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Inspired by the advancements in large language models based on transformers, we introduce the transformer
quantum state (TQS): a versatile machine learning model for quantum many-body problems. In sharp contrast
to Hamiltonian/task specific models, TQS can generate the entire phase diagram, predict field strengths with
experimental measurements, and transfer such a knowledge to new systems it has never been trained on be-
fore, all within a single model. With specific tasks, fine-tuning the TQS produces accurate results with small
computational cost. Versatile by design, TQS can be easily adapted to new tasks, thereby pointing towards a
general-purpose model for various challenging quantum problems.

I. INTRODUCTION

Determining the state of a quantum many-body system is
one of the fundamental problems in physics. While the ex-
ponential growth of the Hilbert space precludes brute-force
calculations, computational methods such as quantum Monte
Carlo [1] and tensor network-based methods [2] allow for ef-
ficient simulations of certain problems, each with their own
strengths and weaknesses.

More recently, the advancements in machine learning tech-
niques and models have influenced the physics community.
In fact, the introduction of neural networks (NNs) as varia-
tional states for quantum many-body problems has greatly ex-
panded the types and sizes of systems that can be efficiently
tackled. For instance, the restricted Boltzmann machine [3, 4]
was the first NN model applied to correlated quantum systems
[5], followed by models with different architectures such as
feed-forward [6, 7], convolutional [8, 9], recurrent [10], and
autoregressive [11–13] ones. With the ability to encode area
and volume-law entanglement [14], NNs are especially advan-
tageous in dealing with high-dimensional systems. And with
proper tricks, they can also greatly ease the fermion sign prob-
lem [6]. Yet, despite these successes, the previous approaches
are limited to specific tasks.

Recently, a new task-agnostic model has been put forward
by the machine learning community: the transformer architec-
ture [15]. Since its introduction, this model has dominated the
field by achieving state-of-the-art results in almost every nat-
ural language processing task [16–19], thus rendering the re-
current neural networks obsolete in merely a few years. Trans-
formers have also been adapted to different tasks such as im-
age recognition [20], audio processing [21] and graph classi-
fication [22], all achieving remarkable results.

This feat relies on an impressive aspect of transformer mod-
els: their ability to scale to very large sizes [19, 23]. When
facing with a new task, few-shot learning [19] allows a gen-
eral purpose model to easily adapt with merely a few exam-
ples in natural language. And when better performance is de-
sired, fine-tuning on a small dataset produces satisfactory re-
sults within a short time [18].
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These results give hope that such an architecture may be
of great help in quantum physics as well. However, the ap-
plication of transformers in this field is still rather limited,
with a few results concerning quantum lattice models [13],
open systems [24], quantum state tomography [25] and quan-
tum circuit simulation [26], while the task-agnostic property
is barely used. Therefore, the full potential of the transformer
architecture has yet to be explored.

Contrary to the general-purpose models mentioned above,
NN models in physics are usually highly specialized, serving
a single purpose such as representing wave functions [5–12],
preparing and controlling quantum states [26, 27], recogniz-
ing phase transitions [28, 29], realizing quantum state tomog-
raphy [25, 30, 31], etc. Such tasks share a lot of common
knowledge, making it ideal to have a single, unified model
that handles them all, with the possibility of discovering new
physics at the intersection of different tasks.

As a first step, we may consider using NNs as variational
wave functions. Traditionally, each NN can only represent a
specific quantum state, and tasks such as generating a phase
diagram requires retraining of the same NN from scratch for
hundreds of times, even if nearby data points have similar fea-
tures.

In this paper, we consider a different perspective: instead
of modeling a specific quantum state, we attempt to repre-
sent a family of quantum states within a single neural network.
More precisely, we focus on the joint distribution of the wave
function and relevant physical parameters such as interaction
strength, external field, and/or system size. For the underlying
NN, we choose the transformer architecture for its versatility
and strong performance across different tasks.

We call this model a transformer quantum state (TQS), and
show that it is capable of generating the entire phase diagram
of a many-body system, predicting field strengths with as few
as one experimental measurement, and transferring knowl-
edge to new systems it has never seen before, all within a
single model.

II. TRANSFORMER QUANTUM STATE

Consider the probability distribution P (s,J) ≡
P (s1, · · · , sn, J1, · · · , Jm), where si ∈ {0, 1, · · · , d− 1} are
discrete variables representing the physical degrees of free-
dom such as spin or occupation number, and Jj correspond
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FIG. 1. The structure of a TQS. Left: the overall architecture of our model. We use the standard encoder-only transformer architecture, utilizing
an embedding layer to map different inputs into a single unified feature space, and pass them through N identical transformer encoder blocks,
followed by two different output heads, parameterizing the amplitude P and phase φ, respectively. Middle: The structure of a transformer
encoder block. Right: the mask structure in a masked self-attention operator. Squares with a cross represent the masks, blocking the flow of
information, so that each site only has access to its predecessors. This ensures that the autoregressive property is satisfied.

to other physical parameters, either continuous or discrete.
Such a state space grows exponentially with the number of
variables, and a compact representation is desired.

