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We analyze the global ground-state (quantum) phase diagram of the one-dimensional spinful Hol-
stein model at half-filling as a function of the strength of the electron-phonon coupling (represented
by the strength of the phonon-induced attraction, U) and the phonon frequency, ω0. In addition
to reanalyzing the various asymptotic regimes, we have carried out density-matrix renormalization
group simulations to correct previous inferences concerning the anti-adiabatic (large ω0) and strong
coupling (large U) regimes. There are two distinct phases - a fully gapped commensurate charge-
density-wave and a spin-gapped Luther-Emery phase with a gapless charge mode - separated by
a phase boundary, with a shape that reflects different microscopic physics in the weak and strong
coupling limits.

The interaction between charge carriers and lattice vi-
bration plays a fundamental role in strongly correlated
quasi-1D materials1–8. The Holstein model5,6 is proba-
bly one of the simplest microscopic models of coupled
electrons and phonons, which makes it an ideal plat-
form for exact numerical methods such as the density-
matrix renormalization group (DMRG)9–12, quantum
Monte Carlo (QMC)13–18, and other algorithms19–21.
Surprisingly, there remain some long-standing debates,
even for the one dimension (1d) Holstein model at half
filling, concerning basic facts about the structure of the
zero temperature (T = 0) phase diagram, as well as dis-
crepancies in the critical values of couplings that mark
the phase boundaries obtained with different numerical
methods13. While early studies inferred a single ordered
phase for any nonzero electron-phonon coupling and fi-
nite phonon retardation17,22,23, more recent numerical re-
sults9,10,12,13,15,16,24 have suggested the existence of a dis-
ordered phase and at least one phase boundary. Specif-
ically, Hirsch and Fradkin17 examined the behavior of
the model as a function of ω0, the bare phonon fre-
quency, and U , the bipolaron binding energy which is
an appropriate characterization of the electron-phonon
coupling strength, both measured in units of the elec-
tron bandwidth, 4|t|. Based on topological constraints
on the nature of the phase diagram and other consid-
erations, they speculated that the phase diagram ex-
hibits only one phase - a fully gapped, long-range ordered
charge-density-wave (CDW) phase - everywhere off these
boundaries. They partially corroborated this conjecture
with QMC studies - among the first such studies for a
fermionic system.

In this paper, we revisit this problem and conclude that
the correct quantum phase diagram of the half-filled 1D
Holstein model is as shown schematically in Fig. 1. In
addition to the CDW phase, there is also a Luther-Emery
(LE) phase, which has a spin gap but a gapless charge

mode and CDW quasi-long-range-order, i.e. it resem-
bles an incommensurate fluctuating CDW. This struc-
ture of the phase diagram is consistent with the topolog-
ical arguments of Fradkin and Hirsch in that the phase
boundary does not terminate on any of the edges of the
phase diagram, but rather extends from the “corner” at
U = ω0 = 0 to that at U = ω0 →∞. Effects of electron-
electron repulsions have been ignored for the purposes of
the present study.

In support of these conclusions, we have explored the
behavior in the vicinity of the four edges of the phase
diagram - each of the regions indicated by a different color
of shading in Fig. 1. The analysis in the neighborhood of
the upper (ω0 =∞) and left most (U = 0) edges is subtle
as these correspond to quantum critical lines - and of
course the two corners of the phase diagram at which the
phase boundary starts and ends are of particular interest:

1. We have derived an effective Hamiltonian in powers
of t/ω0 and U/ω0 that is valid in the vicinity of the
ω0 → ∞ (upper) edge of the phase diagram, and
then solved it using high precision DMRG studies
on very long (up to length L = 400) systems. We
establish that the asymptotic equivalence between
the CDW and LE correlations (i.e. the emergent
SU(2) symmetry as ω0 →∞) is lifted for large but
finite ω0 so that there is a LE phase immediately
below this edge of the phase diagram. This is in
contrast to what was conjectured by Hirsch and
Fradkin, and is our most important new result.

2. We consider a strong coupling expansion of the
model - originally derived by J. K. Freericks25 -
to fourth order in t/U to explore the right edge
of the phase diagram. Again, we use high pre-
cision DMRG studies to determine the behavior
of this effective model, which (as was previously
known) always has an ordered CDW phase if the
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FIG. 1. Ground state phase diagram of the 1d Holstein
model. Both phases have a spin-gap, ∆s > 0. The LE liq-
uid phase has a gapless charge mode while the CDW is fully
gapped. Distinct asymptotic approaches apply at each edge
of the phase diagrams: (i) In the blue (anti-adiabatic) region,
where ω0 � |t|, U , we have derived an effective Hamiltonian
in powers of t/ω0 and U/ω0, and solved it using DMRG as de-
noted by the blue points. (ii) In the orange (strong coupling)
region, U � |t|, we use a combination of a strong coupling
expansion25 and DMRG, to numerically identify the position
of the phase boundary, ω0 ∼ ycU with yc ≈ 0.45, as indicated
by the black circles. (iii) In the red (adiabatic) region, where
ω0 � ∆0 and |t| with ∆0 = 4|t| exp[−2π|t|/U ] the mean-field
gap (for charge and spin), the CDW is stable against quantum
fluctuations up to a critical value of ω0. For small U � t, we
estimate the critical phonon frequency to be ωc ∼ xc∆0 with
xc ≈ 1. (iv) In the green (weak-coupling) region, U � |t|, a
previous functional renormalization group analysis24 confirms
an extended LE liquid phase. The solid portions of the phase
boundary are drawn according to the asymptotic expressions
obtained in the text - the dotted portion as a conjectural
smooth interpolation between these end regions. The points
labeled A − G refer to previous numerical studies (not our
own), as discussed in the text, where those indicated by an
open circle, stars, or filled circles were argued to lie in a LE
liquid, a CDW, and on the phase boundary respectively.

limit U →∞ is taken at fixed ω0. However, we find
that for large but finite U , there is a phase transi-
tion from a CDW ordered state for ω0 < yc U to a
LE liquid phase for ω0 > yc U , where we estimate
yc ≈ 0.45.

