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 15 
Abstract 16 
Melting in the deep rocky portions of planets is important for understanding the thermal evolution 17 
of these bodies and the possible generation of magnetic fields in their underlying metallic cores.  18 
But the melting temperature of silicates is poorly constrained at the pressures expected in super-19 
Earth exoplanets, the most abundant type of planets in the galaxy.  Here, we propose an iterative 20 
learning scheme that combines enhanced sampling, feature selection, and deep learning, and 21 
develop a unified machine learning potential of ab initio quality valid over a wide pressure-22 
temperature range to determine the melting temperature of MgSiO3. The melting temperature of 23 
the high-pressure, post-perovskite phase, important for super-Earths, increases more rapidly with 24 
increasing pressure than that of the lower pressure perovskite phase, stable at the base of Earth’s 25 
mantle.  The volume of the liquid closely approaches that of the solid phases at the highest pressure 26 
of our study.  Our computed triple point constrains the Clapeyron slope of the perovskite to post-27 
perovskite transition, which we compare with observations of seismic reflectivity at the base of 28 
Earth’s mantle to calibrate Earth’s core heat flux.   29 
 30 
 31 
  32 
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 34 
 35 

I. INTRODUCTION 36 

Cosmic abundances, stellar spectroscopy, observations of polluted white dwarfs, and mass-radius 37 
relations point towards the abundance of planets in our galaxy with Earth-like compositions, with 38 
a mantle dominated by the MgSiO3 component (~70% in the case of Earth) and an iron-rich core, 39 
and masses similar to or greater than that of Earth (1-10 Earth masses) [1,2]. Studies of planetary 40 
accretion and thermal evolution suggest that these bodies may have begun in a completely molten 41 
state and that mantle and core are still partially molten after billions of years [3-6]. The melting 42 
temperature of MgSiO3 exerts a first-order control on thermal evolution because of the large 43 
change in viscosity across the melting transition, which sets the time scale for thermal evolution.  44 
The density contrast between liquid and solid is also important because this determines whether 45 
crystals freezing out of a deep molten portion of a planet sink or float, setting the vector of chemical 46 
evolution [7]. 47 

