our notation, we translate the Navier Stokes equation from Ref. 1 into our notation,

(∂t + v ·∇(ρv) +∇ · τ ) = 0

=⇒ (∂t + vi∂i)(ρv
j) + ∂iτ

i
j = 0

(A2)

Using conservation of mass ∂tρ+∂j(ρv
i) = 0 and taking the momentum density to be gj = ρ δkj v

k, we recover Eq. (1):

∂tgj + ∂i(τ
i
j + gjv

i) = 0, (A3)

Since the stress tensor τ ij is not symmetric for anisotropic systems, it is important to distinguish between its two
indices. The first upper index refers to the normal vector to a fluid parcel, while the second lower index refers to the
direction of the internal force. In order to avoid confusion between these indices, we retain the notational distinction
between upper and lower indices in the stress and viscosity tensors, despite working in (and perturbing around) flat
space for much of the work. Furthermore, we note that to make contact with the hydrodynamics literature, our choice
gj = ρ δkj v

k implies that the stress tensor τ ij does not include corrections due to internal spin current (i.e., it is not
the Belinfante stress of Refs. [7, 28]). As we discuss in Sec. I and Appendix D, knowledge of the microscopic degrees
of freedom is necessary to perform the Belinfante symmetrization.

Appendix B: Review of Anisotropic Viscosity

In this section we give a more general review of the anisotropic Hall viscosity, summarizing the setup of Ref. [28].
Without any rotational symmetry and in the absence of time reversal symmetry, the Hall viscosity tensor is generically
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expressed in terms of six coefficients,

(ηH)i kj ` ≡
1

2

(
ηi kj ` − ηk i` j

)
= ηH(σz ∧ σx)i kj ` + γ(σz ∧ ε)i kj `

+ Θ(σx ∧ ε)i kj ` + η̄H(δ ∧ ε)i kj ` + γ̄(δ ∧ σx)i kj `

+ Θ̄(σz ∧ δ)i kj `, (B1)

Now when we look at the viscous forces produced in the bulk by this Hall viscosity tensor, we see that the barred
and unbarred coefficients contribute to the same component of the bulk viscous force. In particular we have that the
viscous force density is controlled by the rank two “Hall tensor”

fH,η
j =

∑
ij′`′

`k

1

2

(
εj

′`′(ηH)i k
j′ `′

)
∂i∂k(εj`v

`) (B2)

≡
∑
ik`

ηikH ∂i∂k(εj`v
`).

(B3)

with

ηijH =
1

4

∑
k`

εk`
(
ηi jk ` + ηj i

k `

)
(B4)

= (ηH + η̄H)δij + (γ + γ̄)σijz + (Θ + Θ̄)σijx ,

The coefficient ηH is the usual isotropic Hall viscosity [51], the coefficient η̄H breaks angular momentum conservation
and can appear in active (or anisotropic) systems, and the rest of the coefficients are explicitly anisotropic and appear
when a system has less than threefold rotation symmetry.

1. Non-dissipative contact terms

As mentioned in Sec. I, the difference ηH
diff ≡ ηH − η̄H between the isotropic Hall viscosities does not enter into the

bulk force, it can be shifted by adding a divergenceless “contact” [28] term

δτ ij = C0∂
∗ ivj (B5)

to the bulk stress tensor. From the lens of the viscosity tensor, the individual coefficients get shifted as

ηH → ηH + C0/2

η̄H → η̄H − C0/2,
(B6)

We note here that a more general expression of the contact term

δτ ij =
∑
k`

εikCj`∂kv
`, (B7)

with the more general form of the coefficient Cj` now as a symmetric rank two tensor

Cj` = C0δj` + Cxσ
x
j` + Czσ

z
j`, (B8)

In addition to the described effect of C0, this provides the effect of shifting the difference between all barred and
unbarred viscosities, and individually shifting the other viscosities as

γ → γ + Cz/2 γ̄→ γ̄ − Cz/2 (B9)

Θ→ Θ + Cx/2 Θ̄→ Θ̄− Cx/2. (B10)

We can continue viewing the contact terms as viscosities by looking at the boundary force provided by the contact
term C0, for example:

f (C0, bdry) = C0

[(
∂svn +

vs
R

)
n̂ +

(
∂svs −

vn
R

)
ŝ
]
. (B11)

In the viewpoint that the contact term is a proxy for modified stress boundary conditions, with the above expression
dictating the stress at the boundary.



8

2. Dissipative viscosities & contact term

With higher than twofold rotational symmetry[52] the dissipative viscosity tensor for a fluid can be parametrized
as

(ηD)i kj ` ≡
1

2

(
ηi kj ` + ηk i` j

)
= ηsh(σx � σx + σz � σz)i kj ` + ηR(ε� ε)i kj `

+ ηRC(δ � ε)i kj ` + ζ(δ � δ)i kj `,

The familiar bulk viscosity ζ and shear viscosity ηsh provide frictional forces in response to dynamic dilatations and
volume-preserving shears, respectively. The rotational or vortex viscosity ηR breaks angular momentum conservation
(analogous to η̄H) and provides local resistive torques in response to vorticity. Lastly, ηRC is another dissipative
viscosity that breaks angular momentum conservation For an incompressible fluid, ηRC and η̄H provide the same
stress both in the bulk and on the boundary, and so in our analysis we can set ηRC = 0 without loss of generality[53].
In addition to the non-dissipative contact terms, there is another contact term that plays a similar role except for
dissipative viscosities, and amounts to considering an antisymmetric piece of the tensor Cij in Eq. (B8). Explicitly
this contact term is

δτ ij = Cdis

∑
k`

εikεj`∂kv
`, (B12)

Similar to the non-dissipative case, the bulk dissipative forces only depend on the linear combination. This contact
term shifts three viscosities when added in this case,

ηsh → ηsh − Cdis/2

ηR → ηR + Cdis/2

ζ → ζ + Cdis/2.

(B13)

For the case of an incompressible fluid with ζ = 0, the contact term shifts the difference ηdis
diff ≡ ηR− ηsh, which is the

case considered in the main text. We also note that it appears from the above that the contact term can generate a
nonzero bulk viscosity for incompressible fluid with ζ = 0. In practice, however, this is unobservable as the dynamic
constraint ∇ ·v = 0 for an incompressible fluid prevents the bulk viscosity from contributing to the stress tensor. For
the threefold or higher rotationally symmetric case we consider in the main text, the dissipative viscous force on the
boundary is

fdis =
[(
ηdis

tot + ηdis
diff

)
∂nvn

]
n̂

+
[
ηdis

totω + (ηdis
tot + ηdis

diff)
(
∂nvs −

vs
R

)]
ŝ.

(B14)

Just as in the non-dissipative case, the boundary force depends not only on the bulk hydrodynamic observable ηdis
tot,

but also on the difference ηdis
diff .

3. Contact terms as “magnetization stress”

Let us consider the stress due to the combined dissipative and nondissipative contact terms,

δτ ij = εik(Cjl + Cdisεjl)∂kv
l (B15)

= −εki∂k
[
(Cjl + Cdisεjl)v

l
]

(B16)

= εkn∂km
i
jn, (B17)

where we have introduced the tensor

mi
jn = δin

[
(Cjl + Cdisεjl)v

l
]
. (B18)

We see then that the contact stress δτ ij is the curl of the vector of tensors mi
jn. In analogy with electrodynamics, we

can view mi
jn as a magnetization, and hence δτ ij is a magnetization stress (by analogy with magnetization currents).
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Since δτ ij is divergenceless, in a uniform bulk it can only provide physical effects at system boundaries, consistent
with the interpretation in terms of a magnetization. Conceptually the magnetization stresses are very similar to the
energy magnetization currents in Refs. [7, 54].