To represent P (s,J), we adopt the transformer architecture,
and autoregressively model the entire distribution as a product
of conditional distributions,

P (s,J) = P (J)

n∏
i=1

P (si|s1, · · · , si−1,J). (1)

The structure of the transformer is shown in Fig. 1, with
each output of the neural network representing one of the con-
ditional distributions. For a detailed explanation of the trans-
former architecture, see Appendix A.

Contrary to energy-based models such as restricted Boltz-
mann machines [5], the autoregressive structure allows for
efficient sampling [11]. Since each conditional probability
P (si|s1, · · · , si−1,J) does not depend on any variable sj
with j > i, starting from s1, one can sequentially sample si
according to the previously sampled configurations, using the
i-th conditional distribution only. Using the idea developed in
[12], efficiency of the sampling algorithm can be further im-
proved by only sampling unique configuration strings, and the
details are explained in Appendix C.

We assume that J has a predefined prior distribution P (J),
which, in general, can be chosen as a uniform distribution over
the range of interest (e.g., to study the transition in the Heisen-
berg J1-J2 model [9, 32], one can fix J1 = 1 and make J2
uniform over [0, 1]).

Our aim is to model quantum states |ψ(J)〉, which are
complex-valued quasiprobability distributions. To this end,
we expand them in the computational basis and separate their

amplitude A and phase φ,

|ψ(J)〉 =
∑
s

ψ(s,J)|s〉

=
∑
s

A(s,J) exp(iφ(s,J))|s〉.
(2)

Since squared amplitude has the probability interpretation,
we choose

A(s,J) =
√
P (s,J), (3)

with P (s,J) specified in Eq. (1). The phase φ has no restric-
tions and can be either positive or negative, and we represent
it with a similar autoregressive structure:

φ(s,J) =
∑
i

φ(si|s1, · · · , si−1,J). (4)

A. Ground state of a family of Hamiltonians

The first task we consider is finding the ground state |ψ〉
of many-body Hamiltonians. Per the standard procedure, this
can be done by minimizing the variational energy estimation,
〈ψ|Ĥ|ψ〉, over the target Hamiltonian Ĥ . A minor complica-
tion is that, instead of a single Hamiltonian Ĥ , we have now a
family of Hamiltonians {Ĥ(J)}. In Appendix B, we show that
the family of ground states |ψ(J)〉 corresponds to the ground
state |Ψ〉 of the super-Hamiltonian Ĥ =

⊕
J

Ĥ(J)
|Eg(J)| in the ex-

tended Hilbert space, and we can optimize the TQS by mini-
mizing 〈Ψ|Ĥ|Ψ〉, which follows the standard procedure.

Once we have the family of ground states ψ(s,J), an im-
mediate application is to estimate the physical parameters J
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using samples s from the wave function. This follows triv-
ially from the conditional probability:

P (J|s) =
P (s,J)

P (s)
. (5)

In practice, given a set of measurements {sk}, J can be pre-
dicted using standard maximum likelihood estimation [33], by
maximizing the log-likelihood functional,

L(J) =
∑
k

logP (sk|J). (6)

In this way, we can efficiently determine physical properties
of a quantum system with few measurements. Details of the
implementation can be found in Appendix E.

This task is somewhat similar to shadow tomography [34,
35], in the sense that we are predicting properties of a quan-
tum system with a few measurements, but with more restric-
tions and with certain prior knowledge required. On the other
hand, Ref. [28] considered another similar task of recognizing
phases from measurements using machine learning, which is
formulated as a classification task. In comparison, our task
falls in the middle of the two mentioned above, and to the best
of our knowledge, it has never been proposed. Under this set-
ting, the TQS can handle this task extremely efficiently. In
fact, with the prior knowledge that a quantum state |ψ〉 comes
from a family of states |ψ(J)〉, we can efficiently determine
the physical parameters J, with as few as one measurement
only.

Furthermore, we show that the TQS can transfer knowledge
to new systems it has never seen before. This follows the
pre-training plus fine-tuning methodology commonly adopted
in natural language models [16, 17]. In the zero-shot setting
[19], after training on the family of Hamiltonians Ĥ(J), TQS
can generate the ground state of new Hamiltonians Ĥ(J∗)
with J∗ /∈ {J}, albeit with slightly larger error. When higher
accuracy is desired, one can fine-tune the TQS on the specific
Hamiltonian Ĥ(J∗), to obtain accurate results within a much
shorter time comparing to learning from scratch.

III. RESULTS

As a prototypical test bed, we first examine the 1D trans-
verse field Ising (TFI) model, whose Hamiltonian is

Ĥ = −J
n−1∑
i=1

σzi σ
z
i+1 − h

n∑
i=1

σxi , (7)

where J is the coupling constant and σz and σx are Pauli ma-
trices. In Appendix G 3, we also provide numerical results on
the 1D XYZ model.