The melting temperature of MgSiO3 has therefore attracted considerable attention, yet no 48 
consensus exists, in part because of the experimental challenges at very high pressure [8-11]. 49 
While melting of the bridgmanite phase has received the most attention, melting of its high-50 
pressure polymorph – post-perovskite – is also important because this is the stable crystalline phase 51 
at pressures greater than 140 GPa (nearly coinciding with the pressure at the base of Earth’s mantle) 52 
to pressures as high as 750 GPa [12] (the pressure at the base of the mantle in a 5 mass super-53 
Earth).  The melting temperature also constrains the triple point at which all three phases are stable 54 
(bridgmanite, post-perovskite, liquid) and therefore the Clapeyron slope of the solid-solid 55 
transition, which is observed via seismic reflection at the base of Earth’s mantle [13]. The 56 
Clapeyron slope of the solid-solid transition is also very uncertain at present, leading to large 57 
uncertainties in the heat flux from Earth’s core [14], the existence of an active dynamo to generate 58 
the magnetic field, and the habitability of planets.  59 
 60 
Simulation of the MgSiO3 system at deep Earth and super-Earth conditions presents many 61 
challenges.  Among these are the subtle energetics of structurally similar phases and the nature of 62 
the bonding, which is dominantly ionic, but may also include covalent and metallic contributions, 63 
which may account for the discrepancy of previous attempts to simulate melting in this system on 64 
the basis of empirical potentials [15-17].  The situation points towards density functional theory 65 
(DFT) as an accurate means of representing the energetics of this system that makes no a priori 66 
assumption about the nature of bonding.  However, DFT is very costly, and melting is a rare event 67 
in standard molecular dynamics simulations, which is why there have been no ab initio 68 
determinations of the melting temperature. The solid-liquid two-phase coexistence simulation has 69 
been shown to yield robust results for many simpler materials [18-20]. However, the two-phase 70 
method requires a large system size to stabilize the coexistence, and very long runs, thus rendering 71 
this method computationally demanding or even impossible in the context of the density functional 72 
theory. 73 
  74 
Machine learning potentials (MLPs) are an emerging approach to atomistic simulations that 75 
combines, in principle, ab initio accuracy, with the ability to simulate large systems for a very long 76 
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time [21,22]. Therefore, MLPs are well suited to perform two-phase coexistence simulation and 77 
study melting behavior. However, developing a robust MLP of a three-component system of 78 
multiple phases over a wide range of pressure and temperature is very challenging [23] and has 79 
not yet been attempted. Machine learning potentials are generally trained on DFT results for a 80 
finite set of configurations, for example from an ab initio molecular dynamics simulation, but there 81 
are three difficulties.  First, the range of thermodynamic conditions sampled by a molecular 82 
dynamics simulation is narrow, necessitating multiple simulations covering the pressure-83 
temperature range of interest. Second, in any one of these simulations, only one phase will be 84 
sampled, since phase transitions are rare events, biasing the MLP towards that phase.  Third, 85 
transitions states, crucial for capturing the physics of the solid-liquid interface are transient and 86 
therefore rarely encountered.   87 
 88 
We have overcome these challenges by combining enhanced sampling of configuration space [24] 89 
with the deep learning algorithm [22].  The enhanced sampling is driven by a carefully designed 90 
set of collective variables (CVs) to capture configurations corresponding to multiple phases, two-91 
phase interfaces, and rare transition states. These methods have previously been used to study 92 
phase transitions in simpler systems over much narrower ranges of pressure and temperature 93 
[23,25]. We develop a unified machine learning potential that encompasses the physics of the three 94 
phases of interest over a wide range of pressure and temperature.  95 
 96 

II. BUILDING THE MACHINE LEARNING POTENTIAL  97 
 98 
A machine learning potential is a non-parametric representation that approximates the Born-99 
Oppenheimer potential energy surface to arbitrary accuracy.  In our approach, the machine learning 100 
potential is trained on a set of configurations drawn from multithermal and multibaric (MTMP) 101 
simulations [24], which are used to efficiently sample multi-phase configuration space. The key to 102 
driving the sampling is the design of an appropriate collective variable (CV) that captures key 103 
aspects of the structure.  We use an iterative learning scheme to efficiently select distinct samples 104 
from the molecular dynamics trajectories.   We have found that efficient training of the machine 105 
learning potential is greatly facilitated by performing the underlying ab initio calculations at very 106 
high precision.   107 
 108 

A. Multithermal–multibaric simulation 109 
 110 
The multithermal and multibaric simulation is an enhanced sampling technique designed to sample 111 
uniformly in energy and volume simultaneously by taking the intervals of temperature and pressure 112 
as inputs. It is based on variationally enhanced sampling, where a functional of the bias potential 113 
V(s) is introduced as 114 
 115 
 

Ω[𝑉(𝐬)] =
1

𝛽
log

∫ 𝑑𝐬𝑒−𝛽[𝐹(𝐬)+𝑉(𝐬)]

∫ 𝑑𝐬𝑒−𝛽𝐹(𝐬)
+ ∫ 𝑑𝐬𝑝(𝐬)𝑉(𝐬) (1) 

 116 
where s is a set of collective variables (CV) that are a function of the atomic coordinates R; 𝛽 =117 
1/𝑘𝐵𝑇  is the inverse temperature with 𝑘𝐵  and T the Boltzmann constant and temperature, 118 
respectively; 𝐹(𝐬)  is Helmholtz free energy with 𝐹(𝐬) = −1/𝛽 log ∫ 𝛿[𝐬 − 𝐬(𝐑)]𝑑𝐑𝑒−𝛽𝑈(𝐑) 119 
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where 𝑈(𝐑)  is the interatomic potential; and 𝑝(𝐬)  is a preassigned target distribution. This 120 
functional Ω[𝑉(𝐬)] is guaranteed to be convex and has a stationary point at  121 
 122 
 