The density of power dissipated in an incompressible viscous fluid (with the same symmetry considerations as in
the previous section) Microscopic considerations beyond hydrodynamics might modify this statement.

4. Stress boundary conditions

We detail the modified version of the no-stress boundary condition, relevant for the free surface fluid problem we
consider later on,

n̂iτ
i
j = 0. (B19)

For a fluid with pressure p, we have the following conditions for the normal and tangential forces on the boundary:

n̂in̂
jτ ij = −p+

(
ηH

tot + ηH
diff

) (
∂svn +

vs
R

)
+ ηH

totω +
(
ηdis

tot + ηdis
diff

)
∂nvn = 0,

n̂iŝ
jτ ij =

(
ηH

tot + ηH
diff

) (
∂svs −

vn
R

)
+ ηdis

totω + (ηdis
tot + ηdis

diff)
(
∂nvs −

vs
R

)
= 0.

(B20)

Appendix C: Power dissipation & the total dissipative viscosity

In this section, we will explore the implications of the viscous ambiguity on expressions for power dissipation and
entropy production in a fluid. We will follow the logic of Ref. [1], generalizing where necessary to allow for anisotropic
and nondissipative viscosity. We will begin by considering energy dissipation in an incompressible, anisotropic fluid,
and then generalize to incompressible fluids as well. For illustrative purposes, we will consider only fluids with particle
rotation rate Ω = 0; the case of Ω 6= 0 can be treated by similar methods, replacing ∇× v→ ∇× v − 2Ω.

1. Incompressible fluids

As a starting point, let us consider an incompressible fluid with nonzero ηsh, ηR, ηH, and η̄H. The equations of
motion for this fluid are

∂ρ

∂t
+ v · ∇ρ = 0 (C1)

ρ
∂vj

∂t
+ ρvi∂iv

j = −∂jp+ ∂i
(
ηi kj `∂kv

`
)
. (C2)

The first equation expresses conservation of mass, while the second equation is the Navier-Stokes equation with general

viscosity tensor. We have left the viscous force written as ∂i

(
ηi kj `∂kv

`
)

for bookkeeping purposes - as discussed in

Sec. I

∂i
(
ηi kj `∂kv

`
)

= (ηsh + ηR)∇2vj + (ηH + η̄H)∇2v∗j . (C3)

We can use the equations of motion to derive an expression for the rate of change of kinetic energy Ek of the fluid in
a volume V . First, note that

Ek =

∫
dV

1

2
ρv2. (C4)

Taking the time derivative, we have

Ėk =

∫
dV

[
1

2
v2 ∂ρ

∂t
+ δikv

iρ
∂vk

∂t

]
(C5)

=

∫
dV

[
−1

2
v2vi∂iρ− ρvivj∂jvi − vi∂ip+ vj∂i(η

i k
j `∂kv

`)

]
. (C6)
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Using the incompressibility of the fluid, we can rewrite the first three terms as a total divergence to obtain

Ėk =

∫
dV

[
−∇ ·

(
1

2
ρv2v + vp

)
+ vj∂i(η

i k
j `∂kv

`)

]
. (C7)

We would now like to perform a partial integration on the second term. There is an ambiguity in how we do this,
however, due to the viscous redundancy. In particular, we can write

∂i(η
i k
j `∂kv

`) = ∂i(η
i k
j `∂kv

` + εikC̃j`∂kv
`), (C8)

where C̃j` = Cj` + Cdisεj`, and Cj` was defined in Eq. (B8). We see that C̃j` parametrizes the fact that the
antiderivative of ∂i(η

i k
j `∂kv

`) is determined only up to a divergenceless term, and is equivalent to our original viscous

ambiguity. Inserting Eq. (C8) into Eq. (C7) and integrating by parts yields

Ėk =

∫
dV

[
−∇ ·

(
1

2
ρv2v + vp− vj(ηi kj ` + εikC̃j`)∂kv

`

)
− ∂ivj(ηi kj ` + εikC̃j`)∂kv

`

]
(C9)

= −
∮
dai

[
vi

(
1

2
ρv2 + p

)
− vj(ηi kj ` + εikC̃j`)∂kv

`

]
−
∫
dV
[
∂iv

j(ηi kj ` + εikC̃j`)v
j∂kv

`
]

(C10)

≡ −
∮
da · jKE −

∫
dVW, (C11)

where we have defined the kinetic energy flux density

jKE,i = vi
(

1

2
ρv2 + p

)
− vj(ηi kj ` + εikC̃j`)∂kv

`, (C12)

and the local heating rate

W = (ηi kj ` + εikC̃j`)∂iv
j∂kv

`. (C13)

We see that the ambiguity C̃j` in defining the divergence-free part of the stress tensor results in an ambiguity in the
way we separate kinetic energy loss into flux out of a volume (captured by jKE) and local dissipation (captured by

W ). Writing out W for the case at hand with C̃j` = C0δj` + Cdisεj`, we find that

W = ηsh
(
∂iv

j + ∂jv
i
)
∂iv

j + ηR
(
∂iv

j − ∂jvi
)
∂iv

j − Cdis∂iv
j∂jv

i (C14)

= ηsh
(
∂iv

j + ∂jv
i
)
∂iv

j + ηR
(
∂iv

j − ∂jvi
)
∂iv

j − Cdis

2

(
∂jv

i + ∂iv
j
)
∂iv

j − Cdis

2

(
∂jv

i − ∂ivj
)
∂iv

j (C15)

=

(
ηsh − Cdis

2

)(
∂iv

j + ∂jv
i
)
∂iv

j +

(
ηR +

Cdis

2

)(
∂iv

j − ∂jvi
)
∂iv

j (C16)

=
1

2

(
ηsh − Cdis

2

)(
∂iv

j + ∂jv
i
)2

+

(
ηR +

Cdis

2

)
(∇× v)2. (C17)

This is precisely the local dissipation rate predicted from classical fluid dynamics with an effective shear viscosity(
ηsh − Cdis

2

)
, and an effective rotational viscosity

(
ηR + Cdis

2

)
.

In order to unambiguously relate the local heating rate to the viscosity coefficients ηsh and ηR, the energy flux jKE

needs to be determined. Given a microscopic model for a fluid, such as a continuum field theory, the energy flux
may be uniquely specifiable via a (minimal) coupling of the fluid to background fields[7, 32, 55]. Such a procedure

would fix a value for C̃j`, and hence fix a relationship between W and the viscosity coefficients[33]. However, absent
such a microscopic model, an experimental method for determining jKE independently of W is needed to extract the
viscosity coefficients from local heating.

