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Quasiperiodic systems show a universal gap structure due to quasiperiodicity which is analogous
to gap openings at the Brillouin zone boundary in periodic systems. The integrated density of states
(IDoS) below those energy gaps are characterized by a few integers, which is known as the “gap
labeling theorem” (GLT) for quasiperiodic systems. In this study, focusing on multilayer thin film
systems such as twisted bilayer graphene and stacked transition metal dichalcogenides, we extend the
GLT for multilayer systems of arbitrary dimensions and number of layers, using an approach based
on the algebra called “a noncommutative torus”. We find that the energy gaps and the associated
IDoS are generally characterized by DNCD integer labels in N layer systems in the D dimensions,
when the effect of the interlayer coupling can be approximated by a quasiperiodic intralayer coupling
for each layer. We demonstrate that the generalized GLT holds for quasiperiodic 1D tight binding
models by numerical simulations.

I. INTRODUCTION

Quasiperiodic systems are systems that possess long-
range order without translational symmetry. In 1982,
quasiperiodic structure is discovered in the system of al-
loys [1], and quasiperiodicity has later been found in vari-
ous systems [2–6]. The structure of quasiperiodic crystals
can be regarded as a projection of higher-dimensional-
crystalline structure [7, 8], and would allow us to ac-
cess the physics of higher-dimensional-space that is usu-
ally inaccessible in three-dimensional crystals. Recently,
stacked system of two-dimensional thin films has been
realized and intensively studied, including twisted bi-
layer graphenes [9–11] and interface of transition metal
dichalcogenides [12, 13]. Multilayer systems made of dif-
ferent crystals can be also considered as quasiperiodic
systems [13, 14], which provides an interesting platform
for quasiperiodic structures due to their controllability
and a rich variety of material combinations.

In periodic systems, the energy gap often opens at
the Brillouin zone (BZ) boundary due to anticrossing
of energy bands that are related by the reciprocal vec-
tors. Similarly, in quasiperiodic systems, there exist en-
ergy gaps that originate from quasiperiodicity. In the
quasiperiodic systems, BZ folding takes place in the mo-
mentum space picture and leads to replicas of energy
bands that exhibit anticrossings. Since those energy gaps
stem from the geometry of the quasiperiodic systems, one
can relate the energy gaps with the geometric parameters
of the system. Since the energy structure of quasiperi-
odic systems cannot be captured by the energy dispersion
in the momentum space picture in general, understand-
ing the energy gap structure independent of the system
size are particularly important. For example, it is known
that gaps in the energy spectrum of Fibonacci quasicrys-
tal can be labeled by two integers [15–18]. Using those
gap labels, one can discuss the physical property of the
energy gaps regardless of the system size.
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Multilayer thin films (MLTFs) show a universal en-
ergy gap structure which comes from the quasiperiod-
icity. Such gap structure can be understood using the
so called “gap labeling theorem” (GLT). The GLT es-
tablishes a relationship between those energy gaps with
the integrated density of states (IDoS) below the gap
through integer labels, and is known for quasicrystals for
several decades [17, 18]. A GLT for MLTFs was origi-
nally proposed using an algebra called noncommutative
torus (NCT) in the case of two-dimensional homo-bilayer
systems (which are made of the same type of atomic lay-
ers) [19]. In Ref. [19], the GLT for a twisted bilayer
system consisting of the same type of atomic layers was
derived, which states that the IDoS below a certain en-
ergy gap G is given by

IDoS(G) =n∅ +
∑

i,j=1,2

nij
|ai × bj |

S
(nij ∈ Z). (1)

Here, ai is a primitive vector of one layer, bj is a primitive
vector of the other layer, and S is |a1×a2|. Namely, the
GLT gives a labeling for the IDoS below the energy gap
G with integers n.

The GLT is also useful to understand the behavior
of the energy gaps when one changes a parameter that
characterizes the quasiperiodic system. For example, if
we consider a twisted bilayer system, |ai × bj | changes
continuously with varying the twist angle (Fig. 1a). In
this case, the energy gaps for two twist angles can be
smoothly connected with each other when the corre-
sponding IDoS have the same label n, as depicted by
the dashed curve in Fig. 1b. More recently, it has been
pointed out that such energy gap structure can be also
understood from charge transport that appears when
sliding two thin films relatively, which is characterized
by a topological quantity called the sliding Chern num-
ber (SCN) [20, 21].

Since derivation of the GLT from the NCT approach
only requires information of the quasiperiodic lattice
structure, the NCT approach is concise and systematic,
compared to the SCN approach. So far, the NCT ap-
proach for the GLT was only applied for two-dimensional
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FIG. 1. (a) Parameters that characterize the MLTFs. They include stacking angle, lattice constants of the stacked layers,
and deformation strength. (b) A schematic picture of the energy spectrum of MLTFs when one changes the parameters
characterizing the MLTFs. Blue regions represent the energy bands and the white regions the energy gaps. Gray dashed lines
are the energy gaps that originates from the quasiperiodicity and can be captured by the GLT. Those energy gaps show a
robust behavior, while other nonuniversal gaps originating from band hybridizations can merge or split when the parameters
are changed.

homo-bilayer systems [19]. Hence, it is an interest-
ing problem to extend the NCT method to MLTF het-
erostructures made of different types of 2D systems. An
obstacle in extending the NCT approach for MLTF het-
erostructures is that the information of the relative size
of the unit cells of different layers are not incorporated in
the original NCT construction, while it is indispensable
to derive GLT for multilayer thin films. Also, previous
studies on homo-bilayer systems [19–21] derived GLT by
focusing on the IDoS of one layer, since the system is in-
variant under exchanging the two layers in homo-bilayer
systems, which is no longer the case for general MLTF
heterostructures. Therefore, to understand the electronic
structure of general MLTFs, it is necessary to treat the
electronic structure of all layers on an equal footing.

In this paper, we extend the NCT approach for the
GLT to MLTF heterostructures. To this end, we adopt
an approach from the approximately finite C∗-algebra
[22, 23]. Specifically, we relate the traces for the dif-
ferent layers using the inductive limit for the parame-
ters characterizing the NCT obtained from the contin-
ued fraction, which is effectively equivalent to considering
large approximant of MLTF heterostructures. Assuming
that the interlayer coupling is approximated by quasiperi-
odic intralayer couplings for each layer, which generally
holds when states in different layers are energetically sep-
arated, we extend the GLT for MLTF heterostructures.
The generalized GLT reveals that the IDoS for N layer
heterostructures in the D dimensions is characterized by

DNCD integer labels. We perform numerical simulations
for tight binding models of 1D MLTF heterostructures
and demonstrate that the generalized GLT indeed holds.