3. The familiar Peierls instability ensures that for any
fixed U > 0, the ground-state is an ordered CDW
in the limit ω0 → 0, i.e. on the lower boundary
of the phase diagram. Specifically, for ω0 = 0, a
mean-field analysis is exact, which predicts a finite
gap ∆0 = 4|t| exp(−2π|t|/U) for both charge and
spin modes.

4. The Fermi liquid state at U = 0 is perturbatively
unstable (and in that sense is quantum critical),
since weak attractive interactions inevitably lead
to a state with a spin-gap. For small U and ω0, we

present a field-theoretic analysis that suggests that
the CDW state melts with increasing ω0 at an expo-
nentially small value, ω0 = xc∆0 ∼ exp(−2π|t|/U)
Concerning larger values of ω0, but still in this weak
coupling regime, we also briefly recap a previous
functional RG analysis24 that shows the existence
of a LE liquid phase everywhere proximate to the
U → 0 (left) edge of the phase diagram.

Along the way, we comment on the relation between our
results and several other numerical studies12,13,15 that
have been carried out since the pioneering work of Frad-
kin and Hirsch. We also present arguments suggesting
that the lightly doped system exhibits a single LE liquid
phase for all ω0 and U 6= 0.

I. THE MODEL

The Holstein model is defined as

Ĥ =− t
∑
〈ij〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
+ α

∑
i

n̂ix̂i

+
∑
i

[ p̂2
i

2m
+
Kx̂2

i

2

] (1)

The first term describes the hopping of electrons be-

tween nearest-neighbor sites 〈ij〉, where ĉ†i,σ creates an
electron with spin polarization σ at site i. The second
term describes the electron-phonon interaction, where

n̂i ≡
∑
σ ĉ
†
i,σ ĉi,σ is the electron density operator and

α is the electron-phonon coupling parameter. The last
term contains the lattice degrees of freedom with x̂i as
an optical phonon coordinate at site i, and p̂i as the con-
jugate momentum. There are three independent energy
scales in this problem: electron bandwidth 4|t|, phonon

frequency ω0 ≡
√
K/m, and an effective electron-phonon

interaction strength U ≡ α2/K.

II. THE ANTI-ADIABATIC LIMIT, ω0 →∞

To derive an effective Hamiltonian that is valid in the
ω0 � |t|, U limit, we perform a unitary transforma-

tion Q̂ = Πi exp[iα p̂in̂i/K], such that the transformed

Hamiltonian Ĥ ′ = Q̂†HQ̂ reads26

Ĥ ′ =− t
∑
〈ij〉,σ

(
eiα(p̂i−p̂j)/K ĉ†i,σ ĉj,σ + h.c.

)

− U

2

∑
i

n̂2
i +

∑
i

[ p̂2
i

2m
+
Kx̂2

i

2

]
.

(2)

Then through direct perturbation theory up to second
order, we derived the effective Hamiltonian in powers of
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1/ω0 for large phonon frequency:

Ĥeff =− t
∑
〈ij〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
− U

2

∑
i

n̂2
i

− U

ω2
0

∑
n

(ĵn − ĵn−1)2

(3)

where ĵn is the local current operator defined as:

ĵn = it
∑
σ

(ĉ†n,σ ĉn+1,σ − ĉ†n+1,σ ĉn,σ) (4)

When ω0 = ∞, the effective model reduces to the at-
tractive Hubbard model, while for large but finite ω0,
the leading order correction gives a finite-range effective
electron-electron interaction. Higher-order corrections to
Heff are of order (t/ω0)4 and higher. The same effective
Hamiltonian can be alternatively derived by a path inte-
gral representation. Detailed calculations are deferred to
the Appendix.

We determined ground-state properties of this effective
Hamiltonian using DMRG studies on systems up to 400
sites long for values of ω0 between 8 and∞ and for values
of U between 3 and 10. The values explored are indicated
by the blue solid circles in the phase diagram in Fig. 1.
All extracted quantities such as the Luttinger exponent
Kc are obtained from the correlation function data that
has been extrapolated to infinite system size (see Fig. 14
for the details). The larger ω0 results are more reliable
since this is where the effective model best approximates
the original problem. All the DMRG data collected are
obtained from the lowest energy state out of five trials
with independently randomized initial states and all the
results shown (unless otherwise stated) are extrapolated
to zero truncation error, utilizing data collected with five
truncation errors ranging from 1× 10−7 to 9× 10−7. We
have checked our results do not change significantly down
to truncation error 1 × 10−10, corresponding to keeping
bond dimensions up to m = 1500. All data involving
sites within L/4 to the open boundary are discarded, i.e.
we only retain the data on the interval x ∈ [L/4, 3L/4],
to reduce boundary effects.