A. Ground state calculations

To begin with, we pre-train the TQS on the family of TFI
Hamiltonians Ĥ(n, h), specified in Eq. (7). We fix J = 1,

and assume a uniform distribution of the transverse field h ∈
[0.5, 1.5]. The system size n can take any even integer value
with equal probability in the range of [10, 40]. We explicitly
enforced parity and spin flip symmetry on the TQS, with de-
tails elaborated in Appendix D.

After pre-training for 105 iterations, we plot the ground
state energy, E, and magnetization along the z direction,
mz =

∑
i〈σzi 〉/N , for n = 40, h ∈ [0, 2], in Fig. 2. Since

we explicitly symmetrized the TQS with the |0〉 ↔ |1〉 spin
flip symmetry, we always have 〈mz〉 = 0, so 〈|mz|〉 is plotted
instead. Note that while the TQS is only trained in the range
of h ∈ [0.5, 1.5], it can infer the properties of the ground state
when h ∈ [0, 0.5) and h ∈ (1.5, 2] with slightly larger error,
without any additional inputs except the value of h.

(a)

(b)

FIG. 2. Results on the ground state of the TFI Hamiltonian, Eq. (7),
with n = 40. Lines and data points are medians of 10 estima-
tions, while shaded regions and error bars enclose 10th to 90th per-
centile. Dotted lines are generalizations to regions TQS has not
been trained on. (a) The relative error of the ground state energy,
∆E = |(E−Eground)/Eground|. Eground is estimated with DMRG,
which is accurate up to 10−10. (b) Absolute value of the magnetiza-
tion along the z direction, 〈|mz|〉. We can observe the transition near
h = 1.

Finite-size scaling can be easily carried out using TQS.
With a variable input length, we can represent an arbitrary
number of degrees of freedom within a single TQS model.
Using the same model trained with h ∈ [0.5, 1.5], in Fig. 3 we
show that finite-size scaling analysis on the TFI model cor-
rectly identifies the phase transition point h = 1, and the pre-
dicted critical exponents satisfy β/ν = 0.130± 0.010, which
match the theoretical predictions β = 1/8, ν = 1. Details of
the calculation can be found in Appendix G 2.

Similar experiments are carried out where the TQS is
trained in the range h ∈ [0, 0.5] ∪ [1.5, 2], and the results are
shown in Fig. 4. Although training is only carried out either
deep in the ferromagnetic phase or paramagnetic phase, TQS
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(a)

(b)

FIG. 3. Finite-size scaling calculations on the TFI model, using
the TQS trained with h ∈ [0.5, 1.5]. (a) Binder cumulant [36],

UN = 1 − 〈m4
z〉N

3〈m2
z〉2N

, plotted for various system sizes N . At the
critical point hc, UN is invariant with the system size N , and finding
the crossing of various UN curves can help us determine the critical
point. In this figure, we identify hc = 1, which agrees with the the-
oretical prediction. (b) Finite-size scaling of the mean-square-root
magnetization [37] at the critical point h = 1. Using the finite-size
scaling ansatz [38], at the critical point,

√
〈m2

z〉|hc ∼ N−β/ν . A
linear fit on the log-log scale gives β/ν = 0.130 ± 0.010, which
matches the theoretical values β = 1/8 and ν = 1.

can still infer the ground state energy and magnetization of
TFI near the phase transition with reasonable accuracy.

However, in Appendix G 2 we show that, this interpolated
state undergoes phase transition at h = 1.24 instead of h = 1,
with critical exponents different from the usual Ising transi-
tion. Without access to training data near the phase boundary,
TQS cannot accurately predict the phase transition. Rather,
it generates a fictitious physical system with its own critical
behaviors.

At this point, we further fine-tune the TQS on specific
points Ĥ(n∗, h∗) for an additional 2× 103 iterations, and the
results are also shown in Figs. 2, 4. Outside of the pre-trained
region, the accuracy improved dramatically up to a few orders
of magnitudes. Within the pre-trained region, there is also
a small improvement in accuracy, but not as much since the
pre-trained model already works well.

As a further test, we fix h = 1, and compute the ground
state energy of systems with different sizes n ∈ [10, 80] (using
the model trained in h ∈ [0.5, 1.5]). The result is plotted in
Fig. 5. Again, even if the pre-trained model has never seen
any system with more than 40 spins, it can generalize to much
larger systems, and their energy estimations can be greatly
improved by fine-tuning for an additional 2× 103 iterations.

0.0 0.5 1.0 1.5 2.0
h

10
7

10
5

10
3

E

Pre-trained TQS
Generalization
Fine-tuned TQS

FIG. 4. Relative error of the ground state energy of the TFI Hamil-
tonian, Eq. (7), with n = 40. Lines and data points are medians of
10 estimations, while shaded regions and error bars enclose 10th to
90th percentile. Dotted lines are generalizations to regions TQS has
not been trained on. Data points below 10−7 are not shown for a
clearer illustration.