The rest of the paper is organized as follows. In Sec. II,

we review the GLT for MLTFs consisting of the same
type of atomic layers, and introduce algebraic structure
of operators in the MLTFs. In Sec. III, we first extend
the GLT to the bilayer heterostructures in one-dimension
and then to the general N layer systems in arbitrary di-
mensions in Sec. IV. In Sec. V, we show numerical calcu-
lation in one-dimensional MLTF heterostructure system
to demonstrate that the generalized GLT holds.

II. GAP LABELING THEOREM

In this section, we briefly introduce the original gap la-
beling theorem [16–18]. In periodic systems, band folding
at the Brillouin zone boundary often leads to anticrossing
between folded bands and gap opening. When the en-
ergy gap appears from such band folding, the integrated
density of states (IDoS) below such gap is given by an
integer times BZ volume. In quasiperiodic systems, a
gap opening also appears from the band folding due to
the quasiperiodic structure and a similar relationship for
IDoS holds, which is known as GLT.

To explain the GLT, we first define the IDoS as follows.
Let Ĥ a Hamiltonian with energy eigenvalues E1 ≤ · · · ≤
EdimH and eigenstates {|ψn〉}, (n ∈ {1, . . . ,dimH}).
We denote projector to the states below the energy E
as

P̂ (E) =
∑
Ei≤E

|ψi〉〈ψi|. (2)

Since we mainly concentrate on the energy gaps in this
paper, it is convenient to relate P̂ (E) to energy gaps.
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When we name the energy gap between En and En+1 to

be G, we also write P̂ (G) := P̂ (En). Using projector,
IDoS is defined as

IDoS(E) =τ(P̂ (E)), (3)

τ(Ô) =
1

dim(Ô)
Tr(Ô). (4)

Here, τ is the normalized trace defined so that τ of iden-
tity operator 1 becomes 1. In the same manner, we also
write it as IDoS(G) = τ(P̂ (G)). While we can define the
normalized trace as in Eq. (3) for finite dimensions, in the
case of infinite dimensions, we adopt the inductive limit
from finite-dimensional matrix algebras for construction
of NCT and definition of τ [with Eq. (3)] [24–26]. In
the rest of this section, to explain the GLT, we explicitly
derive the GLT for a toy model.

A. Gap labeling theorem in one dimension

To extend the formalism of Ref. [19], let us review the
original GLT in the case of one-dimension using the so-
called Harper model.

Firstly, we demonstrate that the Hamiltonian of a lat-
tice under an incommensurate potential can be regarded
as an operator on NC torus. Let us consider the following
model,

Ĥ =
∑
n

[
(t|n+ 1〉〈n|+ h.c.) + V (n)|n〉〈n|

]
, (5)

where V (x) = V (x + θ−1) is a periodic function, which
is incommensurate when θ is taken to be irrational. We
can expand V into a Fourier series as

V (x) =
∑
η∈Z

vηe
2πiηxθ. (6)

Let us define Ŝ and Û as

Ŝ =
∑
n

|n− 1〉〈n|, (7)

Û =
∑
n

e2πinθ|n〉〈n|, (8)

which follow the commutation relation

ŜÛ = e2πiθÛ Ŝ. (9)

With these operators, we can write the Hamiltonian as a
polynomial of Û and Ŝ as

Ĥ = t(Ŝ + Ŝ†) +
∑
η∈Z

vηÛ
η. (10)

B. Noncommutative torus

The above commutation relation defines an algebra
called noncommutative torus. The noncommutative D-
torus is an algebra of operators {Ûj}j=1,...,D which fol-
lows the commutation relation,

ÛiÛj = e2πiθij ÛjÛi. (11)

Here, θij is a real number which characterizes noncommu-
tative torus, which can be regarded as an element of the
anti-symmetric matrix θ. We call θ as a noncommutative
parameter and denote noncommutative D-torus defined
by θ as TDθ . For example, a noncommutative two-torus
appears in the context of Hofstadter’s butterfly in quan-
tum Hall systems. In noncommutative D-torus, we can
also construct a projection operator, whose trace is di-
rectly related to the IDoS. For any Hamiltonian in an
algebra of the noncommutative D-torus TDθ , it is known
that the IDoS of the state below energy gap G is ex-
pressed using θ as [27]

IDoS(G) = n∅ +
∑

J⊂{1,...,D}

nJPf(θJ), (12)

where the subscript J labels subsets of {1, . . . , D}, Pf
denotes a Pfaffian and θJ is a submatrix of θ defined as

{θJ}ij =

{
θij (i, j ∈ J)

0 others
. (13)

Once we obtain the parameter θ for the quasiperiodic
system, application of the above formulae leads to the
expression for the IDoS.

For the case of Eq. (5), Ĥ is an operator belonging to
the NCT of parameter θ, the associated IDoS is given by

IDoS(G) = n∅ + θn1. (14)

III. GAP LABELING THEOREM OF
ONE-DIMENSIONAL MULTILAYER THIN

FILMS

In this section, we focus on a one-dimensional system
and derive the generalized GLT for MLTF heterostruc-
tures using the NCT approach, which is consistent with
those obtained from other approaches [20, 28].

One obstacle in extending the GLT is the relation of
the normalized trace τ in MLTF systems. As we show be-
low, we compute the gap labels of the MLTF heterostruc-
tres by approximately decoupling layers and applying
NCT approach to each layer. However, since the nor-
malized trace τ has a different normalization factor for a
different Hilbert space, the IDoS of the entire MLTF is
not simply obtained as a sum of the IDoS of each layer.
To derive the gap label for the MLTFs, we need to know
the relation between the τs defined in each layer. Specifi-
cally, for the infinite-dimensional case, we take inductive



4

limit with finite-dimensional matrix algebras, where the
relation of the normalized trace for different layers is in-
corporated in a straightforward way. This approach is
known as the approximately finite (AF) algebra [22–24].