One might worry that changing the definition of jKE may have implications for the stability of the fluid. In the
standard approach, bulk stability of a fluid necessitates that the Ėk ≤ 0 when integrated over the entire fluid, assuming
that the velocity of the fluid goes to zero at infinity (or at the boundary). In this case, we have that the boundary
integral of jKE goes to zero, and

Ėtot
kin = −

∫
dVW =

∫
dV (ηsh + ηR)v · ∇2v. (C18)
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where we used the vanishing of the velocity at the boundary of the volume to integrate by parts. Since v · ∇2v is
negative definite, we see that the fluid is stable provided (ηsh +ηR) > 0, as stated below Eq. (13). Crucially, we notice

that our choice of C̃j` in defining the energy flux does not play a role.
Note also that although the Hall viscosities and C0 do not contribute to local heating, they do contribute to the

kinetic energy flux jKE. In fact, by direct substitution we have

vj
(
(ηH)i kj ` + C0ε

ikδj`
)
∂kv

` = ηH
[
(v · ∇)v∗,i + (v ×∇)vi

]
+ η̄Hvi∇× v + C0v`∂

∗,iv`. (C19)

This does not vanish. This means that the non-dissipative viscosity contributes to kinetic energy flux, even though it
does not contribute to local heating. Focusing on the contribution from the Hall viscous ambiguity, however, we have
that

C0v`∂
∗,iv` =

C0

2
∂∗,iv2 (C20)

is a total (exterior) derivative; for any nonsingular velocity field, the integral of this term around any closed curve
is zero. Thus, the Hall viscous ambiguity has no impact on the integrated kinetic energy flux. In this sense, C0

determines the definition of the energy magnetization current familiar in quantum Hall systems[30].

2. Compressible fluids

It is natural to ask what happens to these considerations when we look at compressible fluids. To do so, we must
allow ∇ · v 6= 0, and so generically the bulk viscosity ζ 6= 0 and the additional torque ηRC 6= 0. For a compressible
fluid, the conservation of mass takes the more general form

∂ρ

∂t
+∇ · (ρv) = 0, (C21)

which ensures that the Navier-Stokes equation Eq. (C2) remains unchanged (aside from the inclusion of the more
general viscosity tensor). We can now look at the total energy density for our compressible fluid,

ε =
1

2
ρv2 + ρu, (C22)

where u is the thermodynamic internal energy per unit mass of the fluid. We would like to examine the rate of change
∂ε/∂t. For concreteness, we will consider a fluid where the dynamics conserve energy locally, such that we expect

∂ε

∂t
+∇ · jE = 0, (C23)

for some definition of the total energy flux jE to be determined.
To proceed, it is useful to recall a few thermodynamic identities. From the first law of thermodynamics, we have

that when the number of fluid particles is conserved

du = Tds− pd1

ρ
= Tds+

p

ρ2
dρ. (C24)

To separate out heating from work done by the fluid, it will also be useful to introduce the enthalpy per unit mass

w = u+
p

ρ
, (C25)

whose differential change is given by

dw = Tds+
1

ρ
dp. (C26)

Using these relations, We can compute

∂ε

∂t
= (

1

2
v2 + u)

∂ρ

∂t
+

1

2
ρ
∂v2

∂t
+ ρ

∂u

∂t
. (C27)
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From the first law Eq. (C24) we have

ρ
∂u

∂t
= ρT

∂s

∂t
+
p

ρ

∂ρ

∂t
. (C28)

We can insert this into Eq. (C27) and use our definition of w to find

∂ε

∂t
=

(
1

2
v2 + w

)
∂ρ

∂t
+

1

2
ρ
∂v2

∂t
+ ρT

∂s

∂t
. (C29)

Using next conservation of mass and the Navier-Stokes equation yields

∂ε

∂t
= −

(
1

2
v2 + w

)
∂i(ρv

i) + ρT
∂s

∂t
− ρvjvi∂ivj − vj∂jp+ vj∂i(η

i k
j `∂kv

`). (C30)

We can now eliminate the gradient of the pressure using Eq. (C26) to write

∇p = ρ∇w − ρT∇s. (C31)

Additionally, note that

1

2
v2∂i(ρv

i) + ρvjv
i∂iv

j = ∂i(
1

2
ρv2vi). (C32)

Inserting Eqs. (C31) and (C32) into Eq. (C30) yields

∂ε

∂t
= −∂i

(
1

2
ρv2vi + ρwvi

)
+ ρT

(
∂s

∂t
+ vi∂is

)
+ vj∂i(η

i k
j `∂kv

`). (C33)

Up to now, we have followed the usual derivation (of, e. g., Ref. [1]) quite closely. To make further progress, we will
introduce the general antiderivative Eq. (C8) just as before, and integrate by parts. We find then that

∂ε

∂t
= −∂i

(
1

2
ρv2vi + ρwvi − vj(ηi kj ` + εikC̃j`)∂kv

`

)
+ ρT

(
∂s

∂t
+ vi∂is

)
+ ∂iv

j(ηi kj ` + εikC̃j`)∂kv
` (C34)

= −∂i
(
jKE,i + ρuvi

)
+ ρT

(
∂s

∂t
+ vi∂is−

W

ρT

)
, (C35)

where we have reintroduced the kinetic energy flux jKE and the local heatingW from Eqs. (C12) and (C13) respectively,
allowing here for a more general ηi kj `. To allow for thermal conductivity in the fluid, we can also add and subtract

to Eq. (C35) the energy flux from thermal conductivity

q = ∂i
(
κij∂jT

)
. (C36)

We can then write

∂ε

∂t
= −∂i(jE,i) + ρT

(
∂s

∂t
+ vi∂is−

W

ρT
− 1

ρT
∂i(κ

ij∂jT )

)
. (C37)

where we have introduced the total energy flux

jE,i = jKE,i + ρuvi − κij∂jT, (C38)

accounting for the flow of kinetic energy in the first term, internal energy in the second term, and heat in the third
term. Using the conservation equation Eq. (C23), we have that

∂ε

∂t
+∇ · jE = 0 (C39)

∂s

∂t
+ v · ∇s =

1

ρT
(W + q). (C40)

The first term is a restatement of energy conservation, although now the energy flux is defined by Eq. (C38); it depends

on the bulk viscous ambiguity C̃j` via Eq. (C12). As before, this means we can only uniquely express the heating W
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in terms of the bulk viscosity coefficients once we fix a definition for the energy flux, either via an experiment, or via
microscopic considerations such as coupling to background geometric fields.

We see also that the local heating W indeed controls the rate of change of entropy due to fluid friction. Inserting
our explicit form of the viscosity tensor into Eq. (C13), we find that

W =
1

2

(
ηsh − Cdis

2

)(
∂iv

j + ∂jv
i − δji∇ · v

)2

+

(
ηR +

Cdis

2

)
(∇× v)2 +

(
ζ +

Cdis

2

)
(∇ · v)2 + 2ηRC(∇ · v)(∇× v).

(C41)
Note that the presence of nonzero ηRC entangles the ηR and ζ contributions to the local heating. in fact, we can write

1

2

(
ηsh − Cdis

2

)(
∂iv

j + ∂jvi − δij∇ · v
)2

+
(
∇× v ∇ · v

)(ηR + Cdis

2 ηRC

ηRC ζ + Cdis

2

)(
∇× v
∇ · v

)
. (C42)

To verify that the second law of thermodynamics is satisfied, we can examine the rate of change of the total entropy
of the fluid,

Ṡ =

∫
dV

∂ρs

∂t
(C43)

=

∫
dV ρ

∂s

∂t
− s∇ · ρv (C44)

= −
∫
dV∇ · ρvs+

1

T
(W + q). (C45)

The first term is the total entropy flux out to infinity, while the second term describes local entropy generation. Since
we are integrating over the whole fluid, and if we assume that gradients of the fluid velocity vanish at infinity, the
first term integrates to zero. The second law of thermodynamics then demands that∫

dV
1

T
(W + q) ≥ 0. (C46)

For this to be true for any flow, it must be the case that each quadratic form appearing in the integrand must be
non-negative. This means, in particular, that

ηsh ≥ Cdis

2
(C47)

ζ + ηR ≥ −Cdis (C48)(
ηR +

Cdis

2

)(
ζ +

Cdis

2

)
≥
(
ηRC

)2
(C49)

tr(κ) ≥ 0 (C50)

det(κs) ≥ 0, (C51)

where κsij = 1/2(κij +κji) is the symmetric part of the thermal conductivity. Note that Eqs. (C47)–(C49) imply that

ηR + ηsh ≥ 0 (C52)

ζ + ηsh ≥ 0, (C53)

independent of the choice of energy flux (i. e. independent of C̃ij). These same constraints were also derived in
Ref. [32] by considering damping of sound waves in the bulk. We see, additionally that a nonzero ηRC places an
additional nontrivial constraint on the energy flux. Note also that when ζ = 0, these coincide with the stability
conditions derived in Sec. III from surface wave stability.