B. Predicting parameters

Next, with the learned distribution P (s, n, h), we want to
predict the transverse field h using experimentally available
measurements. To this end, we simulate the experiment by
computing the ground state of the TFI model using the density
matrix renormalization group (DMRG) [2, 39], and generate
a synthetic dataset with projective measurements in the com-
putational basis. Details of DMRG calculations can be found
in Appendix F.

We fix n = 40, and predict h by maximizing Eq. (6), the
log-likelihood functional, with varying number of measure-
ments. The results are shown in Fig. 6. Surprisingly, with as
few as one measurement, TQS gives reasonable estimations
of h. Increasing the number of measurements improves the
quality of prediction, and an empirical power law scaling of
the prediction error versus the number of measurements is ob-

20 40 60 80
System size

10
6

10
5

10
4

10
3

E

Pre-trained TQS
Generalization
Fine-tuned TQS

FIG. 5. Relative error of the ground state energy of the TFI Hamil-
tonian, Eq. (7), with h = 1. Lines and data points are medians of
10 estimations, while shaded regions and error bars enclose 10th to
90th percentile. Dashed lines are generalizations to regions TQS has
not been trained on. The pre-trained TQS can infer the ground state
energy of much larger systems than what it is trained on, without any
additional input except the system size n, albeit with slightly larger
error. By fine-tuning with an additional 2× 103 iterations, the accu-
racy improves by an order of magnitude.
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(a)

(b)

FIG. 6. (a) The predicted field strength h̃ vs. the actual field strength
h, with varying number of measurements. Solid lines are mean val-
ues of 10 predictions, and shaded regions enclose one standard de-
viation. The dashed line represents the expected result, h̃ = h. (b)
Scaling of the prediction error, |h̃ − h|, and standard deviation, σh̃,
vs. the number of measurements. Each data point is computed with
10 predictions. We observe an empirical power law scaling, with
|h̃− h| ∼ N−2.05

measure and σh̃ ∼ N
−1.69
measure.

served.

IV. DISCUSSION

In summary, our results demonstrate how the TQS learns
various ground state properties of a physical system, and ap-
propriately uses the acquired knowledge to solve new prob-
lems. TQS marks the first step towards a general purpose
model for quantum physics. Although we only explored here
the ground states of many-body Hamiltonians, it is possible to
encode many additional operations and information into the
TQS, such as unitary transformations, time evolution, positive
operator-valued measurements, etc. Thanks to the flexibility
of neural sequence models and the transformer architecture,
all the additional information can be formulated as new to-
kens to be passed into the embedding layer, thus maintaining
the model structure simple and unified.

Limited by available computational resources, we were un-
able to train larger models for a wider range of tasks. But
we believe that, with the advancements in the development
of new computing paradigms such as MemComputing [40],
such models can be pushed even further. This would help
researchers understand various challenging quantum phenom-
ena, and assist them in the design and characterization of near-
term quantum devices.

Data availability—The code for all simulations
performed in this paper, the weights of a pre-
trained TQS on the Ising model, and a synthetic
dataset generated using DMRG are available at
https://github.com/yuanhangzhang98/transformer quantum state.
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Appendix A: Transformer implementation details

As illustrated in Fig. 1, we adopt the standard encoder-
only transformer structure [15]. The discrete spin variables
si are first one-hot encoded [41], and the parameters Jj are
represented with a scaled one-hot vector. To input interaction
strengths and external fields, the scale is the value of the inter-
action itself. To input the system size n, we choose the scale
to be lnn , and append another parity dimension to the input
vector, indicating whether n is even or odd.

Since the input does not entirely consist of one-hot vectors,
the embedding layer performs a linear transformation, map-
ping the input vectors into a de dimensional embedding space.

We use a mixed-style positional encoding. The spin vari-
ables si have a well-defined position, and we use the D-
dimensional sinusoidal positional encoding [15, 42] on them,
where D is the spatial dimension of the physical system. This
ensures that the neural network can correctly generalize to
larger system sizes it has never been trained on before. On
the other hand, the parameters Jj do not have a position, and
we use a learnable positional encoding [20] instead.

After embedding and positional encoding, we pass the em-
bedded inputs through N identical transformer encoder lay-
ers, with structures defined in [15]. The feed-forward sublayer
consists of two linear layers, with the hidden dimension in the
middle also being de. We use multi-head self-attention [15]
with 8 heads for the larger model, and 2 heads for the smaller
model. ReLU activation [43] is used throughout the neural
network.

After N transformer encoder layers, we use two output
heads to model the amplitude and phase of the target wave
function. The amplitude head is a linear layer followed by a
softmax activation [44], and the phase head is a linear layer
followed by a softsign activation, which is defined in [10] and
computes the function (−∞ < x < +∞)

softsign(x) =
x

1 + |x|
. (A1)

We scale the softsign output by π, to output a phase in the
range of (−π, π).