Our findings can be summarized as follows, in all cases,
we conclude that the system is in a LE phase, character-
ized by a spin-gap and a single gapless charge mode. The
presence of a spin-gap is inferred from the fact that the
spin-spin correlation function falls exponentially with dis-
tance, as shown in Fig. 2. Meanwhile, as shown in Fig. 4,
the existence of a gapless charge mode follows from the
observation that the charge-density correlations oscillate
with wave-vector π, and have an amplitude that falls as
a power of distance, i.e. as eiπr|r|−Kc . The inferred val-
ues of the charge Luttinger exponent Kc are shown in
Fig. 5 for all the values of U and ω0 we have explored.
As expected, Kc → 1 as ω0 →∞, independent of U . Sig-
nificantly, however, for ω0 large but not infinite, we find
that Kc > 1. This is an important consistency check, as

Umklapp scattering that could stabilize a long-range or-
dered CDW phase is perturbatively irrelevant for Kc > 1,
but would be relevant for Kc < 1.

We have carried out two further consistency checks of
our results. We have computed the central charge, as
shown in Fig. 6, and in all cases, we find values consistent
with c = 1 within our uncertainty. This is the expected
value for a LE liquid; these results are surely inconsistent
with the c = 0 expected of a commensurate CDW with
long-range order. We have also examined the nature of
the state slightly away from the half-filled case. If com-
mensurability effects are irrelevant for n = 1, then the
system is expected to evolve continuously with doping,
δ ≡ 1− n > 0. Indeed, as shown in Fig. 8 and Fig. 9, we
find that both the spin gap (or more precisely, the cor-
relation length characterizing the exponential falloff of
the spin correlations) and the charge Luttinger exponent
evolve continuously with δ. Were the system commensu-
rate, we would expect a factor of 2 discontinuity in the
spin-gap and a jump of the Luttinger exponent to Kc ≈ 2
for 0 < δ � 1.

A. Spin-spin correlation

We have computed the spin-spin correlation function
which is defined as:

S(x) =
1

Nr

∑
r

(
〈Sz(r)Sz(r + x)〉 − 〈Sz(r)〉〈Sz(r + x)〉

)
(5)

where Sz(r) is the z component of spin operator at site
r, and where we have introduced an average over Nr = 5
“reference sites” near the center of the chain to reduce
the finite-size effects. As shown in Fig. 2, it is clear that
the spin correlators decay exponentially at large distances
with a finite correlation length ξ extracted by fitting the
large x decay of S(x) to the asymptotic form

S(x) ∼ AS exp[−x/ξ] . (6)

The data presented in the figure are for U = 3, 4, 5, and
6, with ω0 = 30 and L=100.

That similar long-range behavior has been found for
all the values of ω0 and U indicated in Fig. 1 confirms
the non-controversial expectation that there is a spin-gap
in the anti-adiabatic limit for all U . A summary of ξ as a
function of ω0 for different values of U is shown in Fig. 3.

B. Density-density correlation

The charge correlation function is defined as:

C(x) =
1

Nr

∑
r

(
〈n(r)n(r+ x)〉 − 〈n(r)〉〈n(r+ x)〉

)
(7)

where n(r) ≡
∑
σ nσ(r) is the total density of electron

on site r, and again we average over Nr = 5 reference
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FIG. 2. Spin-spin correlations Eq. 5 with exponential fit.

FIG. 3. A summary of the spin correlation lengths for all
values of (U , ω0).

sites. At large distance, we always find that C(x) exhibits
power-law behavior,

C(x) =
Cρ
x2

+
C ′ρ
xKC

cos(πx+ φ) , (8)

which, from bosonization13,27,28, is the expected behav-
ior of a LE liquid with a spin gap and a charge Luttinger
exponent, Kc. (By contrast, a CDW insulator with a
spin gap would definitionaly exhibit long-range order at
long-distances, C(x) ∼ m2eiπx, where m is the order pa-
rameter, and should approach this asymptotic behavior
exponentially.) As examples of the nature of the fits to
Eq.(8) we have used to obtain KC , in Fig. 4 we show the
results for (U , ω0)=(6, 30) on a chain with L = 200. The

dashed lines show the expected power law behavior from
Eq.(8) where, because we find a value of Kc = 1.13 < 2,
we can ignore the non-oscillatory contribution (i.e. we
set Cρ = 0).

FIG. 4. Charge-charge correlation Eq. 7 for U = 6 and
ω0 = 30 at half filling. The Luttinger exponent is extracted
using Eq.(8).

The values of KC we have obtained as a function of
ω0 for all the values of U we have considered are shown
in Fig. 5. In the limit ω0 → ∞, since the Holstein
model maps to the attractive Hubbard model, which has
a charge SU(2) symmetry, the value ofKC must approach
1, as can be seen in the figure. However, for ω0 large but
finite, we find KC > 1 for all parameters we have consid-
ered.

FIG. 5. A summary of Luttinger exponents for all values of
(U , ω0) that have been calculated by DMRG.
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C. Von Neumann entanglement entropy

To confirm that the system indeed has one gapless
mode, we also calculate the von Neumann entanglement
entropy SE(x) = −tr(ρx ln ρx), where ρx is the reduced
density matrix of a subsystem with length x. As has
been established in29,30, for a 1+1 dimensional system
with open boundary conditions described by a conformal
field theory,

SE(x) =
c

6
log

[
4(L+ 1)

π
sin

(
π(2x+ 1)

2(L+ 1)

)
| sin q|

]

+
A sin[q(2x+ 1)]

4(L+1)
π sin

(
π(2x+1)
2(L+1)

)
| sin q|

+B

(9)

where L is the length of the system, and c, q, A, and
B are adjustable parameters. As expected, we find that
extrapolated to the limit L → ∞, these fits produce a
central charge, c, consistent with the predicted value, c =
1, and q = kF . The quality of the fits to Eq.(9) can be
seen for representative parameters in Fig. 7; the precise
values of c obtained from such fits for various ω0 and U
are shown in Fig. 6, where we have assumed that q = kF .
Within the error bars, in all cases c = 1.