In this section, we focus on one-dimensional MLTF
heterostructures and apply the above operations to derive
the generalized GLT. We mostly consider the bilayer case,
and mention the general N layer systems in the end.

A. Hamiltonian for a quasiperiodic bilayer

We construct a Hamiltonian Ĥ for a quasiperiodic bi-
layer by coupling two single-layer tight-binding models
(we denote the single-layer model of layer l as Ĥ l) with

interlayer coupling Ŵ ,

Ĥ = Ĥ1 + Ĥ2 + Ŵ + Ŵ †. (15)

Here, the single-layer Hamiltonian Ĥ l does not depend
on the other layers, and has no internal degrees of free-
dom (such as sublattice degrees of freedom) for simplicity.
Namely,

Ĥ l =
∑

nl,ml∈Z

hnl−ml |nl, l〉〈ml, l|. (16)

Here, nl and ml are the label of sites on layer l. Here-
after we omit the second (layer) index l for states as it is
apparent from the superscript of the first (site) index nl.
The position of site nl is defined as nlal with al being the
lattice constant of layer l. From the periodicity of layer
l, the hopping amplitude h depends only on the relative
distance between site nl and site ml. In contrast, the
interlayer coupling Ŵ depends on how the two layers are
stacked. We express Ŵ by a fully connected model as

Ŵ =
∑
n1,m2

W (n1,m2)|n1〉〈m2|. (17)

B. Effective Hamiltonian in each layer

The GLT from the NCT approach can capture a gap
structure that arises from the quasiperiodicity, which we
call intraband energy gap. Such energy gap originates
from gap opening for folded bands due to lattice con-
stant mismatch and appears at the Bragg lines, which is
analogous to the gap opening at the BZ boundary in
periodic systems. On the other hand, interlayer cou-
pling in MLTFs also causes hybridization between dif-
ferent bands, and leads to gap opening that does not di-
rectly related to the quasiperiodic nature, which we call
interband energy gap. In order to capture the univer-
sal gap structure of intraband energy gaps by the NCT
approach, below we approximate the interlayer couplings
in Eq. (15) with quasiperiodic intralayer couplings. This

approximation is justified as far as energy bands of differ-
ent layers are energetically separated and the interlayer
coupling is not too large.

When we define a projector onto the space in layer l
as P̂ l, we can write the equation Ĥ|ψ〉 = E|ψ〉 as

EP̂ 1|ψ〉 =Ĥ1P̂ 1|ψ〉+ Ŵ P̂ 2|ψ〉, (18)

EP̂ 2|ψ〉 =Ŵ †P̂ 1|ψ〉+ Ĥ2P̂ 2|ψ〉. (19)

and the effective Hamiltonian in layer l is

Ĥ1
eff(E) =Ĥ1 + Ŵ

1

E − Ĥ2
Ŵ †, (20)

Ĥ2
eff(E) =Ĥ2 + Ŵ †

1

E − Ĥ1
Ŵ . (21)

In the following, we approximate E of H1
eff(H2

eff) with
some constant which is comparable with eigenvalues of
H1(H2) of interest. The second term of each line is the
quasiperiodic term that behaves as an intraband coupling
subject to the quasiperiodic pattern. We denote such
quasiperiodic intralayer coupling in layer l as V̂ l, which
can be formally expressed as

V̂ l =
∑
nl,ml

Ṽ l(nl,ml, ξ(0))|nl〉〈ml|. (22)

Here, ξl is a function of r ∈ R which specifies the position
in the unit cell of layer l [19]. As depicted in Fig. 2a, an
electron at one layer defines the positions in unit cells of
other layers ξl. For a general position r for an electron,
collecting the position ξl(r) in the unit cell of each layer,
we write ξ(r) = {ξ1(r), . . . , ξN (r)}, which determines the
stacking configuration of the unit cells of different layers
at the position r. From the periodicity of layers, speci-
fying how we stack unit cells is equivalent to specifying
how we stack layers. Thus, ξ at some point r specifies
the quasiperiodic pattern of the MLTF heterostucture.
We mainly use ξ(0) to specify the quasiperiodic pattern
in the following sections.

Next, we consider a term Ṽ l(nl,ml, ξ(0)). This repre-
sents the hopping process where electron at site ml hops
to nl in the MLTFs specified by ξ(0). When we translate
the system by −mlal, site nl is translated to nl − ml,
and site ml is at site 0. Regarding ξ, the ξ(0) of the
translated system corresponds to ξ(mlal) in the original

system (Fig. 2b). Hence, Ṽ l(nl,ml, ξ(0)) coincides with

Ṽ l(nl −ml, 0, ξ(mlal)) after the translation. Therefore,

omitting 0 in the second argument, we can write V̂ l as

V̂ l =
∑
nl,ml

Ṽ l(nl −ml, ξ(mlal))|nl〉〈ml|. (23)

When we consider layer l under the tight-binding approx-
imation, electrons are bound to the sites with no internal
degrees of freedom. In this case, ξl(mlal) = 0, and we
may omit ξl from ξ.
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FIG. 2. A schematic picture of the parameter ξ characterizing the layer stacking of the MLTFs. (a) Example of ξ(r) of an
electron on layer 1. We focus on the a particular unit cell in the layer 1 and suppose that the electron is located at the position
ξ1. (ξ1 = 0 corresponds to the base point of the unit cell in the layer 1.) For the layer l other than 1, we define parameter
ξl by a position of the same electron measured within the unit cell of the layer l. In the tight-binding model, electrons are
bound to the lattice sites and ξ1 = 0. (b) Translation of the layers and ξ. When we translate the layers by −m1a1, the original
parameter ξ(0) is replaced by ξ(m1a1).

C. Fourier expansion

Next, we expand V̂ l in a Fourier series. First, we con-
sider the layer l = 1 and define q1 = n1 −m1. Applying
the discussions in Sec. III B to a bilayer system, ξ2 has
the periodicity ξ2(m1a1 +a2) = ξ2(m1a1). Using this pe-
riodicity, we expand the quasiperiodic intralayer coupling
in the Fourier series as

V 1(q1, ξ2(m1a1)) =
∑
η1∈Z

vq1,η1e
2πiη1

ξ2(m1a1)

a2 . (24)

Defining the slide operator as Ŝ1 =
∑
n |n1 − 1〉〈n1|, we

can write

V̂ 1 =
∑
m1,q1

∑
η1

vq1,η1e
2πiη1m

1a1

a2 (Ŝ1†)q
1

|m1〉〈m1|+ h.c.