The TQS mentioned in the main text has N = 8 trans-
former encoder layers with embedding size de = 32, and the
number of parameters is about 7.7 × 104. The smaller model
in Appendix G 1 has N = 2 transformer encoder layers with
embedding size de = 16, resulting in 5.2 × 103 parameters.
The implementation of TQS is carried out using the PyTorch
library [45].

Appendix B: Variational optimization of the ground state energy

TQS is trained by minimizing the ground state energies of
a family of Hamiltonians, {Ĥ(J)}.

For a single Hamiltonian Ĥ , the energy derivative reads [5]:

∂E

∂θk
= 2Re

(〈
Eloc(s)

∂ logψ(s)∗

∂θk

〉
P (s)

)
(B1)

where 〈·〉P (s) denotes expectation over the distribution P (s),
and

Eloc(s) =
∑
s′

Ĥ(s, s′)
ψ(s′)

ψ(s)
(B2)

is the local energy estimator.
Since the autoregressive wave function is explicitly normal-

ized, it is shown in [10] that the variance of the gradient can
be reduced by subtracting a baseline energy,

∂E

∂θk
= 2Re

(〈(
Eloc(s)−〈Eloc(s

′)〉P (s′)

)∂ logψ(s)∗

∂θk

〉
P (s)

)
(B3)

without introducing bias. This follows from

Re
〈
〈Eloc(s

′)〉P (s′)
∂ logψ(s)∗

∂θk

〉
P (s)

=〈Eloc(s
′)〉P (s′)

∑
s

P (s)
1

2

1

P (s)

∂P (s)

∂θk

=
E

2

∂

∂θk

∑
s

P (s) =
E

2

∂

∂θk
1 = 0.

(B4)

In our problem setting, we have a family of Hamiltonians
Ĥ(J) parameterized by J, with ground state energies Eg(J).
Without loss of generality, we suppose all Eg < 0; otherwise
we can simply shift the energy levels by adding a constant.
Then, we define the super-Hamiltonian,

Ĥ =
⊕
J

Ĥ(J)

|Eg(J)|
, (B5)

to be the direct sum of all (possibly infinite) Hamiltonians
H(J), weighted by their ground state energies, 1

|Eg(J)| . Note

that Ĥ is block diagonal, with no interaction across different
J. One can easily show that, the ground state of Ĥ is the direct
sum of all ground states, |Ψ〉 =

⊕
J |ψ(J)〉,

Ĥ|Ψ〉 =

(⊕
J

Ĥ(J)

|Eg(J)|

)(⊕
J

|ψ(J)〉

)

=
⊕
J

Ĥ(J)|ψ(J)〉
|Eg(J)|

=−
⊕
J

|ψ(J)〉 = −|Ψ〉

(B6)

with eigenvalue −1. Therefore, we can follow the standard
procedure and minimize

〈Ψ|Ĥ|Ψ〉 =
∑
J

〈ψ(J)|Ĥ(J)|ψ(J)〉
|Eg(J)|

. (B7)

We don’t have access to the exact ground state energies
Eg(J), so we instead approximate them with variationally
approximated ground state energies, Ẽg(J) = 〈Eloc(s,J)〉,
which become increasingly more accurate as optimization
goes on.
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In practice, at each optimization iteration, we sample a ran-
dom J according to P (J), and compute the energy derivative
Eq. (B3), scaled by 1

|Ẽg(J)|
. We set an upper limit of 5 to the

scaling factor, to avoid divergences when Ẽg(J) → 0 during
optimization.

The entire training procedure is carried out using the Adam
optimizer [46], with β1 = 0.9 and β2 = 0.98. We varied the
learning rate during training according to the formula,

lr(istep) = 5d−0.5e min(i−0.75step , istepi
−1.75
warmup) (B8)

where de is the embedding size of the model, istep is the cur-
rent number of training steps, and iwarmup is the number of
warm up steps. We used iwarmup = 4000. This corresponds
to linearly increasing the learning rate during the first 4000
iterations, and polynomially decreasing it during the rest of
the training. This learning rate schedule is inspired from [15].
During fine-tuning, we use a different learning rate schedule:

lr(istep) = 5d−0.5e (istep + 105)−0.75. (B9)

Appendix C: Sampling algorithm

The autoregressive structure of TQS already makes sam-
pling efficient, and the efficiency is further improved by
adopting the sampling algorithm in [12], which only samples
unique configuration strings.

During sampling, we first fix a large batch size, Nbatch,
and autoregressively sample the spins to form partial strings,
sk = s1s2 · · · si, with associated number of occurrences, nk.
At the (i+ 1)-th sampling step, si+1 is sampled from the con-
ditional distribution P (si+1|s1, · · · , si,J), resulting in nk0
occurrences of si+1 = 0 and nk1 occurrences of si+1 = 1,
with nk0 + nk1 = nk. After this step, we obtain two unique
partial strings, sk0 = s1s2 · · · si0 and sk1 = s1s2 · · · si1, with
occurrences nk0 and nk1, respectively. This procedure starts
from an empty set and is repeated until the number of unique
strings reaches a maximum, Nunique, after which no new par-
tial string branches are generated, and the remaining spins are
sampled in the regular way.