FIG. 6. The extracted central charge agree well with c = 1
for all parameter points.

D. Finite hole doping

We have performed one more consistency check on our
numerics. If the state at half filling is a CDW with long-
range order, then upon light hole doping, δ � 1, we gen-
erate a gas of far separated solitons. For small δ, where
these are far from each other, i.e. if δξsp � 1 where ξsp
is the spin correlation length, the solitons should inter-
act only through an effective hard-core interaction. Thus

FIG. 7. Here use U = 3 and ω0 = 8 as an example. We fit
the middle part of the system with Eq.(8) as shown by the
solid blue line. The extracted values of parameters are shown
in the legend.

they should behave like spinless fermions. Since the sys-
tem is now incommensurate, this should result in power
law CDW correlations with a wave vector Q = π(1 + δ)
and with a Luttinger exponent, Kc → 2 as δ → 0. The
result is a discontiuity of Kc at δ = 0. On the other hand,
if the system is in a LE phase where the commensurabil-
ity lock-in is irrelevant, then Kc should be a continuous
function of δ as δ → 0. As shown in Fig. 8, Kc shows no
sign of a discontinuity at δ = 0.

Moreover, the spin correlation length as shown in
Fig. 9 are essentially unchanged for different doping lev-
els, which is as expected since doping makes little dif-
ference in the nature of the state in a LE liquid phase.

III. THE ADIABATIC LIMIT, ω0 → 0

For ω0 = 0, the phonons are static, and the problem
reduces to a version of the Peierls problem, which can
be exactly treated with a mean-field analysis. In other
words, the ground state of the system can be obtained
by optimizing the energy with varying the phonon coor-
dinates. For all non-zero U , this leads to a long-range
ordered, fully gapped phase with a gap ∆0 of magnitude
∆0 ≈ 4|t| exp[−2π|t|/U ] for small U . Moreover, it is easy
to see that the CDW is stable for small non-zero ω0 so
long as ω0 � ∆0.
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FIG. 8. KC as a function of doping level δ with error bars
showing 95% confidence bounds for the intercepts. The ex-
trapolated KC at δ = 0, i.e. the intercept of the fitting func-
tion, is 1.19 for (U = 4, ω0 = 15) and 1.30 for (U = 5,
ω0 = 15). Both agree well with the values observed at half
filling (δ = 0) as shown in Fig. 5.

IV. THE WEAK COUPLING LIMIT, U → 0

A. The TLM model

For small U , the low energy properties of the Holstein
model can be characterized by an effective field theory
(the TLM model)26. Importantly, this effective field the-
ory can be extended to the case of small but finite ω0,
where it is identical to that which arises from the Su-
Schrieffer-Heeger model. Thus, the phase diagram must
be the same in this range of parameters for the two mod-
els. An estimate of the phase boundary in this region can

FIG. 9. Spin-spin correlation for (U, ω0) = (4, 15) and (5, 15)
at different hole doping concentration from 0.02 to 0.1. We see
for both values of (U, ω0), the spin correlations are essentially
unchanged at different doping.

be made as follows: i) Because the model is asymptoti-
cally free, the UV cutoff can be taken to infinity in such a
way that the low-energy properties are independent of it.
Therefore, the soliton creation energy, which is the en-
ergy to produce an incommensuration in the CDW order,
can be expressed as

ES = ∆0 F (ω0/∆0), (10)

independent of the cutoff energy (bandwidth). ii)
While the full form of the scaling function, F , is not
known, the first two terms for small argument have been
computed8,31,

F (x) =
2

π
−Ax+O

(
x2
)

(11)

where A ≈ 0.6. iii) Quantum melting of the CDW order
is expected to occur with increasing ω0 at the critical
point,

ω0 = xc∆0, (12)

where F (xc) = 0. In other words, this is the point
at which a quantum-fluctuation-driven commensurate-
to-incommensurate transition occurs.

Thus, Eq. 12 defines the phase boundary between the
LE and the CDW phases in the lower left corner of the
phase diagram, where U → 0 and ω0 → 0. In other
words, the phase boundary approaches this corner as

ω0 = 4xc|t| exp[−2π|t|/U ] . (13)

Moreover, we can estimate xc from the first two terms in
the small x expansion of Fs which gives xc ≈ 2/(0.6π) ≈
1.
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B. The functional RG method

In Refs.24, the weak coupling limit of this problem was
analyzed using a perturbative RG method32,33, which
consists of successive integration of electron momentum
degrees of freedom for all Matsubara frequencies divided
into multiple patches. Consistent with our proposed
phase diagram, it is found that as for weak enough U ,
the system flows toward a LE fixed point24 characterized
by a gap in the spin sector but not in the charge sector.
To the best of our understanding, the perturbative RG
is only controlled for asymptotically weak U . We thus
mention, but do not further analyze the fact that when
the same analysis is carried out for a range of U , it is
found that for fixed ω0, when U exceeds a non-vanishing
critical value, the Umklapp scattering becomes relevant,
suggesting a transition to a phase with CDW long-range
order.

