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Electron bands in the untwisted bilayer graphene flatten out in a transverse electric field, offering
a promising platform for correlated electron physics. We predict that the spin/valley isospin mag-
netism, resembling that seen in moire bands, coexists with momentum-polarized phases occurring
via a “flocking transition” in momentum space in which the electron distribution is spontaneously
displaced in momentum space relative to the K or K′ valley centers. These phases feature unusual
observables such as persistent currents in the ground state. Momentum-polarized carriers “sample”
the Berry curvature of the conduction band, resulting in a unique behavior of the anomalous Hall
conductivity and other effects that do not occur in previously studied systems.

I. INTRODUCTION

Narrow bands in moiré graphene[1–4] host a vari-
ety of strongly correlated phases with exotic proper-
ties that can be accessed by tuning external fields and
carrier density[5–26]. These findings inspired investiga-
tions into the existence of other narrow-band systems
with interesting properties. Recently, two nontwisted
graphene multilayers—Bernal-stacked bilayers and ABC
trilayers—have been identified[27, 28] as systems show-
ing cascades of ordered phases resembling those seen in
moiré graphene[31–35]. These systems feature electron
bands with field-tunable bandgaps and dispersion that
flattens out quickly as the field increases. Carriers in
these bands become nearly dispersionless at large fields,
forming strongly interacting systems with interesting
properties[36–41, 44–46]. These developments prompted
questions about new symmetry breaking types and new
orders achievable in these systems.

Perhaps the most unusual aspect of these systems is
that the flat band is not an isolated band, as in moiré
graphene. Instead it is a flattened part of a disper-
sive band, with the degree of flatness and phase vol-
ume tunable by the displacement field. This behavior
leads to properties distinct from those of unbiased bilayer
graphene [42–44]. Here, starting from a simple frame-
work for the interaction effects in biased bilayer graphene
(BBG), we predict new order types with properties con-
siderably richer than those of isospin-ordered phases.
Electron interactions in flattened bands drive isospin
(spin-valley) polarization instability and a cascade of
phase transitions between states with different polariza-
tions, resembling those known in moiré graphene[31–35].
A phase diagram for this cascade, derived below and
shown in Fig. 1 a), strongly resembles the phase diagram
seen experimentally[27, 29, 30].

Further, an interesting change in behavior occurs at
lower densities and stronger fields, where interactions
lead to an isospin-polarized Fermi sea break-up and
spontaneous momentum polarization, as illustrated in
Fig. 1 b). Momentum-polarized phases originate from
exchange-induced “flocking” effect, wherein all carriers
are shifted into one, two or three pockets at the band

FIG. 1. a) Phase diagram for different isospin (valley and
spin) orders in a lightly-doped BBG band. Carriers form
Fermi seas with the degree of isospin polarization increas-
ing with field bias. States with different numbers of isospin
species, pictured in the insets, are found in the four regions of
the phase diagram obtained using realistic parameters. Polar-
ization degree varies from one layer (fully polarized) to four
layers (unpolarized) [see text beneath Eq. (13)]. b) Level-
two symmetry breaking occurring in a dashed box marked in
a). Different orders arise due to the Fermi sea spontaneously
breaking into N = 1, 2 or 3 pockets and shifting to different
band minima [see Fig. 2].

minima produced by the trigonal warping effects. These
orders develop on top of the isospin-polarized phases.
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Momentum-polarized states are described phenomeno-
logically by an effective Hamiltonian:

H̃(k) = H(k) + u · k. (1)

Here H(k) is the trigonal warped Hamiltonian which we
can approximate with three parabolic pockets displaced
from K points, as illustrated in Fig. 2, u is the order
parameter that describes the polarization in momentum
space. As we will see, a spatial dependent u(x) gives
rise to a local persistent current and an orbital magne-
tization, which is allowed by the spontaneously broken
time-reversal symmetry in momentum polarized phases.
The persistent currents and orbital magnetization gener-
ated in this way are distinct from those familiar for the
bands endowed with Berry curvature.

In addition to that, the momentum-polarized carriers
“sample” the Berry curvature of the conduction band,
leading to jumps and other unique signatures in the
anomalous Hall effect. These effects are enhanced by the
redistribution of Berry curvature throughout the conduc-
tion band resulting from its trigonal warping (see Fig. 2).
An abrupt onset of a B = 0 Hall effect, along with
anisotropy of transport due to electronic nematicity, will
provide clear signatures of momentum-polarized orders.