The complexity of this sampling algorithm is approxi-
mately proportional to Nunique and does not depend on
Nbatch. Therefore, we can choose extremely large batch sizes
to greatly improve on the accuracy of estimated expectation
values, with negligible increase in computation time. For all
the experiments mentioned in this paper, we choose Nbatch =
106, Nunique = 102 during training, and Nunique = 103 dur-
ing evaluations.

Appendix D: Implementing symmetries

The transformer architecture itself does not observe any
symmetry, but most Hamiltonians do. To impose symmetries
without spoiling the autoregressive structure, we follow the
approaches in previous works [7, 10, 11] and explicitly sym-
metrize the wave function in a similar way.

Suppose T̂ is a discrete symmetry of Ĥ , with T̂ m = 1

(m ∈ N). By definition, we have [Ĥ, T̂ ] = 0, and one can
simultaneously diagonalize both operators within the same
eigenbasis. Under this basis, the ground state |ψ〉 is also an
eigenstate of T̂ ,

T̂ |ψ〉 = ωT̂ |ψ〉 (D1)

where ωT̂ = e2πik/m, k ∈ N. Expanding Eq. (D1) in the
computational basis, we get

ψ(T̂ −1s) = ωT̂ ψ(s). (D2)

In terms of amplitude and phase, Eq. (D2) becomes

A(T̂ s) = A(s),

φ(T̂ s) = φ(s)− 2πk

m
.

(D3)

The output wave function from TQS clearly does not satisfy
Eq. (D3). To explicitly enforce the symmetry T̂ , we define

P̃ (s) =
1

m

m−1∑
n=0

P (T̂ ns)

φ̃(s0) = Arg

(
m−1∑
n=0

ψ(T̂ ns0)

)

φ̃(T̂ ns0) = φ̃(s0)− 2πkn

m

(D4)

where ψ(s) =
√
P (s)eiφ(s), P , φ are outputs from the TQS,

and P̃ , φ̃ are symmetrized probability and phase, respectively.
s0 is an arbitrary initial configuration in each symmetry sec-
tor, predefined so that the phases within the symmetry sector
can be assigned consistently. We choose s0 to be the con-
figuration with the smallest decimal value, converted from its
binary bitstring, within each symmetry sector.

Sampling from the symmetrized wave function has almost
no additional computational cost. We follow the same pro-
cedure detailed in the previous section, and apply a random
symmetry operation T̂ n to the sampled configuration s in the
end [10, 11]. However, to compute the exact value of ψ(s),
one needs to evaluate all configurations within the symme-
try sector and explicitly calculate Eq. (D4), which is m times
more expensive.

Another symmetry worth mentioning is the U(1) symmetry
of the Heisenberg model, which leads to zero magnetization.
This symmetry is particularly easy to implement, and we fol-
low the same method developed in [10], by setting the proba-
bility of a partial string to 0 whenever the number of up spins
or down spins exceeds half of the system size.

Note that, while the Hamiltonian Ĥ may satisfy several
symmetries T̂1, T̂2, · · · , it is possible that [T̂1, T̂2] 6= 0, making
it impossible to diagonalize all symmetries at the same time.
However, this does not pose a problem for us. Although T̂1
and T̂2 do not commute in general, they do commute in certain
symmetry sectors (for example, ωT̂1 = ωT̂2 = 1). To imple-
ment symmetries, we need to know ωT̂ as a prior knowledge,
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and this information then helps us determine all compatible
symmetries.

As another remark, in our implementation of TQS, we only
enforced the symmetries T̂ with ωT̂ = 1. We noticed that,
any symmetry with ωT̂ 6= 1 would impose a non-trivial phase
structure to the wave function, which is somewhat arbitrary
and could significantly slow down the training.

Appendix E: Predicting parameters

With the learned distribution P (s,J), we can predict the
parameters J from a batch of measurements {si}. As illus-
trated in the main text, this is achieved through maximizing
the log-likelihood functional Eq. (6).

We carried out the maximization using the Nelder-Mead
method [47], a heuristic searching algorithm based on a mov-
ing simplex, implemented in the SciPy library [48], with a
tolerance of 10−9.

An alternative method to predict the parameters would be
supervised fine-tuning, which adds a parameter prediction
head as an additional output of TQS. This would have the
advantage of reducing the computational cost to one forward
pass, at the expense of fine-tuning cost. We leave this as a
future work.

Note that we didn’t use any phase information during the
prediction. To make use of the phase structure, one needs
to perform measurements in different bases, and compute
a generalized likelihood function that takes all bases into
account. For this, we refer the readers to [30]. Alterna-
tively, it is possible to use informationally-complete positive
operator-valued measurements (IC-POVM) to encode the
complete information of a quantum state, which is developed
in [49]. We can adapt the TQS structure to be compatible
with IC-POVM, which we also leave as a future work.