V. THE STRONG-COUPLING U →∞ LIMIT

When the bipolaron binding energy is much larger than
the electron energy scale (|U | � |t|), performing a strong-
coupling expansion for the Holstein model with the trans-
formed Hamiltonian Eq. 2 up to fourth order yields an
effective (pseudospin) Hamiltonian25:

Heff =
∑
i

[
t1

(
J+
i J
−
i+1 + J−i J

+
i+1

)
+ t2

(
J+
i J
−
i+2 + J−i J

+
i+2

)

+ 2V1

(
Jzi J

z
i+1 −

1

4

)
+ 2V2

(
Jzi J

z
i+2 −

1

4

)]
(14)

where

J+
j = (−1)jc+j↑c

+
j↓, J

−
j = (J+

j )†, Jzj =
1

2
(nj↑ + nj↓ − 1)

(15)

These pseudospin operators satisfy an SU(2) algebra and
form a spin- 1

2 representation, where a doubly occupied
site corresponds to an up pseudospin, and an empty site
corresponds to a down pseudospin25.

In this expansion, the combination t and U comes out
as the overall energy scale and the only tuning parameter
is the dimensionless retardation factor S ≡ U/ω0. In
Fig. 10 we show the coefficients t1, t2, V1, V2 as functions
of S for a given value of U and t. Explicit expressions
and detailed evaluation of all coefficients are given in the
Appendix. In the anti-adiabatic limit (S → 0), these
values agree with those in the strong coupling expansion

of the attractive Hubbard model:

t1
S→0−−−→ 1

4

( 4t2

|U |
− 16t4

|U |3
)

t2
S→0−−−→ 1

4

4t4

|U |3

V1
S→0−−−→ t1

V2
S→0−−−→ t2.

(16)

FIG. 10. An illustration of t1, t2, V1, V2 as functions of the
polaron band narrowing parameter S = |U |/ω0, with t = 1.
Here we use |U | = 5 as an example.

In the opposite limit S →∞, only V1 remains non-zero
and we obtain classical lattice gas, which has a CDW
ground state as expected. With the coefficients deter-
mined, we then solve the effective pseudospin Hamilto-
nian Eq.(14) with DMRG and measure the spin-spin cor-
relation function and the structure factor at k = π:

J(x) =
1

Nr

∑
r

〈Jz(r)Jz(r + x)〉

J(k = π) =
∑
x

eiπxJ(x) =
∑
x

(−1)xJ(x)

(17)

Because the phase transition between the CDW and LE
phases is a commensurate to incommensurate transition,
when it is continuous, it should be in the Kosterlitz-
Thouless university class. Therefore, in the CDW phase,
we should see an antiferromagnetic pattern of pseudo-
spin order and J(k = π) ∼ M2L with M the order
parameter approaching 1

2 as ω0 decreases. And in the
LE liquid phase, the spin-spin correlation should exhibits
power-law behavior J(k = π) ∼ L1−η where η > 1/4 such
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that η → 1/4 upon approach to the transition point. In
this spirit, we plot J(k = π)/L for L = 100, 150, 300.
As shown in Fig. 11, there is a clear crossing point at
ω0 ≈ 67 for J(k = π)/L3/4 with different L , which thus
confirms the existence of a KT transition between the
CDW and the LE phases in the strong-coupling limit.

FIG. 11. Determining the position of the phase boundary
at strong coupling: (We use data for |U | = 30 for illustrative
purposes.) The finite size scaling properties of the structure
factor J(k) =

∑
x e

ikxJ(x) evaluated at k = π are used to
identify the critical value of ω0, where J(x) is the pseudospin
correlation defined as Eq.(17). In the ordered phase, J(k) ∼
M2L2, while in the disordered phase J(k) ∼ L1−η where η >
1/4 such that η → 1/4 upon approach to the KT transition.
The clear crossing point in this plot establishes the existence
of a KT transition between the CDW and LE phases with an
estimated value of the critical ω0 ≈ 67.

VI. OTHER NUMERICAL RESULTS

In the lower left corner of Fig. 1, A−G refer to a few
calculations (not our own) by various numerical meth-
ods. The model at points A - (U = 0.6, ω0 = 0.5), C -
(1.2, 0.5), D - (1.62, 1.2), and E - (1.62, 0.4), were studied
using QMC (CT-INT method), A and C at a tempera-
ture such that βt = 50, while for D and E βt = 2013. On
the basis of these studies, it was inferred that A is in the
LE phase, while C, D, and E are in the CDW phase. On
the basis of an early DMRG study, it was concluded that
point F - (2, 1) is in a CDW phase12. The two remain-
ing points, B - (1.0, 0.5) and G - (3, 5), were identified as
quantum critical points using a stochastic series expan-
sion (SSE) quantum Monte Carlo method15, augmented
by a finite-size scaling analysis.

There are manifestly some discrepancies between the
conclusions drawn on the basis of these different numer-
ical studies. Similarly, the smooth dotted line for the
phase boundary shown in Fig. 1 is somewhat to the right

of the optimal phase boundary one might draw on the ba-
sis of the earlier numerics. Due to the rather high temper-
ature at which the QMC studies were conducted in com-
parison to the theoretically expected exponentially small
CDW gap, we think that while these results may be qual-
itatively right, it should be expected that they will not
be quantitatively precise. In any case, it is presently un-
clear if the detailed shape of this phase boundary should
be adjusted to better accommodate the results of con-
temporary numerical studies, or if one should stick to
the present smooth interpolation and attribute the dis-
crepancies to numerical uncertainty.