II. AN EFFECTIVE ONE-BAND MODEL

Isospin polarization occurs when the exchange interac-
tion between carriers in the conduction or valence band
exceeds the kinetic energy. In the BBG system the ki-
netic energy is quenched when band dispersion is flat-
tened by bandgap opening in the presence of a large
transverse displacement field. This regime can be de-
scribed by a one-band model derived by projecting the
bilayer Hamiltonian to the conduction or valence band.
Here we obtain this model starting from a conventional
two-band model[49]:

H0 =
∑
ξsp

Ψ†ξsp

[
hξ0 + hξt + ha + hD′

]
Ψξsp (2)

hξ0 = h1(p)σ1 + h2(p)ξσ2 +Dσ3

hξt = v3 (p2ξσ1 + p1σ2) , ha =
p2

2ma
, hD′ = −Dp

2

p̃2
σ3

where ξ = K,K ′ represents valley K and K ′, s =↑, ↓ rep-
resents spin-up and spin-down, Ψξsp = (ψAξsp, ψBξsp)T,
σ1,2,3 are the Pauli matrices acting on the valley and
sublattice (layer) degrees of freedom, respectively. The
quantity D is the interlayer bias generated by the trans-
verse electric field. Here h1 and h2 are given by

h1(p) =
1

2m

(
p2

1 − p2
2

)
(3)

h2(p) =
1

2m
(2p1p2) . (4)

parameter value parameter value

a 2.46 Å v 1.1×106 m/s

γ0 3.16 eV ma 0.19 me

γ1 0.381 eV m 0.028 me

γ3 0.38 eV v3 1.3×105 m/s

D 0− 100 meV p̃aCC 0.058

TABLE I. Parameters in the Hamiltonian computed based
on values in Ref. [49]. The velocities are defined as vi =
(
√

3/2)aγi (~ = 1 throughout this paper). The BG band
mass is defined as m = γ1/2v

2 ≈ 0.028me.

This model is derived under the assumption that intra-
and interlayer hoppings (A1B1 and A2B1-type terms in
the original Hamiltonian, which are 3.16 eV and 0.38
eV, respectively) are much larger than all other energy
scales. Note that we rotated the basis by 90◦ with respect
to Ref. [49]. Here ht produces the trigonal warping;
ha produces the particle-hole asymmetry and hD′ is the
momentum-dependent contribution that is proportional
to the displacement field with p̃ ≈ 0.058/aCC a constant
(see Table I).

In this and next section, since we focus on understand-
ing the isospin orders in SU(4)-symmetric model, we ig-
nore for now the subleading terms[49], such as trigonal
warping. These terms govern subtle effects such as mo-
mentum polarization, which will be considered in Sec. IV
and Sec.V.

We measure the energies in meV and the momentum is
made dimensionless by multiplying by the carbon-carbon
atom distance aCC = 1.46 Å. The relevant system param-
eters are given in Table I.

Here, we will be interested in the regime where the
field-induced bandgap 2D is large compared to the car-
rier kinetic energy (see inset in Fig. 1 a)). In this regime
the upper and lower bands flatten out and effectively de-
couple. We therefore project the problem onto the con-
duction band

H̃0 = P̂H0P̂ , (5)

Here, the projection operator P̂ is defined as

P̂ =
∑
ξ

1

2

(
hξ0(p)

E(p)
+ 1

)
, E(p) =

√
D2 +

(
p2

2m

)2

.

(6)

This yields a one-band Hamiltonian H̃0 of the following
form:

H̃0 =
∑
ip

E(p)ψ̃†i,pψ̃i,p, i = K ↑,K ↓,K ′ ↑,K ′ ↓ (7)

where ψ̃i,p is the field operator of conduction band elec-
trons in two valleys and two spins. From now on, we
write the spin indices explicitly.

Next, we modeled the electron-electron interaction as
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a density-density coupling:

Hint =
1

2

∑
pp′q

Vqψ
†
αξs,pψ

†
βξ′s′p′ψβξ′s′(p′−q)ψαξs(p+q),

(8)
where i, j and α, β label the isospin (spin-valley) and
sublattice degrees of freedom, respectively. At large D,
the form of density-density interaction is invariant under
projection:

H̃int =
1

2

∑
pp′q

Vqψ̃
†
i,pψ̃

†
j,p′ ψ̃j,p′−qψ̃i,p+q (9)