Appendix F: DMRG calculations

For the 1D transverse field Ising model in the main text and
the 1D XYZ model in Appendix G 3, we use density matrix
renormalization group (DMRG) as a benchmark to evaluate
the performance of our algorithm. DMRG can be extremely
accurate for 1D systems, yet performs rather poorly in 2 or
more dimensions [2].

We used the TeNPy library [39] to perform DMRG calcu-
lations. For all DMRG results mentioned in the paper, we use
a maximum bond dimension of 100, and terminate when the
energy tolerance 10−10 is achieved.

Appendix G: Additional numerical results

1. Performance benchmarking

In this section, we compare the accuracy and training cost
of TQS with restricted Boltzmann machine (RBM) [5], an-

other widely adopted framework for neural network quantum
states.

To ensure a fair comparison, we trained a smaller TQS
with 5.2 × 103 parameters (embedding size de = 16, two
transformer encoder blocks), to compare with an RBM with
approximately the same number of parameters (hidden-to-
variable ratio α = 3). The TQS is trained using the setting
described in the previous sections, with Nunique = 2000,
while the RBM is trained using stochastic reconfiguration
(SR) [5, 50], contrastive divergence with 10 sampling steps
(CD-10) [51] and batch size 24800. Under this setting, the
computational cost for each training iteration is approximately
the same. To model continuous physical parameters in RBMs,
we use continuous visible neurons normalized to [−2, 2], to-
gether with regular binary neurons with values±1 for the spin
variables.

At this point, we try to reproduce the experiment described
in the main text using RBMs. We focus on the transverse field
Ising (TFI) model, with the transverse field h as an additional
input to the neural network. The RBM is trained for 105 itera-
tions, and the learning rate decreases according to the formula

lr(istep) = lrmaxi
−0.5
step (G1)

where istep is the current number of training steps, and
lrmax = 0.02. TQS is also trained for 105 iterations, and
the results are shown in Figs. G1, G2.

In Fig. G1, the training range is h ∈ [0.5, 1.5], and the
RBM learned an energy curve that is almost linear in h. And
in Fig. G2 the training range is h ∈ [0, 0.5] ∪ [1.5, 2], but
the RBM only learned the properties in the [1.5, 2] range. In
comparison, TQS did an almost perfect job in both cases.

This result is expected, since TQS is designed for flexibility
and is able to learn different quantum states at the same time,
even with a tiny model size. On the other hand, RBM can
accurately represent a single quantum state, but it is much less
flexible when it comes to a family of quantum states.

As another test, we train both models at a single data point
h = 1 for 105 iterations, and the result is shown in Fig. G3.
RBM works very well in this case, converging in about 103 it-
erations, and does not improve much afterwards. On the other
hand, TQS converges much slower, but continues to see im-
provements up to 105 iterations.

Again, this result is expected. With a simple structure,
RBM can be easily trained using the SR algorithm, leading to
a fast convergence. However, TQS has a much more sophis-
ticated structure, and needs a warm-up period in the learning
rate schedule for a smoother convergence. This makes the
training slower, but with a potentially higher final accuracy.

2. Finite-size scaling

The idea of finite-size scaling [52] can help us understand
divergent behaviors in the thermodynamic limit using only nu-
merical results in finite systems. Assume we have some phys-
ical quantity Ω that diverges in the thermodynamic limit at a
critical value hc,

Ω(h) ∼ |∆h|−ω, (G2)
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(a)

(b)

FIG. G1. Comparison of TQS and RBM on the ground state of
the TFI model, with a variable transverse field h. (a) Energy per
spin and (b) Relative error of the ground state energy, ∆E =
|(E − Eground)/Eground|. Both models are trained in the range
h ∈ [0.5, 1.5].

where ∆h = (h − hc)/hc → 0. The correlation length,
ξ(h) ∼ |∆h|−ν , also diverges with critical exponent ν. There-
fore, Ω correlates with ξ as

Ω ∼ ξω/ν . (G3)

For a finite system of linear sizeN , the behavior of Ω(h,N)
deviates according to the ratio ξ/N . When ξ � N , finite-size
effects are negligible, and Eq. (G3) is preserved. However,
since the correlation length cannot exceed the system size in
finite systems, if ξ � N , Ω has to scale with N instead. This
leads to the finite-size scaling ansatz

Ω(h,N) ∼ ξω/νf(N/ξ), (G4)

where f(x) is a scaling function that satisfies

f(x) ∼

{
const, x→∞,
xω/ν , x→ 0.