(25)

where we have used e2πi
ξ2(m1a1)

a2 = e2πim
1a1

a2 . Defining

the generator Û1 as
∑
m1 e

2πim
1a1

a2 |m1〉〈m1|, we rewrite
the above equation as

V̂ 1 =
∑
q1

∑
η1

vq1,η1(Ŝ1†)q
1

Ûη
1

1 + h.c. (26)

In this manner, we can express quasiperiodic intralayer
coupling as a polynomial of Û1 and Ŝ1. In the same pro-
cedure, we can also decompose quasiperiodic intralayer
coupling in layer 2 as

V̂ 2 =
∑
q2

∑
η2

vq2,η2(Ŝ2†)q
2

Ûη
2

2 + h.c, (27)

Û2 =
∑
m2

e2πim
2a2

a1 |m2〉〈m2|, (28)

Ŝ2 =
∑
m2

|m2 − 1〉〈m2|. (29)

D. Noncommutativity between translation and
generator

In order to define a noncommutative torus, we define
Û3 and Û4 by

Û3 =Ŝ1, (30)

Û4 =Ŝ2 (31)

Then, Ûi’s satisfy the following commutation relations:

Û1Û3 =e−2πi a
1

a2 Û3Û1, (32)

Û2Û4 =e−2πi a
2

a1 Û4Û2. (33)

From these relations, we construct a noncommutative
torus generated by (Û1, Û3) and (Û2, Û4). The param-
eter θ of the corresponding NCT is obtained from the
commutation relation ÛiÛj = e−2πiθij ÛjÛi as

θ13 =
a1

a2
, (34)

θ24 =
a2

a1
. (35)

Hence, the effective Hamiltonian on each layer can be
expressed as an operator defined on the noncommutative
torus Tθ13 and Tθ24 , and the total (effective) Hamiltonian
of the bilayer system becomes an element of the algebra
Tθ13⊕Tθ24 . Thus the projector of the bilayer Hamiltonian
is expressed as

P̂ = P̂ 1 ⊕ P̂ 2, (36)

where P̂ is the projector in Tθ13 ⊕ Tθ24 and P̂ l is the
projector in the layer l. Here, it is worth noting that the
relation between normalized trace of the bilayer system
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is not simply given by a summation of that of layer l as
τ(P̂ ) = τ1(P̂ 1)+τ2(P̂ 2), because the normalized trace τ l

is defined in a different subspace for each layer. There-
fore, to derive the GLT, we should examine the relation
between τ1 and τ2. Directly relating τ1 and τ2 is hard
since the dimension of Ûi is infinity as we have defined
in Sec. III C. To overcome this issue, we use the approxi-
mately finite (AF) algebra [26, 29]. This algebra defines
the NCT as the inductive limit of the finite-dimensional
matrix algebra, where we can relate the normalized traces
for different layers more easily.

In the following, we follow the approach by Primsner
and Voiculescu [23] to relate the traces in different layers.
First, one represents θ with a continued fraction,

θ = z0 +
1

z1 + 1
z2+ 1

z3+ 1

...

= [z0; z1, . . .], (37)

and then approximates θ with an approximant of θ de-
fined as

θn = z0 +
1

. . . + 1
zn

=
pn
qn
, (38)

where pn and qn are coprime integers. When we ap-
proximate θ by θn, we can represent the generators of
the noncommutative torus with qn-dimensional matrices
and define IDoS using a trace of the finite-size matrices.
Next, to construct T2

θn+1
, we embed T2

θn
and T2

θn−1
to

qn+1-dimensional matrix with a suitable unitary trans-
formation (for detail, see Eq. (2) in Ref. [23]). Continu-
ing this embedding, we define T2

θ as an inductive limit,
T2
θ = limn→∞ T2

θn
. In this construction, the IDoS of T2

θ
is also defined as the inductive limit from the IDoS of
Tθn which can be defined in the finite dimensional ma-
trix algebra. When we consider an approximant θn for
the quasiperiodicity parameter θ = a1/a2 for the bilayer
system, we effectively consider a superlattice made of qn
sites in layer 1 and pn sites in layer 2 which we call “the
moiré unit cell”. When we consider the system of the
length pn with the periodic boundary condition, we may
use a phase matrix Pθn and a clock matrix Cθn as an

representation of Û1 and Û3:

{Pθn= pn
qn
}ij =

{
e2πiθnj i = j

0 others
, (39)

{Cθn= pn
qn
}ij =


1 j − i = 1

1 (i, j) = (qn, 1)

0 others

, (40)

for 1 ≤ i, j ≤ qn. Using these matrices, the representa-

tions of Ûs under this approximation are

Û1 =Pθn , (41)

Û2 =Pθ−1
n
, (42)

Û3 =Cθn , (43)

Û4 =Cθ−1
n
. (44)

The dimension of the Û1 and Û3 is qn and Û2 and Û4 is
pn. Thus, in the finite-dimensional matrix algebra, the
IDoS of the layer 1 is expressed as

IDoS1(G) =
1

qn
Tr(P̂ (G)). (45)

Since the Hamiltonian of bilayer system is the direct sum
of H1

eff and H2
eff, the IDoS of the bilayer system and those

of layer 1 and 2 satisfy the following relation:

(pn + qn)IDoS(G) = qnIDoS1(G) + pnIDoS2(G). (46)

According to Ref. [30], the IDoS for each layer is given
by IDoS1(G) = n1

1 + θnn
1
2 (n1

1, n
1
2 ∈ Z) and IDoS2(G) =

n2
2 + θ−1

n n2
1 (n2

1, n
2
2 ∈ Z), which leads to

IDoS(G) =(n1
1 + n2

1)
qn

(pn + qn)
+ (n1

2 + n2
2)

pn
(pn + qn)

.

(47)

Taking the inductive limit of pn/qn → θ = a1/a2, we
obtain

IDoS(G) =
1

1
a1 + 1

a2

[n1

a1
+

n2

a2

]
. (48)

Here, nk =
∑
l=1,2 n

l
k. As a result, we can label IDoS

of the bilayer system with two integers. This result is
consistent with the previous results including Fig. 6.3 in
Ref. [28], and Eq. (A3) in Appendix A from the SCN
approach.