Similar to Eq. (7), subscripts i and j take values K ↑,
K ↓, K ′ ↑, K ′ ↓. Here we ignore the intervalley Coulomb
scattering because the interaction Vq drops as 1/q, lead-
ing to intervalley interactions that are smaller than the
intra-valley interaction by a factor of pF /2K which is
as small as 0.04 at carrier density 1012cm−2. As a re-
sult, the Hamiltonian, Eq.(9), has an approximate isospin
SU(4) symmetry. We note parenthetically that at small
D field, Eq. (9) is a no longer a good approximation
since it should include a coherence factor which is de-
pends on valley and momenta. This makes the strength
of coupling between charge densities in valley K differ-
ent from the coupling between charge densities in valley
K and valley K ′, breaking the approximate SU(4) sym-
metry. However, this SU(4)-symmetry-breaking effect is
small in the regime of interest. Namely, since this coher-
ence factors are 1−O(EF /D), the difference between the
coherence factor in the intervalley density-density cou-

pling term ψ†KψKψ
†
K′ψK′ and the one in the intravalley

density-density coupling term ψ†KψKψ
†
KψK is at most

O(EF /D), which is small when displacement field D is
much larger than the Fermi energy EF .

To gain insight into the parameter regime for isospin
polarization occurs we use a simple constant interaction
model, refining it in the subsequent analysis of momen-
tum polarized order. The isospin order is a result of
a Stoner instability arising from the exchange energy,
which can be written as

Eex = −1

2

∑
ipp′

Vq−q′niqniq, niq = 〈ψ̃†i,qψ̃i,q〉 (10)

where i indexes isospin as in Eq. (9). Below, for sim-
plicity, we model the interaction as a local interaction,
Vq−q′ = V .

Perhaps the closest comparison to our analysis of BBG
in the literature is the early work on Stoner spin insta-
bility in BBG [38–40]. This work employed an atomic-
scale short-ranged interaction, which did not allow treat-
ing valley and spin degrees of freedom on equal footing.
The interaction used here, in contrast, is blind to valley
and spin, leading to an approximate SU(4) symmetry
and a cascade of isospin orders.

FIG. 2. a) Conduction band dispersion flattened by trans-
verse field. Trigonal warping interaction creates three mini-
valleys, at low carrier density giving rise to three electron
pockets (red contours). b) A toy model for the three-pocket
band structure. c) Schematic for pockets positioned near K
and K′ points. d) The distribution of the Berry curvature in
the conduction band near K point. Parameters used: bias
potential D = 100 meV, chemical potential µ = 90 meV. The
value µ < D reflects the effect of the trigonal warping.

III. BROKEN ISOSPIN SU(4) SYMMETRY AND
PHASE DIAGRAM

Next, we proceed to analyze the isospin polarization
orders using as a framework the SU(4) symmetric model
introduced above. The onset of SU(4) isospin polariza-
tion is determined by the Stoner criterion:

V ν = 1, (11)

with the density of states ν (per isospin species) in the
conduction band,

ν =
m

2π

µ√
µ2 −D2

≈ m2

(2π)2

D

n
. (12)

Here we have used the expression for the electron density

in the single-electron picture, n = m
2π

√
µ2 −D2, taking

the chemical potential to lie near the bottom of the band,
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µ ≈ D. With this, we estimate the carrier density at
the onset of the Stoner instability, finding a fan of phase
boundaries n vs. D for M = 1, 2 or 3 isospin species:

nD = M
Vm2D

(2π)2
. (13)

While in general the mean field Stoner approach has lim-
itations, in this case it appears to be accurate. For BBG
parameters m = 0.028me[47–49], V = 103 meV nm2 [see
Appendix A ], this simple model predicts an isospin or-
dering transition at carrier densities nD ∼ 1012cm−2 for
the interlayer bias D = 100 meV, in excellent agreement
with Ref.[27].

The mean-field phase diagram, obtained by comparing
energies of partially polarized states with M = 1, 2, 3
and 4 isospin species found numerically, is shown in Fig.
1 a). The yellow area represents the disordered phase
where all four isospin species are equally filled. Purple,
light blue and green mark stability regions for isospin-
ordered states. The inset in the lower right corner shows
electron dispersion near charge neutrality, with the Fermi
level marked by a red dashed line. The insets at the top
illustrate the layer-cake structure of electron distribution
in each of the phases, with the Fermi seas for different
isospin species shown in different colors. The gray region
near charge neutrality marks the band insulator phase
with an unoccupied conduction band. The dashed rect-
angle marks the region of low carrier density on which
the second half of this paper will focus. As we will see
in Sec.IV and Sec.V, trigonal warping of the conduction
band flattened by the external field D gives rise to Fermi
sea breakups and level-two symmetry breaking through
spontaneous momentum polarization. This behavior is
summarized in the phase diagram in Fig. 1 b).