(G5)

By defining g(x) = x−ωf(xν), we can rewrite Eq. (G4) as

Ω(h,N) ∼ Nω/νg(N1/ν |∆h|) (G6)

Therefore, at the critical point hc, Ω scales as

Ω(hc, N) ∼ Nω/ν . (G7)

Determining hc is another task on its own. A common
method is to compute the Binder cumulant [36],

UN = 1− 〈m
4
z〉N

3〈m2
z〉2N

, (G8)

(a)

(b)

FIG. G2. Comparison of TQS and RBM on the ground state of the
TFI model, with a variable transverse field h. (a) Energy per spin and
(b) Relative error of the ground state energy. Both models are trained
in the range h ∈ [0, 0.5] ∪ [1.5, 2].
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FIG. G3. The training curve of TQS and RBM on the ground state
of the TFI model with transverse field h = 1. On a single data point,
RBM converges faster than TQS.

which is invariant with system sizeN at the critical point [36].
Therefore, the crossing point of UN − h curves for different
N gives the critical point hc.

In Fig. 3(a) in the main text, we used the Binder cumulant to
show that TQS can correctly identify the TFI phase transition
at h = 1. And in Fig. 3(b), we computed the ratio β/ν by
fitting the scaling of magnetization mz to Eq. (G7). On a side
note, since TQS is explicitly symmetrized to have 〈mz〉 = 0,
we followed the method in [37] and used the mean-square-
root magnetization

√
〈m2

z〉 instead.
The results in Fig. 3 are obtained using a TQS model trained

in h ∈ [0.5, 1.5] near the phase boundary. What if the TQS
has never been trained on any data near the critical point? To
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test this, we performed the same analysis using TQS trained
in h ∈ [0, 0.5] ∪ [1.5, 2], either deep in the paramagnetic or
ferromagnetic regime. The results are shown in Fig. G4. This
time, TQS failed to find the correct critical point hc = 1.
However, quite surprisingly, TQS managed to find a plausible
interpolation between the two phases, with a new critical point
h = 1.24, and critical exponents β/ν = 0.277± 0.006.

(a)

(b)

FIG. G4. Finite-size scaling calculations on the TFI model, using
the TQS trained in h ∈ [0, 0.5] ∪ [1.5, 2]. (a) Binder cumulant [36],

UN = 1 − 〈m4
z〉N

3〈m2
z〉2N

, plotted for various system sizes N . The curves
cross at h = 1.24. (b) Finite-size scaling of the mean-square-root
magnetization at the critical point h = 1.24. A linear fit on the log-
log scale gives β/ν = 0.277± 0.006.

Of course, this interpolated phase transition is not physical,
and the computed critical exponents seem to suggest that this
fictitious system has a fractal dimension between 1 and 2. It
would be an interesting future work to look into the neural
network and analyze what actually happened here.

3. Heisenberg XYZ model

In this section, we further benchmark the performance of
TQS with additional numerical experiments. We focus on the
1D Heisenberg XYZ model in a longitudinal field [53], whose
Hamiltonian is given by

Ĥ = J

n−1∑
i=1

[
(1 + γ)σxi σ

x
i+1 + (1− γ)σyi σ

y
i+1

+∆σzi σ
z
i+1

]
+ h

n∑
i=1

σzi

(G9)

0.00 0.25 0.50 0.75 1.00
h

1.0

0.5

0.0

0.5

1.0

10
4

10
3

10
2

10
1

FIG. G5. The relative error of the ground state energy, |(E −
Eground)/Eground|, plotted against the external field h and longi-
tudinal interaction strength ∆, with n = 40. In this figure, h and ∆
are in the pre-training range.
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FIG. G6. The relative error of the ground state energy, |(E −
Eground)/Eground|, in an extended parameter range. The bottom left
corner is part of the pre-training range, separated with black dashed
lines for visual clarity.

We fix J = 1, γ = 0.2, and consider the parameter
range h ∈ [0, 1], ∆ ∈ [−1, 1]. The system size n can take
any even integer value with equal probability in the range of
[10, 40]. The TQS has the same structure as the one described
in the main text, with 8 layers and embedding size 32. We
trained the TQS for 105 iterations without implementing any
symmetry, and the relative errors of the ground state energy,
|(E −Eground)/Eground|, for system size n = 40, are plotted
in Figs. G5, G6.

Fig. G5 shows the results in the pre-trained range, h ∈
[0, 1],∆ ∈ [−1, 1], and the accuracy is at the order of 10−3. In
Fig. G6, we extended the parameter range to h ∈ [0, 2],∆ ∈
[0, 2], with pre-trained and extended parameter ranges sepa-
rated by black dashed lines. TQS can still reasonably infer the
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ground state properties outside of the pre-trained range, but its
accuracy gradually decreases as we move further away.
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FIG. G7. The relative error of the ground state energy, |(E −
Eground)/Eground|, after fine-tuning the TQS on specific parame-
ter points for 2× 103 iterations.

To improve on the energy estimations, we fine-tune the pre-
trained TQS at selected parameters for 2×103 iterations. The
results are plotted in Fig. G7. With fine-tuning, the ground
state energy accuracy improved by another order of magni-
tude, allowing us to more accurately estimate the ground state
properties on a much wider parameter range, with minimal
computational cost.
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