As one can easily see, qn is the number of unit cells
inside the moiré unit cell of layer 1 and pn is that of
layer 2. Therefore, qn/(pn + qn) is the density of unit
cells of layer 1 inside the moiré unit cell. Thus relating
the trace of each layer can be intuitively understood as
introducing the ratio of the number of unit cells of two
layers. This allows us to extend the above formalism to
multilayer and higher dimensional systems in a straight
forward way.

In a similar manner, we can also extend GLT to the
N -layer system. Considering N -layer system with lattice
constant al, we can write IDoS of layer l (IDoSl) as

IDoSl =

N∑
l′=1

nll′
al

al′
. (49)

Here, {nl1, . . . , nlN} are integers. From the relationship

between IDoSl and the IDoS of the entire system,(
N∑
l=1

1

al

)
IDoS =

∑
l

1

al
IDoSl, (50)
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we obtain

IDoS =

(∑N
l=1

nl
al

)
(∑N

l=1
1
al

) (nl′ =
∑
l

nll′). (51)

IV. GAP LABELING THEOREM OF
D-DIMENSIONAL MLTFS

In this section, we extend the GLT to D-dimensional
MLTF heterostructures.

We first summarize our notations to describe D-
dimensional MLTFs. In D-dimensional MLTFs, we de-
fine ith primitive vector of layer l as ali, and its recip-

rocal vector bli is defined such that ali · b
l
j = δij . Alter-

natively, we also denote ith primitive (reciprocal) vec-
tor in layer l as a(l−1)D+i = ali. In D-dimensional sys-
tem, we can express D-dimensional volume of the region
spanned by ai1 , · · · ,aiD as Si1...iD = |det(ai1 , · · · ,aiD )|.
When we replace aiD with unit vector eD such that
eD ·aij = 0 (j = 1, · · ·D− 1), we can omit Dth index iD
from S and define

Si1...iD−1
= |det(ai1 , · · · ,aiD−1

, eD)|. (52)

In a similar manner, we can also define Si1...id as

Si1...id = |det(ai1 , · · · ,aid , ed+1, · · · , eD)|, (53)

where ai · ej = 0 (i = i1, . . . , id, j = d + 1, . . . , D).
In particular, if some vectors from ai1 to aiD are par-
allel with each other, Si1...iD = 0. To label sites in
layer l, we use integers {nli}i=1,...,D and the parameter

r̃ ∈ {
∑D
d=1 ñ

l
da

l
d|0 ≤ ñld < 1} that specifies the origin of

layer l in the RD space, where the coordinate of the site
r ∈ RD is represented as

r =

D∑
d=1

nlda
l
d + r̃. (54)

A. 2D systems

First, we extend Ref. [19] to two-dimensional heter-
obilayer systems. Then, we derive GLT for the two-
dimensional multilayer system.

1. bilayer case

We consider bilayer systems. In this case, we have four
primitive vectors and the parameter of the noncommu-
tative torus for the layer 1 is given by

θ1 =
1

S34

 0 0 S13 S14

0 0 S23 S24

−S13 −S23 0 0
−S14 −S24 0 0

 . (55)

The derivation of θ1 is as follows. In layer 1 of the two-
dimensional bilayer, the period of the quasiperiodic pat-
tern is equal to the primitive vectors of layer 2. Specifi-
cally, omitting ξ1(r) = 0, we can represent the quasiperi-
odic coupling term only with ξ2(r) which is the position
of electron on layer 1 in the unit cell of layer 2. Writing
ξ2(r) = ξ̃3(r)a3 + ξ̃4(r)a4 with ξ̃j(r) ∈ [0, 1), we define

ûj =
∑
r1∈R2

e2πiξ2(r1)·bj |r1〉〈r1| =
∑
r1∈R2

e2πiξ̃j(r
1)|r1〉〈r1|,

(56)

where j = 3, 4 and r1 runs the position of sites in layer 1
in Eq. (54). Denoting the shift operators that translate
the layer 1 by −a1 and −a2 as û1 and û2, we obtain

û3û1 =
∑
r1∈R2

e2πiξ2(r1−a1)·b3 |r1 − a1〉〈r1 − a1|, (57)

and

û1û3 =
∑
r1∈R2

e2πiξ2(r1)·b3 |r1 − a1〉〈r1 − a1|. (58)

Hence the commutation relation of û1 and û3 is

û1û3 = e2πi(ξ2(r1)−ξ2(r1−a1))·b3 û3û1, (59)

where this phase factor does not depend on r1. Indeed,
when we expand a1 as

a1 = θ̃13a3 + θ̃14a4, (60)

ξ̃3(r1 − a1) ≡ ξ̃3(r1)− θ̃13 mod 1 holds, so that

e2πi(ξ2(r1)−ξ2(r1−a1))·b3 = e2πiθ̃13 . (61)

From the definition of reciprocal vectors,

|θ̃ij | =|ai · bj | =
Sij̄
S34

, (62)

where {j, j̄} = {3, 4}. As the sign does not affect the

derivation of GLT, we may use Sij̄/S34 instead of θ̃ij .
Thus, defining

(Û1, Û2, Û3, Û4) = (û1, û2, û4, û3), (63)

we obtain the noncommutative parameters in Eq. (55).
Applying Eq. (12) for θ1, IDoS of the associated NC torus
is given by

IDoS1 =n1
∅ +

∑
J⊂{1,2,3,4}

n1
JPf(θ1

J)

=n1
∅ +

∑
i=1,2

∑
j=3,4

n1
ij

Sij
S34

+ n1
1234

S12

S34
, (64)

where θ1
J is a submatrix of θ1 defined in Eq. (13), and we

used following formula

S13S24 − S23S14

= (a1 × a3) · (a2 × a4)− (a2 × a3) · (a1 × a4)

= (a1 × a2) · (a3 × a4) = S12S34. (65)



8

This result means that we need six integers to label en-
ergy gaps of a single layer in two-dimensional bilayer sys-
tem, which coincides with the result in Ref. [31].