Because of the SU(4) symmetry of our model, the
phase diagram in Fig. 1 a) is insensitive to the order
parameter orientation in the isospin space. However,
in reality, small valley anisotropy in the Hamiltonian,
e.g. trigonal warping or intervalley scattering, can lift
the SU(4) degeneracy and favor a certain orientation in
isospin space. Here, rather than analyzing the competi-
tion between phases with different symmetry, we take a
general symmetry approach and list all possible way of
breaking the SU(4) symmetry. The energetics describing
this competition will be discussed elsewhere.

Our symmetry analysis benefits from the observation
that the symmetry aspects of different orders and the
general properties of the order parameter can be under-
stood regardless of detailed knowledge of which order is
ultimately favored. Below, we describe the possible or-
der types, classify them through the symmetry of our
problem.

For simplicity, we focus on the case of phase 1 where
electrons only occupies one isospin species. Other orders
can be studied in a similar manner. Table II summarizes
the results for phase 1. In this case there are two possible
phases, Oz1 and Oxy1 , describing orders with valley imbal-
ance and intervalley coherence, respectively. These two

order types break different symmetries and have different
signature observables as a result.

We arrive at this conclusion as follows. In phase 1
the order parameter is simply a projection onto the state
with a given valley-spin orientation. Therefore, it takes
the form of

O1 = |v〉〈v| (14)

where v is an arbitrary normalized complex-valued
four-component spinor in the isospin space, |v〉 =
(α1|u1〉, α2|u2〉)T where |u1〉, |u2〉 are arbitrary normal-
ized two-component state vectors in the spin subspace,
α1, α2 are positive real numbers, α2

1 + α2
2 = 1. Over-

all phases are absorbed in |u1〉 and |u2〉. The symmetry
analysis of the Pauli matrices in valley basis (see Ta-
ble II) indicates that τ1,2 and τ3 transform under dif-
ferent irreducible representations. Thus, an order pa-
rameter containing τ1,2 matrices and another one con-
taining τ3 corresponds to different broken symmetries.
Therefore, to classify orders by symmetry, we look for
an order parameter, O, that contains τ3 or τ1,2 ma-
trices only, but not a mixture of τ3 and τ1,2. This
gives two possible types of the order parameter with dis-
tinct symmetry: Oz1 = 1

4 (1± τ3) (1 + s ·m) and Oxy1 =
1
4 (1 + γ1τ1 + γ2τ2) (1 + s ·m). Here, m is an arbitrary
vector determining the spin direction, and (γ1, γ2) is an
arbitrary normalized real-valued vector.

The order Oz1 represents a valley imbalance order,
which transforms under A2,Γ and thus, features a break-
down of the mirror symmetry that swaps the two valleys.
The second order parameter, Oxy1 , corresponds to the in-
tervalley coherent order that transforms under E±K . It
breaks the three-fold rotation, reflection and translation
symmetries of the original model. This aspect clearly dif-
ferentiates the AB bilayer graphene from the case of ABC
trilayer: in the latter, the intervalley coherent state does
not break the C3 rotation symmetry[36]. The symmetry
classification of possible orders in AB bilayer graphene is
summarized in Table.II.

Our symmetry analysis allows us to identify two ob-
servables that distinguish the valley imbalance and inter-
valley coherent orders in phase 1. These are anisotropy of
conductivity and a spatial charge density wave modula-
tion. For valley imbalance order Oz1 , neither rotation nor
translation symmetry of the space group is broken, so the
conductivity is isotropic and there is no spatial pattern.
In comparison, for the valley coherence order Oxy1 , both
rotation and translation symmetries are broken. The bro-
ken rotation symmetry leads to an anisotropic conductiv-
ity, whereas the broken translation symmetry leads to a
spatial pattern with momentum 2K, i.e. a Kekulé charge
density wave. On a different note, the temporal sym-
metry can be probed by the Hall conductance. For the
valley imbalance order Oz1 where time reversal symme-
try is broken, the Hall conductivity is nonvanishing. In
comparison, the intervalley coherent order Oxy1 preserves
time reversal symmetry, guaranteeing a vanishing Hall
conductance. These observables are summarized in the
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irreps matrices O1 broken symmetries Ohmic conductivity spatial modulation Hall conductivity

A2,Γ, 1D τ3 Oz1 = P±zτ Pms mirror, time reversal isotropic none nonvanishing

E±K , 2D (τ1, τ2) Oxy1 = Pγτ P
m
s rotation, mirror, translation anisotropic Kekulé order vanishing

TABLE II. Symmetry classification of different isospin orders. Listed are results for two real irreducible representations (irreps)
of the BBG space group under which the valley-space Pauli matrices τ1,2,3 can transform; other irreps are not realized by
isospin-polarized orders. Column 1 lists the irreps and their dimensions. In column 3, the projection operators in valley and
spin space constituting the order parameter are: P±zτ = 1

2
(1± τ3), Pγτ = 1

2
(1 + γ1τ1 + γ2τ2), Pms = 1

2
(1 + s ·m), where

γ = (γ1, γ2)T with real γ1,2, m = (m1,m2,m3)T is an arbitrary three-dimensional real vector. Columns 4-7 list broken
symmetries and signature observables (see text).

last three columns in Table II.