VII. DISCUSSIONS ON THE PHASES OF THE
DOPED SYSTEM

Slightly away from half filling, it is likely that there
is a single LE phase everywhere in the phase diagram.
The spin-gap that characterizes both phases of the half-
filled system is expected to extend smoothly to the lightly
doped system. On the other hand, the generalized Lut-
tinger’s theorem insures that for an incommensurate elec-
tron density, there must be a gapless mode at 2kF . Thus,
the only plausible phase is a LE liquid with a spin-gap
and power law CDW correlations.

There is one subtlety here worth noting. For ω0 = 0,
slight doping is expected to produce a state consisting of
an array of solitons or discommensurations.8 These will
produce mid-gap states, resulting in a spin-gap that is
half the value of the spin-gap in the undoped system.
Upon including quantum fluctuations (i.e. for small but
non-zero ω0) the soliton lattice will melt to form a power-
law phase with Kc = 2 (corresponding to dilute hard-core
bosons or spinless fermions), but the spin-gap is expected
to be largely unaffected.

It is also possible that at larger deviations from half-
filling, CDW order with higher order commensurability -
for example for the 1/3 filled band - can arise, especially
in the small ω0 limit.

VIII. CONCLUSIONS

Our major finding is the phase diagram in Fig. 1.
The topology of the phase diagram rests on general ar-
guments, although the possibility of additional phases
at intermediate U/t and ω0/t has not been definitively
excluded. Moreover, the asymptotic forms of the phase
boundary in the upper and lower corners of the phase
diagram have been supported by what we believe to be
a convincing analysis. The dotted part of the phase dia-
gram is a sketch, drawn so as to smoothly connect with
the established results in the asymptotic regimes. The
quantitative disagreements between this sketch and some
of the earlier numerical results (indicated by the grey
points in the figure) may either reflect some quantitative
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uncertainty in those results or may imply a more convo-
luted shape to the phase boundary.

The phase transition between the CDW and LE phases
is a commensurate to incommensurate transition, so
where it is continuous it should be described by a 1+1
dimensional sine-Gordon theory and should thus be in
the Kosterlitz-Thouless universality class. This has been
verified by the strong coupling calculations in the upper
right corner of the phase diagram. However, it is not
precluded that it could be first order along other parts of
its extent.
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Appendix A: Effective Hamiltonian in the anti-adiabatic limit

In this Appendix, we provide details on the derivation of the effective Hamiltonian that provides the first corrections
around the anti-adiabatic limit, ω0 → ∞. We do this in two ways, first via a path integral technique and then with
Hamiltonian methods.

Path integral approach

In path integral language, the Euclidean action is

S[ψ†, ψ, v] =

∫ β

0

dτ

∑
ij

ψ†iσ[(∂τ + µ)δij + tij ]ψjσ +
∑
i

[
M

2
(∂τvi)

2 +
K

2
v2
i

]
+ α

∑
i

viψ
†
iσψiσ

 (A1)

=
∑
n

∑
ij

ψ†iσ,n[(iωn + µ)δij + tij ]ψjσ,n +
1

2

∑
i

vi,−n(Mν2
n +K)vi,n + α

∑
i

vi,−nρiσ,n

 . (A2)

In the second line we transform to Matsubara frequencies ωn = (2n + 1)π/β, νn = 2nπ/β and we define the density

ρiσ = ψ†iσψiσ. The phonon Green’s function is

D(νn) =
1

Mν2
n +K

=
1

K

ω2
0

ν2
n + ω2

0

→

{
δνn,0/K ω0 → 0,

1/K ω0 →∞
(A3)

Integrating out the phonon fields yields a retarded electron-electron interaction:

Sint[ψ
†, ψ] = −α

2

2

∑
n

∑
iσ

ρiσ,−nD(νn)ρiσ,n = − α
2

2K

∑
n

∑
iσ

ρiσ,−n

(
ω2

0

ν2
n + ω2

0

)
ρiσ,n (A4)

For ω0 =∞, the interaction is instantaneous and we recover the attractive Hubbard model with U = α2/K. We can
expand around this limit in powers of 1/ω0. This is equivalent to a gradient expansion in imaginary-time derivatives.
The result is

Sint = −U
2

∑
n

∑
iσ

ρiσ,−nρiσ,n +
U

2ω2
0

∑
n

∑
iσ

ρiσ,−nν
2
nρiσ,n +O

(
1

ω4
0

)
(A5)

In imaginary time, the second term is

S
(2)
int = − U

2ω2
0

∫ β

0

dτ
∑
iσ

(∂τρiσ)2. (A6)
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Hamiltonian approach

For a Hamiltonian approach, consider a unitary transformation of the Hamiltonian

H ′ = UHU†, U =
∏
i

eiαpini/K (A7)

where ρi =
∑
σ ρiσ =

∑
σ c
†
iσciσ. The result is

H ′ = −
∑
ij

tije
iα(pi−pj)/Kc†iσcjσ −

U

2

∑
i

ρ2
i +

∑
i

p2
i

2M
+
K

2
v2
i . (A8)