To summarize, we see that for a general fluid, the bulk equations of motion do not uniquely specify the stress
tensor, and hence do not uniquely specify the viscosity tensor. The ambiguity is due to divergenceless contributions
to the stress tensor that do not enter into the bulk equations of motion. From the point of view of energy flow,
this results in an ambiguity in defining the energy flux in the system. We have shown that the local heating rate
depends not just on the viscosity coefficients in the bulk, but also on the choice of energy flux. We emphasize that,
given a microscopic description of the fluid dynamics, or alternatively a field theory description of the fluid coupled
to background geometric fields, it is possible to define the energy flux and hence compute C̃ij from first principles–in

most textbook descriptions, C̃ij = 0.
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Appendix D: Stress ambiguities, contact terms & internal angular momentum

In this section we aim to emphasize that unless there is a procedure to determine the antisymmetric stress, or
in particular measure the internal angular momentum Lint in the bulk of a system, the contact terms and viscous
ambiguity must be present. Ambiguities in the stress tensor appear in other contexts, most notably through the
Irving-Kirkwood formalism for treating the stress tensor for interacting systems [6, 56, 57]. In that picture, for a two-
body interaction, one must define a path length between interacting constituents, and there is an inherent ambiguity
in choosing this path. In Ref. [6], for example, the authors choose the geodesic distance between particles, which is
the standard approach and agrees with the stress tensor in theories of gravity.

We can shift between various choices of this path by adding divergenceless pieces to the stress tensor, which are
very similar to the contact terms mentioned in the present work and in Ref. [28]. The main difference is that the
divergenceless terms arising through the Irving-Kirkwood formalism are proportional to gradients in the fluid density
and therefore are not viscous, whereas the contact terms of this work are manifestly viscous contributions to the
stress. In the case where interactions between particles are spin-orbit coupled, such as in the active fluids we consider
in the present work, the pertinent ambiguity relates to the antisymmetric part of the stress tensor and specifically the
internal angular momentum generator Lint.

In this work we are able to tie the contact terms to physical observables and resolve the viscous ambiguity, showing
for example that different choices of the stress tensor yield different dispersions for surface waves. We can then
revisit situations where the internal angular momentum Lint is unclear (such as in Ref. [21] where it is assumed to
be constant), and from purely boundary information, learn more about the true form of the bulk internal angular
momentum.

1. Microscopic example of viscous ambiguity

As a further example of a system where the viscous ambiguity is present, consider a quantum Hall system with
band mass anisotropy[19],

HAM =
1

2
m̃abπ

aπb, ∇× ~A = Bẑ. (D1)

The inverse mass tensor is a symmetric and diagonalizable matrix so we choose a basis where

m̃ab = mδδab +mσz

σzab. (D2)

The Hall viscosity can be calculated[19] to find

(ηH)a cb d =
h̄ρ

4
[δadε

e
b(mm̃ce) + δcbε

e
d(mm̃ae)] . (D3)

In Appendix B, we introduced the Hall tensor Eq. (B4) as a useful device to parameterize the total viscosities that
contribute to bulk forces; for this model, it is given by

ηHab =
h̄ρ

4

(
1

m
m̃ab

)
=

h̄ρ

4m

(
mδδab +mσz

σzab

)
. (D4)

Comparing with Eq. (B4), we can identify the coefficients

ηH
tot =

h̄ρ

4m
mδ

γtot =
h̄ρ

4m
mσz

.

(D5)

We can also read off the viscosity components from the full tensor Eq. (D4) and find which specific components the
total viscosities are comprised of:

ηH
tot = ηH

γtot = γ.
(D6)

The point we make is that this Hall tensor matches that of another system, a 3D system with tilted field anisotropy
projected to two dimensions, with Hamiltonian[19]

HTF =
1

2m
πµπµ +

1

2
mω2

0z
2 with ∇× ~A = Bxx̂+Bz ẑ. (D7)
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This model has a symmetric stress tensor as opposed to the band mass anisotropic system, and so while the Hall tensor
for both systems are equivalent, the individual viscosity components differ. When the tilted-field system is projected
to two dimensions, if we scale the density and out-of-plane magnetic field as ρ∗ = ρ(1− k2l2), B∗z = Bz(1− k2l2z), the
system can be viewed as a two dimensional system with effective band mass anisotropy

meff
ab = m

(
1− 1

2k
2l2 0

0 1 + 1
2k

2l2

)
. (D8)

The Hall tensor for the tilted field system then takes the form[19]

ηHab =
h̄ρ∗

4

(
1

m
meff
ab

)
. (D9)

The stress tensor is symmetric for the model Eq. (D1), so this tells us that the total viscosities are entirely due to the
following individual components ηH

tot = ηH and γtot = γ̄. Thus although the tilted field and anisotropic mass systems
have identical ηHtot and γtot, they have opposite difference viscosities γ − γ̄. Therefore the stress tensors for the two
systems differ by a divergenceless contact term. This serves as a quantum example of the viscous ambiguity.

2. Resolution of ambiguity with internal angular momentum

If the internal angular momentum Lint of a system is known, then the contact terms are fixed and the viscosities
are unambiguous. For a quantum fluid, the procedure to correct the antisymmetric part of the stress with Lint is
elaborated in detail in Ref. [28]. Here, we summarize this construction for a classical fluid. We assume translational
invariance so that we have conserved momentum density

∂tgj(r) = −∂iτ ij . (D10)

We also consider total angular momentum conservation, where the total angular momentum is Ltot = Lorb + Lint

and the orbital angular momentum is expressed from the kinetic momentum density as Lorb = εij(xig
j). Angular

momentum conservation is then stated as

∂tLtot = ∂kM
tot,k. (D11)

The tensor M tot,k parametrizes the flux of angular momentum, and is determined from microscopic considerations.
This can also be decomposed into orbital and internal parts

M tot,k = εij(xiτ
jk) +M int,k. (D12)

Combined with the continuity equation, this leads to a constraint on the antisymmetric stress:

∂tLint(r, t) = εji τ
i
j + ∂kM

int,k. (D13)

The equation above tells us that angular momentum conservation and knowledge of Lint and M int,k place a constraint
on the antisymmetric stress of the system and fixes the contact terms. Furthermore, if were we to shift the angular
momentum flux tensor, we could shift the antisymmetric stress. For an incompressible fluid, this shifts the difference
between ηsh and ηR, which is also the effect of the dissipative contact term. As a result, if we can measure not
only the fluid velocity, but also the fluid angular momentum, then it is possible to uniquely determine the viscosity
coefficients with bulk measurements. Otherwise, boundary measurements are necessary to experimentally fix the
viscosity coefficients.