IV. MOMENTUM-POLARIZED ORDER: THE
THREE-POCKET MODEL

Next, we turn to discussing momentum-polarized or-
dered states that are unique to BBG. These orders
are triggered by Lifshits transition in which an isospin-
polarized Fermi sea splits into several distinct pockets
centered around the minima of the conduction band. Fol-
lowing this transition, exchange interactions drive sym-
metry breaking between different pockets through a mo-
mentum polarization instability.

It is instructive to start with a qualitative discussion
of how this instability comes into play. There is an
anisotropy in a realistic BBG bandstructure at small mo-
menta due to the trigonal warping term, which is not
included in the minimal description of band structure
Eq. (2). This anisotropy leads to a three-pocket shape of
Fermi surface in the regime of extremely low carrier den-
sity. As a result, for each isospin, instead of uniformly
filling all three pockets, there are three candidate elec-
tron configurations for the ground state, in which either
one, two or all three pockets are filled. Which one wins is
determined by the competition between the kinetic and
the exchange energy. The kinetic energy favors the con-
figuration where all pockets are uniformly filled, whereas
the exchange energy is optimized when all electrons are
placed in the same pocket, since the interpocket exchange
interaction is weaker than the intrapocket one.

To estimate of the energy scales that govern this com-
petition, we consider the total single-particle kinetic en-
ergy for all carriers polarized in one pocket:

Ekin ∼ n2/2ν∗, (15)

where ν∗ ∼ 5 × 10−5 meV−1 nm−2 is the density of
states at the bottom of a single pocket, obtained using
the pocket dispersion parameters estimated below. To
study the pocket order, we take into account the momen-
tum dependence of the interaction. Then the exchange
energy is:

Eex ∼ −
2πe2

κ|p|
n2 ∼ −

√
π

κ
e2n3/2, |p| ∼

√
4πn, (16)

with the characteristic momentum scale estimated from
particle spacing. As a result, the exchange energy dom-

inates at sufficiently small density n . n∗ = 4π
κ2 e

4ν2
∗ ∼

1011 cm−2, where we have used a realistic value D ∼ 100
meV and the dielectric constant κ ∼ 5 similar to di-
electric constant in monolayer graphene. The realistic κ
values will depend on the experimental setup.

The resulting phase diagram in the small density
regime is shown in Fig. 1 b). At lowest carrier density,
exchange energy dominates and all electrons prefer to po-
larize in a single pocket. Upon carrier density increasing,
the system undergoes phase transitions, first to a two-
pocket configuration, and then to a three-pocket (unpo-
larized) phase. For illustration, in Fig. 1 b), we set the
dielectric constant to be κ = 3, so that the phase diagram
showcases all possible phases. The details of the phase
diagram observed in experiment may vary from system
to system, since the competition of pocket orders is sensi-
tive to screening effects that depend on the experimental
setup. If screening is made stronger [e.g. by a prox-
imal gate], the pocket-ordered state will be suppressed
compared to that shown in Fig. 1 b). Alternatively, if
the screening is made weaker, the pocket-polarized phase
will expand, taking over a larger part of the phase dia-
gram. We note that the energy difference between the
pocket polarized and unpolarized states is of the order of
0.1meV to 1meV per carrier, yielding a readily accessible
ordering temperature scale of a few kelvin.

We end this section with detailing the procedure
through which we extract the parameters k∗ and m∗ used
in the three-pocket model by starting from the realistic
BG band structure. As we only care about the band dis-
persion near the band minima, we model the three-pocket
band structure using three isotropic parabolic bands:

Hα(p) =
(p− kα)2

2m∗
, α = 1, 2, 3 (17)

Here α labels the pockets, p′αs are the centers of pockets,
corresponding to three minima of the conduction band:

k1 = k∗(0, 1), k2,3 = k∗

(
∓
√

3

2
,−1

2

)
. (18)

The values of k∗ and m∗ will be specified below.
In order to relate the three-pocket bandstructure rep-

resented by three parabolas to the single-particle band-
structure shown before, we first adopt a minimal model
that possesses thee pockets at large displacement field D.
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This model has the Hamiltonian

Hmin
3−p =

∑
p

ψ†ip [h0(p) + ht(p) + hD′(p)]ij ψjp (19)

Here i labels isospin, the term hD′ is responsible for the
Mexican-hat shape dispersion. We find the value of k∗
by neglecting the trigonal warping term:

k∗(D) ≈ p̃D
Ẽ
, Ẽ =

p̃2

2m
≈ 0.2 eV, (20)

The trigonal warping determines the positions of the
three minima of the conduction band but has a negli-
gible effect on the radial coordinate of these minima.