Similarly, the IDoS for layer 2 is given by

IDoS2 = n2
∅ +

∑
i=1,2

∑
j=3,4

n2
ij

Sij
S12

+ n2
3412

S34

S12
. (66)

Next, we glue these two tori following the procedure we
have discussed in the previous section. As a result, we
obtain IDoS of two-dimensional bilayer system as

IDoS =
1

S12 + S34

 4∑
i=1

4∑
j=i+1

nijSij

 . (67)

2. trilayer and N-layer cases

First, we consider two-dimensional trilayer system. In
this case, we have six primitive vectors and the noncom-
mutative parameter of layer 1 is

θ1 =



0 0 S13

S34

S14

S34

S15

S56

S16

S56

0 0 S23

S34

S24

S34

S25

S56

S26

S56

−S13

S34
−S23

S34
0 0 0 0

−S14

S34
−S24

S34
0 0 0 0

−S15

S56
−S25

S56
0 0 0 0

−S16

S56
−S26

S56
0 0 0 0


. (68)

From Eq. (12), the IDoS of layer 1 is

IDoS1 =n1
∅ +

∑
i=1,2

∑
j=3,4

n1
ij

Sij
S34

+
∑
i=1,2

∑
j=5,6

n1
ij

Sij
S56

+
n1

1234S12

S34
+

n1
1256S12

S56
+

∑
i=3,4,j=5,6

n1
12ij

S12Sij
S34S56

.

(69)

In Eq. (69), the first five terms appear as the combina-
tion of IDoS1 in bilayer systems, while the last term does
not. For example, fifth term comes from the bilayer be-
tween layer 1 and layer 2. In this case, quasiperiodic
pattern generated by primitive vectors a3 and a4 opens
the energy gaps. In contrast, the last term with n1

12ij

treats energy gap originates from the quasiperiodic pat-
tern generated by primitive vectors ai of layer 2 and aj
of layer 3, reflecting the trilayer nature. Combining IDoS

for each layer, we obtain(
1

S12
+

1

S34
+

1

S56

)
IDoS

=
1

S12S34S56

[
(n1
∅ + n2

3412 + n3
5612)S34S56

+ (n1
1234 + n2

∅ + n3
5634)S12S56

+ (n1
1256 + n2

3456 + n3
∅)S12S34

+
∑
i=1,2

∑
j=3,4

(n1
ij + n2

ij + n3
56ij)SijS56

+
∑
i=1,2

∑
j=5,6

(n1
ij + n2

34ij + n3
ij)SijS34

+
∑
i=3,4

∑
j=5,6

(n1
12ij + n2

ij + n3
ij)SijS12

]
. (70)

Since labels such as n1
ij + n2

ij + n3
56ij appear only as a

combination in the expression for the IDoS, we regard
them as a single label. Therefore, redefining labels, we
obtain

IDoS =

∑
J⊂{1,...,6}
|J|=2

nJ
1
SJ

1
S12

+ 1
S34

+ 1
S56

, (71)

where J labels a set of two integers from 1 to 6. The
number of combination to choose two integers J from 1
to 6 is 15. Thus to label one-dimensional trilayer, we need
15 integers. In a similar manner, to label two dimensional
N -layer systems, we need to choose two vectors from 2N
primitive vectors, which leads to 2NC2 = N(2N − 1)
integers.

B. General D-dimensional N-layer systems

Similarly, we can also formulate the GLT in the D-
dimensional N -layer MLTFs. The noncommutative pa-
rameter of the NCT for layer 1 is written as

θ1 =

(
O Θ
−tΘ O

)
,

Θ =

 (a1 · bD+1) · · · (a1 · bDN )
...

. . .
...

(aD · bD+1) · · · (aD · bDN )

 . (72)

From this matrix, we choose submatrix θ1
J and calculate

the Pfaffian. When dim θ1
J = 2d, a condition to obtain

nonzero Pfaffian is to choose d indices from 1, . . . , D and
d indices from D+ 1, . . . , DN . We denote chosen indices
as µ ⊂ {1, . . . , D} and ν ⊂ {D + 1, . . . , DN}. Then, the
Pfaffian of the submatrix is given by

Pf(θ1
J) = det

(aµ1
· bν1) · · · (aµ1

· bνd)
...

. . .
...

(aµd · bν1) · · · (aµd · bνd)

 , (73)
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where J = µ ∪ ν. When d = D, this simplifies to

Pf(θ1
J) = det

(aµ1
· bν1) · · · (aµ1

· bνD )
...

. . .
...

(aµD · bν1) · · · (aµD · bνD )


= det

− aµ1
−

...
− aµD −

 det

 | |
bν1 · · · bνD
| |


=
Sµ
Sν

=
S1

Sν
. (74)

In the other cases, we obtain

Pf(θ1
J)

= det


− aµ1 −

...
− aµd −


 | |
bν1 · · · bνd
| |




= det





− aµ̄1 −
...

− aµ̄D−d −
− aµ1

−
...

− aµd −


 | | | |
bµ̄1 · · · bµ̄D−dbν1 · · · bνd
| | | |




= (±1)
S1

Sµ̄1,...,µ̄D−d,ν1,...,νd

. (75)

Here, µ∪ µ̄ = {1, . . . D}, and ±1 is the sign of the permu-
tation of ai’s with {µ̄1, . . . , µ̄D−d, µ1, . . . , µd}. This sign
is not important to express IDoS, as we can get rid of it
by redefining integer labels. Using the results above, the
IDoS for layer 1 is expressed as

IDoS1 = n1
∅ +

∑
µ⊂{1,...,D}

ν⊂{D+1,...,DN}
|µ∪ν|=D

n1
µν

S1

Sµν
. (76)

In a similar manner, we can also calculate the IDoS for
layer l. Using the relationship,(∑

l

1

Sl

)
IDoS =

∑
l

1

Sl
IDoSl, (77)

we obtain the IDoS for the D-dimensional N -layer as

IDoS =

∑
J⊂{1,...,DN}
|J|=D

nJ
1
SJ∑

l
1
Sl

. (78)

This formula shows that the number of choices of J that
has nonzero contribution is DNCD, which indicates that
we need DNCD integers to label the energy gap structure
of D-dimensional N -layer MLTFs generally.

FIG. 3. The integrated density of states (IDoS) of the bi-
layer system against lattice constant θ. The colour changes
with energy. The region where the colour changes sharply
corresponds to the energy gap. White lines are energy gaps
predicted by the GLT with labels (n1, n2) defined in Eq. (51).
The labels of energy gaps whose IDoS are 1 at θ = 0 satisfies
n1 = 1 and n2 < 1. The labels of energy gaps whose IDoS are
1 at θ = 1 satisfies n1 + n2 = 2 and n2 < 0.