The transformation removes the bilinear electron-phonon coupling, at the cost of introducing an attractive electron-
electron interaction and adding electron-phonon interaction into the hopping matrix elements. To find an expansion
around ω0 = ∞, rewrite the phonon coordinates and conjugate momenta in terms of the creation and annihilation
operators:

p = i
√
Mω0/2(b† − b) ⇒ eiαp/K = e−

√
U/(2ω0)(b†−b), (A9)

so that we may expand

H ′ ≈ −
∑
ij

tij

{
1 +

√
U

2ω0
[(bj − b†j)− (bi − b†i )]

}
c†iσcjσ −

U

2

∑
i

ρ2
i + ω0

∑
i

(b†i bi + 1/2). (A10)

Specializing to the case of nearest-neighbor hopping, this expansion yields a coupling between the conjugate momentum
of the phonon and the “lattice divergence” of the current:

H̃
(2)
int =

√
U

2ω0

∑
nσ

i(bn − b†n)(jn − jn−1), (A11)

where the local current operator is

jn = it(c†ncn+1 − c†n+1cn). (A12)

In momentum space,

H̃
(2)
int =

√
U

2Nω0
t
∑
kqσ

fkq(bq − b†−q)c
†
k+qσckσ (A13)

where

fkq = −2i[cos(k + q)− cos k]. (A14)

Direct perturbation theory about the ω0 =∞ limits yields the effective electron-electron interaction:

H
(2)
int = −U

N

(
t

ω0

)2∑
kq

Vkk′qc
†
k+qσckσc

†
k′−qσ′ck′σ′ , (A15)

where

Vkk′q = fk,qfk′,−q = −4(1− cos q)[cos(k + k′)− cos(k − k′ + q)] (A16)

The continuity equation relates Eqs. (A15) and (A6).
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Appendix B: The adiabatic limit ω0 → 0 (Derivation for the TLM model)

Takayama, Lin-Liu, and Maki (TLM) have found a remarkable analytic solution for solitons in a condensed CDW
system and their model is a continuum version of the SSH model8,35,36. With similar treatment, we find in the
continuum limit, the effective field theory of the Holstein model is also the TLM model. Here is a short derivation.
The Holstein model is defined as:

H = −t
∑
n,σ

(c†nσCn+1,σ +H.c.)− λ
∑
n,σ

xnnnσ +
1

2
K
∑
n

x2
n +

1

2
M
∑
n

ẋn
2 (B1)

Let

xn = eiπnzn (B2)

Then the coupling term becomes:

λ
∑
n,σ

(−1)nznc
†
n,σcn,σ = λ

∑
n,σ

∑
kqq′

zk e
ikneiπneiqne−iq

′nc†q,σcq′,σ

= λ
∑
kqq′,σ

zk c
†
q,σcq′,σδk+π+q−q′

= λ
∑
kq,σ

zk c
†
q,σcπ+k+q,σ

(B3)

Now let p = q − π
2 and p′ = q′ + π

2

λ
∑
kq,σ

zk c
†
q,σcπ+k+q,σ = λ

∑
k,|p|<π

2 ,σ

zk c
†
kF+p,σc−kF+k+p,σ + λ

∑
k,|p|<π

2 ,σ

zk c
†
−kF+p,σckF+k+p,σ

=

∫
dx λz(x)

[
L†σ(x)Rσ(x) +R†σ(x)Lσ(x)

] (B4)

The free fermion part is (set ~ = vF = 1):

H0 =
∑
σ

∫
dx− (R†σi∂xRσ − L†σi∂xLσ) =

∑
σ

∫
dx ψ†σ(x)[−iσz∂x]ψσ(x) (B5)

where ψσ(x) is a spinor made up of the right-moving Rσ(x) and left-moving Lσ(x) components of the Fermi field near
the Fermi points.
And the free phonon part is:

1

2
K
∑
n

x2
n +

1

2
M
∑
n

ẋ2
n =

1

2
K
∑
n

ei2πnz2
n +

1

2
M
∑
n

ei2πnż2
n (B6)

So in the continuum limit, the Holstein model is also the TLM model:

H =

∫
dx ψ†(x)[−iσz∂x]ψ(x) + λz(x)ψ†(x)σxψ(x) +

∫
dx K

[ ż(x)2

ω2
0

+ z2(x)
]

(B7)

Appendix C: The strong-coupling U →∞ limit

The strong-coupling expansion for the 1D Holstein model can be schematically expressed as the following diagrams.
(a) denotes the hopping of an electron from site i to site j then back to site i, which is the only possibility for the
second-order term. Similarly, (b),(c) represent two possible fourth-order processes while the unlinked diagram is not
included here since its contributions vanish.
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FIG. 12. The second-order and fourth-order diagrams which is used in the determination of the effective Hamiltonian. This
figure is reproduced from Ref.25.