The mass m∗ is a parameter that we introduced in
the three-pocket toy model to mimic the bottom of the
conduction band from (19). The Hamiltonian Eq.(19)
near one of the minimum takes the following form

H(k1 + δp) =
δp2
x

2m∗⊥
+

δp2
y

2m∗‖
, (21)

We find that the effective mass in radial direction m∗‖
is determined mainly by hD, whereas the perpendicular
mass m∗⊥ is only finite when we include the trigonal
warping term:

m∗‖ ≈
mẼ

4D
, m∗⊥ ≈

p̃

6v3
. (22)

In our three-pocket toy model Eq.(17), we set the param-
eter m∗ as

m∗ =
√
m∗⊥m∗‖. (23)

so that the three-pocket model reproduces the density of
states of the realistic band structure.

V. STONER INSTABILITY IN THE POCKET
CHANNEL. PHASE DIAGRAM.

Using the three-pocket model, we proceed to analyze
the instability toward momentum-polarized state and ob-
tain a phase diagram. For clarity, we focus on the effects
arising in phase 1 [see Fig.1], where the additional effects
of densities in different isospin states is absent. There
are three possible candidate ground states in which elec-
trons fill up one, two or all three pockets. To determine
which one of them is the true ground state, we compare
their energies EN (N = 1, 2, 3 is the number of occupied
pockets) at the same total carrier density n. Their ener-

gies EN = E
(N)
K + E

(N)
ex consist of kinetic and exchange

energy contributions. Using the fact that the density of
states in each pocket is a constant ν∗ = m∗/2π, we can
write the total kinetic energy as

E
(N)
K =

N

2ν∗

n2

N2
=

πn2

Nm∗
(24)

In order to explore the pocket polarization, we restore the
momentum dependence of the interaction in the exchange
part of the free energy:

E(N)
ex = −1

2

N∑
i,j=1

∑
p,p′

Vp−p′nipnjp′ , Vp−p′ =
2πe2

κ|p− p′|
,

(25)
where nip is the occupation number at momentum p
measured relative to the pocket i center. For simplic-
ity, as in Eq.16, we use momentum-independent dielectric
constant κ. When the carrier density is small, the inter-
pocket exchange interactions yield a nearly momentum-
independent renormalization of the energy of each elec-
tron, which justifies approximating the Fermi surfaces in
the pockets by discs centered at ki. This yields an esti-
mate for exchange energy

E(N)
ex = −

N∑
i,j=1

∑
p,p′

1

2
Vp−p′+kijnpnp′ , (26)

Vp−p′ =
2πe2

|p− p′|
, np = 1− θ(|p| − p0). (27)

where kij = ki − kj are momentum differences between
pocket centers, np is the occupation number of the state
with momentum p measured relative to the pocket center
np = 1− θ(|p| − p0). Here p0 is the radius of the circular
Fermi surface in each pocket

p0 =
√

4πn/N. (28)

With these expressions, the exchange energy can be eval-
uated analytically by performing the Fourier transform.
Namely, perform Fourier transform:

V (r) =
e2

|r|
=

∫
d2p

(2π)2
eip·rVp (29)

and

n(x) =

∫
d2p

(2π)2
eip·rnp (30)

Then, the exchange energy can be written as

E(N)
ex = −1

2

∑
ij

∫
d2rV (r)n(r)2eikij ·r (31)

= −1

2

∑
ij

∫ ∞
0

V (r)n(r)22πJ0(r|kij |)xdx

Here J0 is the Bessel function. To evaluate this quantity,
we need to first work out the form of n(r):

n(r) =

∫
|p|<p0

dpxdpy
4π2

eipxr =

∫
dpx
2π2

√
p2

0 − p2
xe
ipxr.

(32)
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Passing to polar coordinates, we have

n(r) =
p2

0

2π2

∫ π
2

−π2
dθ cos2 θeiz sin θ (33)

=
p2

0

8π
[J2(z) + 2J0(z) + J−2(z)] =

p2
0

4π
[J2(z) + J0(z)]

where z = rp0 , J0 and J2 are Bessel functions. With
these expressions, we finally arrive at

E(N)
ex = −e

2p4
0

16π

∑
ij

∞∫
0

dr [J2(rp0) + J0(rp0)]
2
J0(r|kij |).