There are experimental settings where this type of resolution of the viscous ambiguity is feasible, namely nematic
liquid crystals[35] and hydrodynamic electron fluids with spin-orbit coupling[36]. These settings provide natural bulk
constitutive relations for internal angular momentum (the director for liquid crystal and spin for the electron fluid).
We leave a more detailed experimental proposal for the measurement of individual viscosity coefficients and resolution
of the ambiguity in these settings for future work.

3. Torsional Hall viscosity and viscous ambiguity

In a system where torsion is treated as independent and can be non-minimally coupled to, a torsional Hall viscosity
ξH [5] can arise, which is due to the stress response of the following effective action,

Seff = ξH

∫
ea ∧ T bηab. (D14)
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FIG. 3. Half plane geometry where the height of the half plane is a surface wave with wavenumber k and frequency Ξ.
Considering an anisotropic viscous fluid, we try to find the dispersion relation Ξ(k).

where ea = eaµdx
µ are the vielbeins introduced in Sec. IV, and the torsion 2-form T a is given by T a = dea + ωab ∧ eb

with spin connection ωab . If the torsion is fixed, the spin connection is determined by the vielbeins. If we consider
linear perturbations of the vielbein ∂te

a
µ = ∂µv

a, the (spatial) stress response from this action is given by

Tij = −ξHεik∂kv
j = −ξH∂∗i v

j . (D15)

We recognize the form of this (viscous) stress in Eq. (B5); it matches the stress due to a non-dissipative contact term
C0 = −ξH. In short, the torsional Hall viscosity is a contact term, and produces a magnetization stress. It is therefore
no surprise that upon symmetrization of the stress tensor (disallowing non-minimal coupling to torsion), the torsional
Hall viscosity ξH vanishes: such a constraint would determine individual viscosities (and fix contact terms to be zero).
Looking further, we can use this knowledge to examine generic non-minimal responses to torsion, even in crystalline
settings, where analogs of the e ∧ T term have been studied[58].

Appendix E: Modified Lamb surface waves: anisotropic viscosity

In this section we provide a more detailed derivation of the results of Sec. III for (incompressible) surface wave
flow for a fluid with anisotropic odd viscosity in a half plane geometry, parameterized by y = h(x, t) (see Figure. 3).
In particular, we would like to see how the dispersion Ξ(k) of the surface waves is modified by the presence of our
anisotropic odd viscosities, and how this is impacted by the dissipative and non-dissipative contact terms C0 and Cdis.
We follow the strategy outlined in Ref. [39], paying particular attention to the redundancies between the viscosity
coefficients. We choose to frame the velocity field in terms of potentials φ (velocity potential) and ψ (stream function)
such that ψ is the only source of vorticity:

vi = ∂iφ+ εki ∂kψ. (E1)

For the incompressible flow we consider, the velocity potential φ is harmonic

∇ · v = ∇2φ = 0. (E2)

Similarly, the Laplacian of the stream function gives the vorticity

∇× v = −∇2ψ = ω. (E3)

In the bulk of the half plane, our viscous fluid must satisfy the momentum continuity equation–which serves as the
bulk equation of motion:

Dt(ρvµ) = ∂t(ρvµ) + ρvj∂jvµ = −∂jτνµ − ρgŷµ. (E4)

Here we have used the classical constitutive relation gmom = ρv to express the momentum density of the fluid in
terms of the density ρ. We consider the Eulerian perspective of fluid flow and write the continuity equation in terms
of a fluid derivative Dt = ∂t + vi∂i [59]. As we are considering linearized surface waves for an incompressible fluid,
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we can set ρ = 1 for convenience and neglect the higher-order convective term in the continuity equation to obtain
the linearized equation of motion

∂tv = −∇p+ ηH
tot∇ω + ηdis

tot ∇
2v − gŷ. (E5)

As expected, the viscosities enter the equation of motion in terms of the sums ηHtot = ηH + η̄H and ηdis
tot = ηR + ηsh.

Here we notice that in the bulk non-dissipative viscosities can be thought of as a modification to the pressure of the
fluid, in particular we can define the “modified pressure” [39, 42]

p̃ = p− ηHtotω. (E6)

This is a manifestation of the “triviality” of the Hall viscosity in the bulk, since we can view it as a modification to
the pressure of the fluid [43, 44]. We now see the equation of motion simplifies to

∂tv = −∇p̃+ ηdis
tot ∇

2v − gŷ. (E7)

If we take the curl of the equation above, we find that the vorticity ω satisfies

∂tω = ηdis
tot ∇

2ω. (E8)

The bulk equation of motion must be supplemented by boundary conditions, and for the problem at hand we are
physically motivated[38] to choose a no-stress boundary condition at the surface of the half plane and a kinematic
boundary condition on the velocity vector. These are, denoting the boundary as Y = h(x, t):

n̂µτµν

∣∣∣∣
Y

= 0

vy

∣∣∣∣
Y

= ∂tY.

(E9)

These are sometimes referred to as the dynamic (stress condition) and kinematic (velocity condition) boundary
conditions, respectively [39]. We now have the equations of motion that are to be satisfied for our surface wave flow,
and proceed by assuming a wave solution for the velocity potentials φ and ψ, where

φ =

(
−iA k

|k|
e|k|y +Be−|k|y

)
eikx−iΞt

ψ = (Cemy +De−my)eikx−iΞt.

(E10)

We enforce that the velocity be zero as y → −∞, meaning we need to set B = 0 and D = 0 [Re(m) ≥ 0 by
construction]. The incompressibility condition Eq. (E2) dictates that the wave-number k parametrizes both the x
and y dependence of the potential φ, whereas ψ requires two parameters m and k. To begin to apply the boundary
conditions in terms of the wave ansatz solutions in Eq. (E10), we explicitly write down the components of velocity
according to Eq. (E1),

vx = (A|k|e|k|y + Cmemy)eikx−iΞt,

vy = −ik(Ae|k|y + Cemy)eikx−iΞt.
(E11)

The physical velocity is determined by taking the real part of this expression. We see that the velocity potential
φ appears through the coefficient A and ψ through C – consequently, the amplitude C need be proportional to the
vorticity. The kinematic boundary condition tells us ∂th = vy(x, h, t) and thus the explicit behavior of the surface.
This gives us the following relations for the height h(x, t), the vorticity ω and the pressure p̃ from the velocity potentials

h(x, t) =
k

Ξ
(A+ C)eikx−iΞt,

ω = eikx−iΞt(k2 −m2)Cemy,

p̃ = Ξ
k

|k|
Ae|k|yeikx−iΞt − gy.

(E12)

The first expression comes from integrating the kinematic boundary condition with respect to time, and keeping only
terms to lowest order in the wave amplitudes. The second expression comes from substituting our ansatz for the
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velocity into the definition of the vorticity. Finally, the third equation comes from writing Eq. (E5) in terms of φ and
ψ, and making use of Eqs. (E8) and (E2). We have thus reduced the problem to finding relations for m, k, Ξ and the
amplitudes A and C, and move to apply the bulk equations of motion and no-stress boundary conditions. Our goal
is find Ξ as a function of k, and thus to find how the dispersion is affected by the viscosities and contact terms in our
setup. We first proceed by analyzing the bulk vorticity equation Eq. (E8),

∂tω = ηdis
tot∇2ω. (E13)

If we substitute our wave ansatz Eq. (E12), this leads to the relation

m2 = k2 − iΞ/(ηsh + ηR) (E14)

between dispersion Ξ and the parameters m and k. The other two unknowns of the problem are the amplitude
coefficients A and C. The no stress boundary conditions in Eq. (E9) should now supply us with enough information
to estimate the dispersion and amplitudes for these surface waves.
In the bulk, we have the same setup as Lamb [38], with the modified pressure p̃ playing the role of the pressure. On the
boundary, the Hall viscosity has a contribution separate from the pressure and the resulting stress boundary conditions
differ from Lamb’s setup [21, 39]. Further, our situation diverges further from previous works as our additional
anisotropic Hall and dissipative viscosities (η̄H and ηR) differentiate themselves from their usual counterparts (ηH and
ηsh) at the boundary.