V. NUMERICAL CALCULATION

We demonstrate the validity of the obtained gap la-
bels in the case of one-dimensional systems. First, we
consider the bilayer system. We then move on to the
trilayer system with large gaps between layers, which is
ideal to project out the other layers into potentials.

First, we consider a bilayer consisting of layers with
lattice constant 1 and θ. The Hamiltonian is composed of
the two single layer Hamiltonians with nearest neighbour
coupling and an interlayer coupling term:

Ĥ =
∑
l=1,2

∑
nl

[
tl|nl + 1〉〈nl|+ h.c.

]
+
∑
n1,n2

[
V e−γr(n

1,n2)|n1〉〈n2|+ h.c.
]
. (79)

Here r(n1, n2) is the distance between site n1 and n2

which we define r(n1, n2) = |n1a1 − n2a2|, and we take
t1 = 1, t2 = 2, V = 5, γ = 10. The result is shown in
Fig. 3. The color corresponds to the energy of eigen-
states. The sharp color changes correspond to the en-
ergy gaps. The white solid curves are the position of
the energy gap predicted from the generalized GLT in
Eq. (51), where we indicate the associated integer labels.
The white curves coincides with the position of the en-
ergy gap (where the color changes sharply) and shows
that the generalized GLT holds in the present system.
Vertical lines without color change appears in fractional
θs. While we show the curves associated with a few la-
bels, we can also reproduce positions of other energy gaps
from the GLT as well.
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Next, we show numerical calculations in a trilayer sys-
tem. Lattice constants are a1 = 1, a2 = α, a3 = αβ, and
β is fixed to 12/13. The Hamiltonian is

Ĥ =

3∑
l=1

∑
nl

[
tl
(
|nl + 1〉〈nl|+ h.c

)
+ El|nl〉〈nl|

]
+
∑
n1,n2

[ (
V e−γr(n

1,n2)
)2

|n1〉〈n2|+ h.c.
]

+
∑
n2,n3

[ (
V e−γr(n

2,n3)
)2

|n2〉〈n3|+ h.c.
]

+
∑
n3,n1

[
V e−γr(n

3,n1)|n3〉〈n1|+ h.c.
]
. (80)

Here we take t1 = t2 = t3 = 2, V = 2, ξ = 2. El’s are
additional parameter to show energy gap clearly, and set
E1 = 10, E2 = 0, E3 = −10.

The energy spectrum under the PBC is shown in Fig. 4.
Blue points are the energy spectrum and red arrows show
the energy gap predicted by the GLT. Among energy
gaps, there are two trivial gaps (n1, n2, n3) = (0, 0, 1)
and (0, 1, 1). (0, 0, 1) corresponds to filling layer 3 only,
and (0, 1, 1) corresponds to filling layer 2 and 3. These
gaps open without quasiperiodicity, so stable against the
change of α. In Fig. 4, the size of energy gaps are differ-
ent. This is due to the exponential decay of the interlayer
coupling. When the interlayer coupling takes large value,
on the Bragg lines, the energy gap is also large. Even in
the case where the energy gaps are small, e.g. (5,−2, 1),
we can also label energy gaps. Therefore, also in the
trilayer systems, we can predict energy gaps using GLT.

We note the limitation for the choices of El. In this
calculation, we added energy offsets to separate the en-
ergy bands of the three layers. This allows us to focus
on intraband energy gaps which can be captured by the
GLT. When energy bands are energetically close and hy-
bridized with each other, interband energy gaps appear
which are not necessarily captured by the GLT. Charac-
terization of those interband energy gaps remains a future
problem.

VI. DISCUSSIONS

In this paper, we have extended the GLT to MLTFs us-
ing the approach from the noncommutative torus, which
allows us to treat all layers on an equal footing. We
derived the GLT for general D-dimensional N -layer sys-
tems by combining previous results on the GLT [19, 32]
and redefinition of the normalized trace for each layer
using a continued fraction and the inductive limit. As a
result, we have obtained the general expression of IDoS
in Eq. (78), and found that the number of gap labels
is generally given by DNCD. In addition, the obtained
GLT formula was found to be consistent with the result
from the SCN approach. The present NCT approach also

FIG. 4. Trilayer model with large gaps. Here, we set β =
12/13. Parameters are t1 = t2 = t3 = 2, V = 2, ξ = 2, E1 =
10, E2 = 0, E3 = −10. Blue points are the energy spectrum
and red lines are the energy gap predicted by the GLT. Arrows
indicate energy gap and their labels (n1, n2, n3).

gives a reinterpretation of the result obtained from the
SCN approach. (For details, see Appendix. A).

We note on the validity of treating the interlayer cou-
pling as an effective quasiperiodic intralayer coupling for
each layer. In this paper, we focused on the situation
where we can treat the interlayer coupling as an effective
intralayer coupling for each layer. This is a good ap-
proximation when the energy bands from different layers
are energetically separated. When the states from differ-
ent layers are energetically close and hybridized due to
the interlayer coupling, the resulting energy gaps do not
arise from the quasiperiodicity and are not expected to be
characterized by the GLT. To be more precise, it is not
evident whether one can rewrite the Hamiltonian with
general interlayer couplings as an operator belonging to
a NC torus without projecting to the effective intralayer
coupling.

An interesting future direction is studying the relation-
ship between the GLT and the flat bands in the MLTFs.
In MLTFs such as twisted bilayer graphene, an emer-
gence of flat bands at certain angles has been reported.
This is a consequence of the gap opening between replicas
of the energy band and originates from the quasiperiod-
icity. Recently, study of the flat band in twisted bilayer
graphene has been studied using Jacobi theta functions
[33–35], where one can define a commutation relation-
ship for quasiperiodic functions in a similar manner to
those for S and U used in Sec. III [36]. One can in-
terpret that the theta functions are describing the wave
functions of quasiperiodic systems, while the NC torus is
describing the Hamiltonian. Thus, the GLT may also be
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useful to study the flat bands in quasiperiodic systems if
a relationship between the GLT and the theta function
is established.
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Appendix A: Sliding Chern number

In MLTFs, a new topological index which comes from
the sliding of two-dimensional layers is proposed indepen-
dently in Refs. [20, 37, 38]. Here, we call it the sliding
Chern number (SCN) following Ref. [20].