(34)
Our isotropic parabolic bands model for pockets [see
Eq.(17)] is expected to be accurate when the distance
k∗ from the pocket centers to K point is much greater
than the pocket radius p0. This yields an upper bound
for carrier density: n . 0.3×1012 cm2, where we used the
value of k∗ estimated above. As Fig. 1 a) indicates, the
maximal density in phase 1 always satisfies the above
validity condition. We can therefore use the results in
Eqs. (24),(34) to determine the phase diagram by com-
paring the energies of one-pocket, two-pocket and three-
pocket configurations.

VI. MOMENTUM-POLARIZED PHASES:
OBSERVABLES AND PHENOMENOLOGY

There are several unique observables that can be pre-
dicted for the momentum polarized phases. One surpris-
ing phenomenon that these phases display is the pres-
ence of persistent currents in the ground state, which are
allowed by spontaneously-broken time reversal and in-
version broken due to the transverse electric field. Such
currents will not survive in a spatially uniform system
bulk, yet they will show up at boundaries and interfaces.
For example, they are expected to occur in the presence
of spatial domains in which electrons populate different
pockets. This behavior can be understood by param-
eterizing the momentum polarization using a position-
dependent vector u(x) as in the mean-field Hamiltonian
given in Eq.(1). In each domain, u(x) is a uniform vector
field aligned with a certain crystal axis. For a uniform
u, the electric current in equilibrium equals zero since
the integral over the Fermi sea of carrier velocities de-
rived from Eq. (1) will vanish. However, at a domain
wall u(x) varies in space, interpolates between different
values in the domains. In this case a nonzero local cur-
rent is allowed. This argument predicts a contribution
to orbital magnetization first-order in spatial gradients
of u(x):

m(x) = χ∇× u(x), (35)

where the susceptibility χ is proportional to the Landau
diamagnetic susceptibility. Here, terms such as ∇ · u

must be excluded since m is an axial vector. There-
fore, we expect a nonvanishing magnetization that peaks
on the domain boundaries, originating from persistent
currents that counter-propagate on the two sides of do-
main boundaries. Magnetization distribution that forms
a network along domain boundaries is a directly testable
signature of persistent currents.

Other interesting observables can arise from the broken
crystallographic symmetries. Indeed, two possible orders
of the “parent” phase, i.e. phase 1, correspond to two
kinds of broken symmetries— either breaking only mirror
symmetry, or breaking rotation, mirror and translation
symmetries (see Table II). If phase 1 only breaks mirror
symmetry, then populating one or two out of three pock-
ets will further break the three-fold rotation symmetry
without breaking the translation symmetry, leading to
electron nematicity. This symmetry breaking can be ob-
served by measuring the anisotropy in the conductivity.
If, however, the parent isospin order is intervalley coher-
ent, then the only remaining symmetry to be broken in
the pocket-polarization transition is the translation sym-
metry. Namely, the pocket polarization on top of val-
ley coherent states transforms the Kekulé charge density
wave into an incommensurate density wave which carries
momentum P i,j′ = 2K+ki+kj′ , i, j = 1, 2, 3, ki′ = −ki,
see Fig. 2 c). In this case, the pocket order can be de-
tected by imaging long-period spatial modulations.

The momentum-polarized pocket orders can also be de-
tected by measuring the Hall conductivity. When pocket
orders occur on top of the valley imbalance order Oz1
which allows a nonvanishing Hall conductivity, the Hall
conductivity changes abruptly since the Berry curvature
is non-uniform near K point [see Fig. 2 d)]. If pocket
ordering occurs on top of Oxy1 isospin order, which orig-
inally respects the time reversal symmetry, enforcing a
vanishing Hall conductivity, then the onset of such a mo-
mentum polarization can break the time-reversal sym-
metry so long as electrons populate different pockets in
valleys K and K ′ [e.g. pocket 1 and 2′ in Fig. 2 c)].
As a result, the Hall conductivity will jump from zero
to some finite value at the pocket ordering transition.
Therefore, regardless of the form of the parent isospin
order, we always expect a discontinuous behavior in Hall
conductance at the onset of pocket orders.

Another experimentally accessible signature of the
Berry curvature is magnetization due to orbital currents
in the ground state of the system. The magnetiza-
tion can be estimated using the approach described in
Refs.[50, 51], giving ∼ 4 Bohr magnetons per electron for
the parameters used in Fig. 2 d) [see Appendix B ]. This
is few times larger than the orbital magnetic moments of
electrons in a Landau level, and is readily measurable.