Then with pseudospin operators defined as Eq.(15), the corresponding terms in the effective Hamiltonian are25:

H(2) =
1

2

∑
i

[
j

(2)
⊥ (i)

1

2

(
J+
i J
−
i+1 + J−i J

+
i+1

)
+ j

(2)
‖ (i)

(
Jzi J

z
i+1 −

1

4

)]
(C1)

H(4) =
1

2

∑
i

[(
j

(4)
⊥ (i) + j′⊥(i)

)1

2

(
J+
i J
−
i+1 + J−i J

+
i+1

)
+ j′′⊥(i)

1

2

(
J+
i J
−
i+2 + J−i J

+
i+2

)

+
(
j

(4)
‖ (i)− j′‖(i)

)(
Jzi J

z
i+1 −

1

4

)
+
(
j′‖(i) + j′′‖ (i)

)(
Jzi J

z
i+2 −

1

4

)] (C2)

where the explicit expressions for eight coefficients are25:

j
(2)
⊥ = −2

(
− 2t2

|U |
e−2S

)(
1 +

∞∑
n=1

Sn

(S + 1)(S + 2)...(S + n)

)

j
(2)
‖ = −2

(
− 2t2

|U |

)(
1 +

∞∑
n=1

(−S)n

(S + 1)(S + 2)...(S + n)

) (C3)

j
(4)
⊥ =

8t4

|U |3
S3e−2S

[ ∞∑
m,m′=0
m+m′ 6=0

∫ 1

0

dx

∫ 1

0

dy (xy)S−1 2cosh[S(x− y)]
(S/2)m+m′

(1− x2)m(1− y2)m
′

m!m′!(m+m′)

−
∞∑

m,m′=0

Sm+m′

m!m′!

(−1)m + (−1)m
′

(m+ S)2(m′ + S)

] (C4)

j
(4)
‖ =

8t4

|U |3
S3e−2S

[ ∞∑
m,m′=0
m+m′ 6=0

∫ 1

0

dx

∫ 1

0

dy (xy)S−1

(
eS(x+y) (S/2)m+m′

(1− x)2m(1− y)2m′

m!m′!(m+m′)

+ e−S(x+y) (S/2)m+m′
(1 + x)2m(1 + y)2m′

m!m′!(m+m′)

)
−

∞∑
m,m′=0

Sm+m′

m!m′!

1 + (−1)m+m′

(m+ S)2(m′ + S)

] (C5)

j′⊥ =
4t4

|U |3
S3e−2S

[∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz(xyz)S−1

(
exp
{S

2
[x− y + z − 2z(x− y)− xyz]

}
+ exp

{S
2

[x− y − z(x+ y)]
})

+ 2

∫ 1

0

dx

∫ 1

0

dy(xy)S−1eS(x−y)
∞∑
m=1

(S/2)m(1− x)m(1 + y)m

m!m
+

∫ 1

0

dx

∫ 1

0

dy(xy)S−1eS(x−y)(lnx + lny)

]
(C6)
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j′′⊥ = − 4t4

|U |3
S3e−2S

[∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz(xyz)S−1exp
{1

2
S[x+ y + z − 2z(x+ y) + xyz]

}

+ 2

∫ 1

0

dx

∫ 1

0

dy(xy)S−1e−S(x+y)
∞∑
m=1

(S/2)m(1 + x)m(1 + y)m

m!m
+ 2

∫ 1

0

dx

∫ 1

0

dy(xy)S−1e−S(x+y)lnx

]
(C7)

j′‖ = − 4t4

|U |3
S3e−2S

[∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz(xyz)S−1

(
exp
{S

2
[−x− y + z + 2z(x+ y) + xyz]

}

+ exp
{S

2
[−x− y + 2z + z(x+ y) + 2xyz]

})

+ 2

∫ 1

0

dx

∫ 1

0

dy (xy)S−1eS(x+y)
∞∑
m=1

(S/2)m(1− x)m(1− y)m

m!m
+ 2

∫ 1

0

dx

∫ 1

0

dy (xy)S−1eS(x+y)lnx

]
(C8)

j′′‖ =
4t4

|U |3
S3e−2S

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz (xyz)S−1exp
{1

2
S[x+ y + 2z − z(x+ y) + 2xyz]

}
(C9)

Here the combination t and U comes out as the overall energy scale. And the only tuning parameter is the dimensionless
retardation factor S ≡ U/ω0. We evaluate the values of eight coefficients as functions of S as shown in Fig. 13. Then
t1, t2, V1, V2 can be determined through Eq. (C10) and are plotted in Fig. 10. We see at finite |U |, as S → 0, i.e.
ω0 →∞ (the Hubbard limit), the values of t1, t2, V1, V2 match the analytic expressions given in Eq. (16).

t1 =
1

4

(
j

(2)
⊥ (i) + j

(4)
⊥ (i) + j′⊥(i)

)
ω0→∞−−−−→ 1

4

( 4t2

|U |
− 16t4

|U |3
)

t2 =
1

4
j′′⊥(i)

ω0→∞−−−−→ 1

4

4t4

|U |3

V1 =
1

4

(
j

(2)
‖ (i) + j

(4)
‖ (i)− j′‖(i)

)
ω0→∞−−−−→ t1

V2 =
1

4

(
j′‖(i) + j′′‖ (i)

)
ω0→∞−−−−→ t2

(C10)
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FIG. 13. An illustration of the exchange integrals (coefficients of the effective pseudospin Hamiltonian) as functions of S with
t = 1. Here we use |U | = 5 as an example.

Appendix D: Additional calculations

In Fig. 14(a), we show an example of the finite-size scaling analysis we have used to extract the Luttinger exponent
Kc. The system sizes accessible to us are very long (up to 400 unit cells). Further, the Luttinger exponent is
extracted from the correlation function data extrapolated to infinite system size L, assuming the leading correction is
proportional to 1/L. In Fig. 14(b), we provide a table with the ground-state energies per site for the middle 10 sites
computed with DMRG.

FIG. 14. (a) Finite-size scaling analysis of KC for L ∈ [100, 200, 300, 400]. Here we use (U, ω0) = (4, 8) and (6, 8) as examples.
(b) Estimates of the ground-state energies per site for the middle 10 sites in various regimes.
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