1. Gedanken experiment to relate SCN and gap
labels

In Ref. [20], a gedanken experiment was conducted to
clarify the relationship between the SCN and a quantized
charge transport. This argument can be used to obtain
GLT for one-dimensional bilayer systems with an exten-
sion.

We consider a one-dimensional bilayer system without
the internal degree of freedom. The lattice constant of
the bottom layer is 1 and the top layer is p/q. Here,
p and q are coprime to each other, and two layers are
connected through interlayer coupling.

In this case, we can define the moiré unit cell for the
bilayer system and its lattice constant to be q.

When we slide the top layer by q, the system before
and after the sliding is identical, yet electrons on the
top layer are transferred. With the constraint that the
system must be identical in two cases, the number of
transferred electrons is a multiple of sites inside the moiré
unit cell, ntq (nt ∈ Z).

In a similar manner, we can also slide the bottom layer
by q into the opposite direction. In this case, the number
of transferred electrons is a multiple of nbp (nb ∈ Z).

Since two slid bilayers are related through the transla-
tion of the entire system by q. We can obtain the follow-

ing equation

ntq = nbp+N. (A1)

Here, N is the number of electrons inside the moiré unit
cell. In Ref. [20], it was shown that nt and nb are the
sliding Chern number.

To see the relationship of the above argument with the
IDoS, we divide both sides with the system size p + q,
which leads to

IDoS = nt
q

p+ q
− nb

p

p+ q
. (A2)

From the definition, IDoS is the number of electrons di-
vided by the system size N/(p+ q). Finally, we take the
incommensurate limit. Replacing p/q with an irrational
number θ, we obtain

IDoS =
nt − nbθ

1 + θ
. (A3)

Therefore, we can also relate the SCN with IDoS. This
gedanken experiment does not depend on the detail of
the Hamiltonian, and Eq. (A3) coincides with the result
in Sec. III.

2. Two and higher dimensions

In Ref. [31], the relationship between the energy gaps
of hBN/Graphene/hBN trilayer heterostructure and in-
teger labels were pointed out, and later the authors stud-
ied the relationship between the energy gap structure and
the integer labels in general two-dimensional multilayer
systems in Ref. [21]. From these studies, they derived
the following expression for the IDoS

IDoS(G) = n∅ +
∑
i=1,2

∑
j=3,4

nij
Sij
S12

+ n1234
S34

S12
, (A4)

which is consistent with the generalized GLT formula
for D = 2, N = 2 case. More recently, Yamamoto and
Koshino have pointed out that one can label energy gaps
of the three-dimensional system under incommensurate
potential with the third Chern number [39]. This is con-
sistent with our result of the generalized GLT, in that we
can transform the Hamiltonian of D-dimensional lattice
under incommensurate potential to NC 2D-torus and the
top Chern number is the D-th Chern number [40].

[1] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn,
Metallic phase with long-range orientational order and no
translational symmetry, Phys. Rev. Lett. 53, 1951 (1984).

[2] Y. E. Kraus and O. Zilberberg, Topological Equiva-
lence between the Fibonacci Quasicrystal and the Harper
Model, Phys. Rev. Lett. 109, 116404 (2012).

https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.109.116404


12

[3] Z. V. Vardeny, A. Nahata, and A. Agrawal, Optics of
photonic quasicrystals, Nature Photonics 7, 177 (2013).

[4] K. Kamiya, T. Takeuchi, N. Kabeya, N. Wada, T. Ishi-
masa, A. Ochiai, K. Deguchi, K. Imura, and N. K. Sato,
Discovery of superconductivity in quasicrystal, Nature
Communications 9 (2018).

[5] A. P. Tsai, J. Q. Guo, E. Abe, H. Takakura, and T. J.
Sato, A stable binary quasicrystal, Nature 408, 537
(2000).

[6] L. C. Collins, T. G. Witte, R. Silverman, D. B. Green,
and K. K. Gomes, Imaging quasiperiodic electronic states
in a synthetic Penrose tiling, Nature communications 8,
1 (2017).

[7] N. de Bruijn, Algebraic theory of Penrose’s non-periodic
tilings of the plane. I, Indagationes Mathematicae (Pro-
ceedings) 84, 39 (1981).

[8] N. de Bruijn, Algebraic theory of Penrose’s non-periodic
tilings of the plane. II, Indagationes Mathematicae (Pro-
ceedings) 84, 53 (1981).

[9] R. Bistritzer and A. H. MacDonald, Moiré bands in
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[15] N. Macé, A. Jagannathan, and F. Piéchon, Fractal di-
mensions of wave functions and local spectral measures
on the Fibonacci chain, Phys. Rev. B 93, 205153 (2016).

[16] M.-T. Benameur and H. Oyono-Oyono, Calcul du label
des gaps pour les quasi-cristaux, Comptes Rendus Math-
ematique 334, 667 (2002).

[17] Y. Liu, X. Fu, W. Deng, and S. Wang, Gap-labeling
properties of the energy spectrum for one-dimensional
fibonacci quasilattices, Phys. Rev. B 46, 9216 (1992).
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Boston, 2001).

[25] M. Takesaki, Theory of Operator Algebras II (Springer
Berlin Heidelberg, 2003).

[26] K. R. Davidson, C*-Algebras by Example, Fields Institute
for Research in Mathematical Sciences Toronto: Fields
Institute monographs (American Mathematical Society,
1996).

[27] E. Prodan and H. Schulz-Baldes, Bulk and Boundary
Invariants for Complex Topological Insulators: From
K-Theory to Physics, Mathematical Physics Studies
(Springer International Publishing, 2016).

[28] E. Prodan and Y. Shmalo, The k-theoretic bulk-
boundary principle for dynamically patterned resonators,
Journal of Geometry and Physics 135, 135 (2019).

[29] N. Brown and N. Ozawa, C∗-algebras and Finite-
dimensional Approximations, Graduate studies in math-
ematics (American Mathematical Soc., 2008).

[30] M. Rieffel, C∗-algebras associated with irrational rota-
tions, Pacific Journal of Mathematics 93, 415 (1981).

[31] H. Oka and M. Koshino, Fractal energy gaps and topo-
logical invariants in hbn/graphene/hbn double moiré sys-
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