In summary, exchange interactions in the flattened
BBG bands result in a cascade of isospin-polarized or-
ders and momentum-polarized orders. These orders are
of interest for a number of reasons, in particular be-
cause they feature persistent currents and magnetization
in the ground state. We stress that this phenomenon
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is distinct from orbital magnetization familiar in topo-
logical bands where it arises due to Berry phase. The
momentum-polarized orders, rather than merely provid-
ing additional symmetry-breaking options by extend-
ing 4 isospin species to 12 isospin and pocket species,
lead to unique physical properties such as nematic order
with broken time reversal, persistent currents and Hall
conductivity. Momentum polarization results in abrupt

changes of the Berry curvature seen by electrons, leading
to jumps in the anomalous Hall conductivity and orbital
magnetization that can provide a convenient diagnostic
of momentum polarization orders.

This work was supported by the Science and Tech-
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Grant No. DMR1231319 and Army Research Office
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Appendix A: Estimating interaction strength V

In the main text, when numerically calculating the
phase diagram, we are using the value of V to represent
the strength of exchange interaction. Here, we provide
an estimate for V values.

The interaction strength we used in our model in main
text should correspond to the strength of the screened
Coulomb interaction at the relevant momentum, which
is Fermi momentum p0, i.e.

V = Ṽp0 . (A1)

Accounting for Thomas-Fermi screening, the screened
Coulomb potential takes the following form

Ṽp0 =
Vp0

1 + Vp0Πp0

, (A2)

where Πp0 is the polarization function at Fermi momen-
tum. We estimate this quantity using the value of density
of states at Fermi surface ν0. When the band is flat com-
pared to the interaction energy, which is the case of our
interest, we have

ν0Vp0 � 1 (A3)

In this regime, the screened Coulomb interaction is ap-
proximately

Ṽp0 =
1

ν0
. (A4)

Therefore, we can estimate the interaction as

V ∼ 1

ν0
∼ 103 meV nm2 (A5)

where we have used ν0 ∼ n/W ∼ 10−3 meV nm−2, where
n is the carrier density n ∼ 1012 cm−2, W ∼ 10 meV is
the Fermi energy measured from the band bottom at this
carrier density.

Appendix B: The Berry curvature and orbital
magnetization

It is straightforward to compute the Berry curvature
using the Hamiltonian Eq. (19). Below, we first ex-
plain how we compute the Berry curvature in realistic
BG model and obtain the result of Fig.2. We take the
form of the Hamiltonian projected to conduction band in
Eq. (19), and rewrite it as

Hmin
3−p =

∑
p

ψ†iph(p) · τ ijψjp, (B1)

h(p) · τ = [h0(p) + ht(p) + hD′(p)] (B2)



10

where τ = (τ1, τ2, τ3). Then the Berry curvature is given
by

Ωp =
1

2

h

|h|
·
(
∂h(p)

∂p1
× ∂h(p)

∂p2

)
. (B3)

In main text Fig.2 we use Eq.(B3) to numerically com-
pute the Berry curvature.

Next, we estimate the orbital magnetization which
arises from Berry curvature. Below, we recap the deriva-
tion of orbital moment described in Ref. 50 and 51, and
apply it to our model.

As a starting point, we consider the current flowing
along the sample boundary, treating it as an anomalous
current arising due to Berry’s curvature and driven by
the filed due to spatially varying trapping potential U .
This gives a current value

I = e

∫
dxn(x)v(x) (B4)

= e

∫
dx

∫
d2p

(2π)2
Ωpf(εp − µ+ U)

∂U

∂x
(B5)

where x is the coordinate in the direction perpendicular
to the boundary. The magnetization per unit area is
therefore given by

M =
IA

A
= e

∫ µ̃

0

ΩFS(µ̃− U)dU, (B6)

ΩFS(E) =

∫
d2p

(2π)2
Ωpf(εp − E) (B7)

To estimate the magnetization value, we apply Eq. (B7)
to the three-pocket model used in the main text, taking
Ωp as a constant Ωp ∼ Ω within the Fermi sea. This gives

M

µB
≈ Nm∗meΩµ̃2

2π
. (B8)

where µB is the Bohr magneton, me is the electron mass,
N is the number of pockets that are filled, µ̃ is Fermi level
measured from the bottom of the band. We estimate M
for the case shown in Fig.2, where N = 3, µ̃ = 10 meV,
and Ω ∼ 15 nm2 [extracted from Fig. 2], we find

M

µB
∼ 4× 10−3nm−2 ∼ 4n (B9)

where we used electron density n = 1011 cm−2, a value
corresponding to the regime where pocket polarization is
expected. This predicts a sizable orbital magnetic mo-
ment of ∼ 4 Bohr magnetons per conduction electron.
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