We now unpack the no-stress conditions fbdry
j = n̂iτ

i
j = 0. In our linearized picture, the normal vector to the surface

is n̂ ≈ (0, 1) = ŷ. Above linear order the normal vector depends on the function h(x, t) and is non-constant. The
statement that there is no stress at the boundary gives us two constraints– first in the y direction we have

fbdry
y = 0

↪→ p = 2ηsh∂yvy − ηH(∂yvx + ∂xvy) + η̄Hω.
(E15)

Using the explicit expressions for pressure, vorticity and velocity in Eqs. (E11) and (E12), this condition becomes:

A
{

Ξ2 + 2ηHΞ|k|k + 2iΞk2ηsh − g|k|
}

+ C
{

2i|k|Ξηshm+ 2k|k|ΞηH − g|k|
}

= 0. (E16)

Surprisingly, the anisotropic viscosities η̄H and ηR have cancelled out leaving a normal boundary condition identical
to the cases considered in previous works [21, 39]. Setting the tangential component of the boundary force to zero
yields

fbdry
x = 0

↪→ 0 = ηsh(∂xvy + ∂yvx) + ηH(∂yvy − ∂xvx)− ηRω.
(E17)

The anisotropic viscosities also do not enter this condition, which simplifies to:

2A
[
ηshik2 + ηHk|k|

]
+ C

[
2ηHkm+ 2ik2ηsh + Ξ

]
= 0. (E18)

We can combine the two conditions to form one overall consistency condition which relates k, the dispersion Ξ and
the viscosities. Since we are viewing Ξ as a function of k, and since the physical solutions are only determined by
the real part of Eq. (E11), we can restrict to k > 0 without loss of generality; the k < 0 solutions are obtained by
complex conjugating our resultant expressions. Dividing Eq. (E16) by (E18) gives, for k > 0,

gk − Ξ2 − 2Ξk2(ηH + iηsh)

2k2(ηH + iηsh)
=
gk − 2Ξk(ηHk + iηshm)

Ξ + 2k(ηHm+ iηshk)
. (E19)

We will use this equation to compute the dispersion Ξ(k) in different limits, and examine how it is affected by the
anisotropic viscosity and contact terms [60], Reorganizing Eq. (E19), and discarding a trivial solution with m = k
and Ξ = 0, we find a polynomial equation for m. Introducing dimensionless quantities,

β2 =
(ηsh + ηR)k2

√
gk

, α =
ηH

ηsh + ηR
,

κ =
m

k
and γ =

ηsh

ηsh + ηR
.

(E20)

We can now cast the consistency condition as

[κ+ 1− 2iα]

β4
+ (κ− 1)2(κ+ 1)3 − 4(κ2 − 1)(α2 + γ2) + 4γ(κ− 1)(κ+ 1)2 − 2iα(κ− 1)(κ+ 1)3 = 0. (E21)
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1. Gravity dominated waves

We first consider the case where gravity dominates so β << 1, and rescale our coordinates to x = βκ we find our
constraint equation to be

x+ β − 2iαβ + (x− β)2(x+ β)3 − 4β3(x2 − β2)(α2 + γ2) + 4γ(x− β)(x+ β)2β3 − 2iαβ(x− β)(x+ β)3 = 0.
(E22)

Zero viscosity solution. The zero viscosity limit α = β = γ = 0 gives the classical dispersion relation for gravity
waves [38, 42]

Ξ = ±
√
gk. (E23)

Viscous corrections. We now keep up to second order in β, representing small dissipative viscous corrections, and
turn on a small non-dissipative correction α. We keep the order of limits in analogy with Ref. [39], the dissipative
viscosities are smaller than g, i.e. that β << 1. The solution to the resulting constraint equation is given by [61]

x± = A±β
2 + C±

C± = e∓iπ/4

A+ =
eiπ/4

2
[2γ − 2iα− 1] , A− =

eiπ/4

2
[2γ − 2iα− i] .

(E24)

The frequency in this case is given by:

Ξ± = ±
√
gk − (2iγ + α)ηdis

totk
2

= ±
√
gk − 2iηshk2 − 2ηHk2.

(E25)

Despite the additional anisotropic viscosities in our picture, this result matches exactly the case where ηR = η̄H = 0
considered in Ref. [42]. However we can now interpret this dispersion in terms of the total and differences between
the viscosities:

Ξ± = ±
√
gk − i

(
ηdis

tot + ηdis
diff

)
k2 −

(
ηH

tot + ηH
diff

)
k2. (E26)

This dispersion is sensitive to both dissipative and non-dissipative contact terms, as the differences between odd
viscosities and dissipative viscosities enter. To access the k < 0 regime, we let k → |k|, α→ −α in Eq (E25) and find
analogous solutions.

2. Pure (odd) viscosity waves: g = 0

We now consider the case where g = 0 and the dynamics of our surface waves are dominated by viscosity. We also
suppose that odd viscosity is playing the main role and ηH >> ηsh, ηR [62]. In this case, the constraint equation
becomes

−Ξ2 − 2Ξk2(ηH + iηsh)

2k2(ηH + iηsh)
=
−2Ξk(ηHk + iηshm)

Ξ + 2k(ηHm+ iηshk)
. (E27)

This becomes (throwing out the trivial Ξ = 0 solution):

Ξ2 + 2Ξk2(ηH + iηsh) + 2Ξk(ηHm+ iηshk) + 4k3(ηH + iηsh)(ηH − iηsh)(m− k) = 0. (E28)

If we utilize the relation m2 = k2 − iΞ/ηdis
tot → Ξ = i(m− k)(m+ k)ηdis

tot, and throw out terms above first order in the
dissipative viscosities we find

2iηdis
tot(m+ k)2 + 4k2ηH = 0. (E29)

This leads to the following dispersion (keeping only the solution with Re(m) > 0 that decays into the bulk)

Ξ = −2ηHk2 − 2ik2
√
|ηH|ηdis

tot. (E30)

The dispersion above describes chiral waves moving in a direction set by the odd viscosity. Importantly, it is only the
component ηH rather than the full odd viscosity ηHtot that sets the direction. This means that the direction of these
chiral waves cannot be determined from bulk data alone, or equivalently that the expression above is sensitive to the
non-dissipative contact term [63].
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Appendix F: Active fluids & angular momentum conservation

In many classical chiral active fluids[21], time reversal symmetry is broken by a local rotation rate Ω for fluid
particles. In this case, for an isotropic and incompressible chiral active fluid, the stress takes on a modified form due
to angular momentum conservation

τ ij = −pδij + ηsh
(
∂ivj + ∂jv

i
)

+ ηH(∂∗,ivj + ∂iv∗j ) + ηRεµν(ω − 2Ω) + η̄Hδµν(ω − 2Ω). (F1)

We have effectively added two Ω-dependent terms to our stress tensor. This corresponds to measuring vorticity of the
fluid in a locally rotating frame with frequency Ω. We treat Ω as a fixed (constant) parameter of our setup, as in the
physical situation of a colloidal chiral mixture [21], and thus the modifications to the stress tensor do not enter the
bulk equations of motion. On the boundary, however, the Ω-dependent terms provide a steady-state boundary force

fbdry
j = −2

(
ηRŝjΩ + η̄Hn̂jΩ

)
. (F2)

The local rotation rate Ω causes an additional torque at the boundary due to ηR and an additional pressure contribution
due to η̄H. In what follows, we consider how this alternate form of time-reversal symmetry breaking could affect the
viscous surface waves in Sec. E. We also allow for a longitudinal friction from a substrate f fric

j = −µvj to be consistent
with the experimental setup of Ref. [21]. This term only enters the bulk equations of motion, and stabilizes a steady-
state fluid velocity in the absence of external torques. We will analyze surface waves for this fluid both with and
without gravity. To do so, we first begin by deriving the bulk equations of motion.