𝑉(𝐬) = −
ln𝑝(𝐬)

𝛽
 − 𝐹(𝐬) (2) 

 123 
In this way, one transforms the problem of modifying the Hamiltonian to an optimization problem 124 
given the target distribution 𝑝(𝐬). To generate a multithermal–multibaric ensemble at the pressure 125 
and temperature intervals of P1<P<P2 and 𝛽1 >𝛽 > 𝛽2, respectively, one chooses the potential 126 
energy E = 𝑈(𝐑)  and the volume V as CVs to perform a variationally enhanced sampling 127 
simulation with the following target distribution  128 
 129 
 

            𝑝(𝐸, 𝑉) = {

1

Ω𝐸,𝑉
,   if there is at least one 𝛽 and 𝑃 such that 𝛽𝐹𝛽,𝑃(𝐸,𝑉) < 휀   

0,     otherwise                                                                                 

, (3) 

 130 
where 𝜖/𝛽  is a predefined energy threshold. The value of 𝜖/𝛽  is set according to the 131 
nucleation/melting energy barrier between the solid and liquid states. In practice, we have 132 
performed VES simulation using sx as CV to roughly estimate the energy barrier, and 𝜖/𝛽 should 133 
be larger than the energy barrier. 134 
 135 
We used PLUMED 2 [26] with variationally enhanced sampling module and LAMMPS [27,28] 136 
to perform the multithermal–multibaric simulation on systems of MgSiO3 consisting of 160 atoms. 137 
The bias potential was constructed using variationally enhanced sampling with the energy E, the 138 
volume V and sx  (Eq. 4) as CVs. The basis sets of the bias potential are Legendre polynomials of 139 
order 8 for each CV. As a result, there are 729 variational coefficients to be optimized. The 140 
integrals of the target distribution were performed on a grid of size 40 × 40 × 40. Multiple MTMP 141 
runs with a pressure interval of 20 GPa are performed. For instance, in the temperature range of 142 
3500 to 5000 K and pressure range of 40 to 60 GPa, the intervals where the polynomials were 143 
defined are -108000 < E < -9500 kJ/mol, 1120 < V < 1480 Å3, -200 < sx < 3000, and the exploration 144 
threshold 𝜖/𝛽 is set to 150 kBT. To improve computing performance, the target distribution was 145 
discretized on a grid of dimensions 40×40×40 and smoothed using Gaussians with 𝜎𝐸 = 200 146 
kJ/mol, 𝜎𝑉 = 0.05 nm3, and 𝜎𝑠𝑥 = 2. The coefficients of the bias potential were optimized every 147 
500 steps using the averaged stochastic gradient descent algorithm with a step size of 𝜇 = 10 148 
kJ/mol. 149 
 150 
 151 

B. Collective variables 152 
 153 
For the collective variable (CV), we use the structure factor, which was shown to be an effective 154 
CV to drive the first-order phase transition in simpler systems [29].  In our more complex system, 155 
we found it essential that the CV contain information from partial structure factors at multiple 156 
scattering vectors in order to effectively differentiate bridgmanite, post-perovskite, and liquid as 157 
summarized in Fig. 1.     158 
 159 
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 160 
Figure 1. Simulated structure factors (i.e., diffraction intensity) of bridgmanite (a) and liquid. (a) Schematic 161 
illustration of the crystal structure of bridgmanite, where the orthorhombic unit-cell is indicated by solid 162 
box. (b-c) Projected crystal structures of bridgmanite in the x-y and x-z planes, respectively. (d) and (e) 163 
display the simulated structure factors of bridgmanite and liquid from the three-dimensional and two-164 
dimensional perspectives, respectively. The components of the collective variable, in which the descriptors, 165 
components of the collective variable 𝑠𝑥, is highlighted with black arrows. The corresponding planes of the 166 
two-dimensional descriptors are denoted in (b-c). The subscript i (e.g., Mg, Si) indicates that only element 167 
i is taken into accounts in the calculations.   168 
 169 
The collective variable 𝑠𝑥 to drive the phase transition between bridgmanite and liquid is a linear 170 
combination of seven descriptors as 171 
  172 
 𝑠𝑥 = 𝑠111𝑀𝑔