1. Equations of motion

The linearized continuity equation for momentum, again setting the density ρ = 1 for convenience, is now given by

∂tv = −∇p̃+ ηdis
tot∇2v − gŷ − µv, (F3)

where µ parametrizes the friction between the fluid and the substrate. Following the experimental considerations of
Ref. [21], we have neglected the nonlinear term in the equations of motion. Taking the curl of Eq. (F3) leads to the
vorticity equation

∂tω = ηdis
tot∇2ω − µω. (F4)

2. Steady state flow

The modifications we have made now allow for a steady-state vorticity (zeroth order in the amplitude of surface
waves) whereas in previous setup in Sec. II with Ω = 0 and µ = 0 we necessarily had ω = 0 at zeroth order. We can
look to solve the vorticity equation in the steady state, where Eq. (F4) becomes

(ηdis
tot∇2 − µ)ω = 0. (F5)

Again in the half plane geometry, y ≤ 0, it can be verified that

ωs =
ηR

ηR + ηsh
(2Ω)ey/δ (F6)

satisfies the vorticity equation, where δ = ((ηR + ηsh)/µ)1/2 is the hydrodynamic length that appears in Ref.[21]. In
choosing the multiplicative constant, we have anticipated the boundary conditions of Sec. F 3 below. The steady state
vorticity corresponds to a flow profile in the x direction (if there was a y component, it would blow up as x→∞):

vx = − ηR

ηR + ηsh
(2Ω)δey/δ. (F7)

We refer to the zeroth order velocity at the boundary as v
(0)
x ≡ vx(y = 0).
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3. Modification to surface wave boundary conditions

We now consider the generalization of our earlier linearized surface wave boundary conditions to account for the
presence of a steady state, zeroth order fluid velocity. In terms of our no-stress boundary condition we have, by
expanding the normal vector and the stress tensor to first order,

niτ
i
j = (n

(0)
i + εn

(1)
i )(τ

(0),i
j + ετ

(1),i
j ) = 0. (F8)

Here εn̂(1) is the first order variation of the surface normal vector (taking into account the variations in the fluid

height), and ετ
(1)
µν is the first order variation of the stress tensor (taking into account the linearized fluid velocity).

We consider our surface wave setup, where we treat the height y = h(x, t) as a small perturbation around y = 0. This
means that the normal vector can be written as

n̂ = n̂0 + εn̂1 ≈ ŷ − (∂xh)x̂. (F9)

Collecting the zeroth order terms in Eq. (F8), we have n
(0)
µ τ

(0)
µν = 0 and hence

2ηRΩ− (ηsh + ηR)ωs = 0

p0 = ηH
totωs − 2η̄HΩ.

(F10)

The first equation is satisfied by our expression Eq. (F6) for the zeroth order vorticity. The second tells us that
with the steady state vorticity Eq. (F6) we are able to set the steady state pressure outside of the half plane to

p0 =
(
ηHηR

ηdis
tot
− η̄Hηsh

ηdistot

)
(2Ω). At first order, we have that εn

(1)
µ τ

(0)
µν + εn

(0)
µ τ

(1)
µν = 0. Inserting Eqs. (F9) and (F1), this

gives

p1 = 2ηsh∂yvy − ηH(∂yvx + ∂xvy) + η̄Hω1 + (∂xh)
[
ηdis

diffωs + 2ΩηR
]
− h∂y(p0 − ηH

totωs)

0 = ηsh(∂xvy + ∂yvx) + ηH(∂yvy − ∂xvx)− ηRω1 + (∂xh)
[
ηH

diffωs + p0 + 2η̄HΩ
]
− hηdis

tot∂yωs.
(F11)

We can apply the zeroth order boundary conditions to find

p1 = 2ηsh∂yvy − ηH(∂yvx + ∂xvy) + η̄Hω1 + 2(∂xh)ηshωs

0 = ηsh(∂xvy + ∂yvx) + ηH(∂yvy − ∂xvx)− ηRω1 + 2(∂xh)ηHωs − hηdis
tot∂yωs,

(F12)

where we have used the fact that from the zeroth-order boundary conditions p0 − ηH
totωs is constant at the boundary.

The kinematic boundary condition in this case, where we have a zeroth order velocity, is given by

dh

dt
= ∂th+ v(0)

x ∂xh = vy(y = 0, x, t). (F13)

4. Surface waves with Ω

We now continue on to consider surface waves with the time-reversal symmetry breaking coming from an internal
rotation rate Ω. The bulk vorticity equation is still

∂tω = ηdis
tot∇2ω − µω. (F14)

We can write the overall vorticity as a sum of the steady state contribution, which we just considered, and a contri-
bution first-order in the amplitude of surface waves

ω = ωs + ω1(x, y, t). (F15)

To consider the first-order contribution to the vorticity, we again introduce velocity potentials that parameterize our
surface wave Eq. (E10). The ansatz for the first order vorticity is then equivalent to Eq. (E12) and is given by

ω1 = eikx−iΞt(k2 −m2)Cemy. (F16)

This satisfies the bulk equation of motion to linear order in the perturbative parameter

∂tω1 = (ηdis
tot∇2 − µ)ω1. (F17)
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This leads to the modified condition

Ξ = iηdis
tot(m

2 − k2)− iµ. (F18)

Our proposed form for the first order velocities and vorticities in Eq. (E12) still hold. The bulk equation of motions
mandate that the modified pressure now takes the form

p̃ = p1 − ηH
totω1 − µφ, (F19)

which differs from Eq. (E12) by the addition of −µφ, where φ is the velocity potential. Eq. (E10). Additionally, the
modified kinematic boundary condition Eq. (F13) implies that the height h(x, t) now takes the form

h(x, t) =
vy(y = 0, x, t)

−iΞ(k) + ikv
(0)
x

. (F20)

Now revisiting the first order boundary conditions Eq. (F12), we can substitute in our ansatz Eqs. (E10), (F19),
and (F20) for the velocities, modified pressure, and height, respectively. The normal boundary condition in terms of
surface wave parameters becomes

A
[
Ξ(kv(0)

x − Ξ) + gk + iµ(kv(0)
x − Ξ) + 2k2(kv(0)

x − Ξ) + 2k2(kv(0)
x − Ξ)(ηH + iηsh + 2iηsh)ωsk

2
]

+C
[
gk + 2k(ηHk + iηshm)(kv(0)

x − Ξ) + 2iηshωsk
2
]

= 0.
(F21)

The tangential boundary condition becomes

A
[
2(kv(0)

x − Ξ)k2(ηH + iηsh) + 2k2ηHωs + ηdis
totk∂yωs

]
+C

[
(Ξ− iµ)(kv(0)

x − Ξ) + 2(kv(0)
x − Ξ)k(ηHm+ iηshk) + 2k2ηHωs + ηdis

totk∂yωs

]
= 0.

(F22)

The equations above Eq. (F21) and Eq. (F22) represent our consistency conditions for the wave setup with Ω and
µ. To solve the consistency conditions, we can combine Eqs. (F21) and (F22) with Eq. (F18) to find three nontrivial
solutions for m(k) that can have Re(m) > 0. Due to the complicated nature of the consistency condition, to make
progress we will focus analytically on three cases. First, we will consider surface waves in the limit of long-wavelength
kδ � 1 and zero gravity. Second, we will keep kδ � 1 and introduce gravity as a small perturbation gδ � ηdis

totΩ.
Third, we will consider the large gravity limit.

a. g = 0

We first consider the case without gravity, which was the setup in Ref. [21]. In this case, in the long wavelength
kδ << 1 limit, there are two modes which always decay into the bulk. The first is, to third order,

Ξ1,g=0 = 2(iηH − ηsh)
2ΩδηR

µηdis
tot

k3 +O[(kδ)5/2]. (F23)

This mode matches exactly that found in the corresponding long wavelength limit in Ref.[21], despite the addition
of the additional Hall viscosity η̄H [64]. It leads directly to the stability condition sign(ηHηRΩ) < 0 in order for
perturbations to decay in time. Additionally, there is always an overdamped excitation with dispersion given by

Ξ2,g=0 = −iµ− 2ηRΩ

ηdis
tot

kδ + eiπ/4(ηH + iηsh)

√
2ΩηR

µ(ηdis
tot)

3/2
k3/2 +O[(kδ)2]. (F24)

This solution is effectively dominated by damping due to the friction term in the limit kδ << 1. We will see below,
however, that for nonzero g this mode is essential to recovering the second branch of our Lamb wave solutions
Eq. (E25). Finally, there is a third nontrivial solution that can decay into the bulk. It corresponds to the solution

m3,g=0(k) =
kηdis

diff

ηdis
tot

, (F25)

which decays into the bulk whenever ηR ≤ ηsh. The dispersion relation is

Ξ3,g=0(k) = −iµ− 4i
ηRηshk2

ηdis
tot

+O[(kδ)3]. (F26)

This mode is overdamped and almost completely stationary at small kδ. We will see below that this mode is always
unphysical for g large enough (or equivalently, for µ small enough).
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b. Small gravity case

We now consider the case where gravity is small and again with the long wavelength limit kδ << 1. For the two
main physical modes, we find that the effect of gravity is, to lowest order, to introduce a linear in k correction to the
damping rate, given by

Ξ1g(k) = Ξ1,g=0(k)− igkδ√
ηdis

totµ
+ ...

Ξ2g(k) = Ξ2,g=0(k) +
igkδ√
ηdis

totµ
+ ...

(F27)

The effect of gravity is more drastic on the Ξ3 mode. First, we find that to linear order in g, m3(k) is given by

m3(g) =
k

ηdis
tot

(
ηdis

diff +
ηHδg

ηRΩ

)
. (F28)

Stability of the fluid requires the second term to be strictly negative. This implies that the Ξ3 mode will become
unphysical even for small g, provided ηH and 1/ηR are large enough. As such, we will neglect the Ξ3 mode in what
follows.

c. Gravity g 6= 0 case

To examine the surface waves for general g and k, let us first return to the consistency conditions Eqs. (F21) and
(F22). Note that for ωs, µ → 0, this reproduces exactly the consistency equation we obtained for gravity-dominated
Lamb waves in Eq. (E19). We thus expect that when gδ � ηdis

totΩ, we should recover the two branches of the modified
Lamb wave dispersion Eq. (E25). We examine the two modes Ξ1g(k) and Ξ2g(k) in the limit of large gδ/ηtot

disΩ. We
expect that Ξ1g ∼ −

√
gk and Ξ2g ∼

√
gk as Ω→ 0. To see how this occurs, we show in Fig. 4 the real and imaginary

parts of Ξ1,2 for generic values ηsh = 0.1, ηR = 0.5, ηH = 0.3, µ = 1, ωs = −1 with g = 10. We see in Fig. 4(a) that for
Re(Ξ) there is a crossover from nearly stationary behavior at small k to a dispersion consistent with Re(Ξ) ∼ ±

√
gk

at larger k. In Fig. 4(b) we see that the damping rate Im(Ξ) for the two modes depend linearly on k for small k, and
are approximately equal at larger k, varying as O(k2). Expanding Ξ1g and Ξ2g to lowest order in kδ captures the
behavior of the dissipation at small k, yielding

Ξ1g(k) = − igk
µ

+ ...

Ξ2g(k) = −iµ+
igk

µ
− 2ηRΩ

ηdis
tot

kδ + ...

(F29)

Next, we can analyze the dispersion asymptotically for large g. First, note that when both the dissipative and Hall

0.025 0.05
kδ

-0.5

0.5

Re(Ξ)

(a)

0.025 0.05
kδ

-0.5

Im(Ξ)

(b)

FIG. 4. Dispersion (a) and Damping (b) for the modes Ξg1 and Ξg2 with ηsh = 0.1, ηR = 0.5, ηH = 0.3, µ = 1, ωs = −1 and
g = 10. There is a crossover from friction-dominated behavior at kδ <∼ 0.025 to Lamb wave-like behavior at kδ >∼ 0.025.

viscosities are zero, the flow is pure potential flow (as in the case Ω = 0). In this limit, we find the viscosity-free
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0.5 1
kδ

-1.5

-1

-0.5

Im(Ξ)

FIG. 5. Corresponding damping Im(Ξ)(k) for surface waves with gravity with time reversal breaking from a local rotation rate
Ω to accompany Fig, 1. The red plot has g = 10, the blue plot has g = 1 and the orange has g = 1.2. The other parameters
are fixed at ηsh = 0.1, ηR = 0.5, ηH = 0.3 and µ = 1.

dispersion relation

Ξ0 = − iµ
2
± 1

2

√
4gk − µ2, . (F30)

This describes propagating damped waves for k greater than the threshold wavevector k∗ = µ2/(4g), and overdamped
stationary waves for k < k∗. In analogy with Sec. E 1, we can compute the dispersion perturbatively for small

β =
√
ηdis

totk
2/(gk)1/4, which corresponds to a large-g expansion. In full analogy with our modified Lamb waves of

Sec. E 1, we find

Ξg→∞ = ±
√
gk − iµ

2
− 2k2(ηH + iηsh)− 1

2
kδωs. (F31)

The first two terms correspond to the first two terms in the Taylor expansion of Ξ0 in Eq. (F30) for large g. The
second term is identical to the modification to the Lamb wave dispersion found in Sec. E 1. Finally, the last term
gives the correction to the dispersion due to the nonzero angular velocity Ω of the fluid particles. This matches with
our observations in Fig. 4. Lastly, in Fig. 5 we show the imaginary part of Ξ1,2g for the three different values of g
discussed in Sec. III C. We see that for small k, the damping rate for Ξ1g always goes to zero, while the damping rate
for Ξ2g always goes to µ.
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