3𝐷 + 𝑠111𝑆𝑖

3𝐷 + 𝑠110𝑀𝑔

𝑥𝑦
+ 𝑠210𝑀𝑔

𝑥𝑦
+ 𝑠002𝑀𝑔

𝑥𝑧 + 𝑠110𝑆𝑖

𝑥𝑦
+ 𝑠210𝑆𝑖

𝑥𝑦
+ 𝑠002𝑆𝑖

𝑥𝑧 , (4) 

 173 
in which the Debye form of structure factor is employed to calculate each component, i.e., 𝑠ℎ𝑘𝑙

3𝐷 , 174 
𝑠ℎ𝑘𝑙

𝑥𝑦
,  and 𝑠ℎ𝑘𝑙

𝑥𝑧  are defined below. Due to the complexity of the system, the contribution of Mg and 175 
Si atoms from the three-dimensional (3D) and two-dimensional (2D) in the x-y and x-z planes are 176 
counted separately (Fig. 1) following [30]. The CV to drive the phase transition between post-177 
perovskite and liquid is constructed following the same procedure. For simplicity, 𝑠𝑥 is rescaled 178 
to the range of 0 to 1, in which 1 refers to perfect solid state and 0 refers to disordered state with 179 
lowest structure factor intensities.  180 
 181 
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The first two descriptors correspond to the first main peak intensities of the structure factors of Mg 182 
and Si atoms, respectively, and are calculated with the Debye scattering function: 183 
 184 
 

𝑠ℎ𝑘𝑙
3𝐷 =

1

𝑁
∑ ∑ 𝑓𝑖(𝑞)𝑓𝑗(𝑞)

sin(𝑄 ∙ 𝑅𝑖𝑗)

𝑄 ∙ 𝑅𝑖𝑗

𝑁

𝑖=1

𝑁

𝑖=1

𝑤(𝑅𝑖𝑗), (5) 

 185 
in which q is the scattering vector, hkl refers to the Miller index of bridgmanite, 𝑓𝑖(𝑞) and 𝑓𝑗(𝑞) 186 

are the atomic scattering form factors and 𝑅𝑖𝑗 is the distance between atoms i and j. A window 187 

function 𝑤(𝑅𝑖𝑗) =
sin(𝑄∙𝑅𝑖𝑗/𝑅𝑐)

𝑄∙𝑅𝑖𝑗/𝑅𝑐
 is used to get a smooth behavior of the structure factor; 𝑅𝑐 (=16 Å) 188 

refers to upper limit distance.  189 
 190 
The descriptors 𝑠110𝑀𝑔

𝑥𝑦
, 𝑠210𝑀𝑔

𝑥𝑦
, 𝑠110𝑆𝑖

𝑥𝑦
, 𝑠210𝑆𝑖

𝑥𝑦
 correspond to the intensities of the two main peaks 191 

of the structure factor of one slice layer which is projected into the x-y plane, which are given by: 192 
 193 
 

𝑠ℎ𝑘𝑙
𝑥𝑦

=
1

𝑁
∑ ∑ 𝑓𝑖(𝑞)𝑓𝑗(𝑞)𝐽0(𝑄 ∙ 𝑅𝑖𝑗

𝑥𝑦
)

𝑁

𝑖=1

𝑁

𝑖=1

𝑤𝑥𝑦(𝑅𝑖𝑗
𝑥𝑦

)𝑤𝑧(𝑅𝑖𝑗
𝑧 ), (6) 

 194 
in which 𝐽0 is the 0th order of the first kind Bessel function, 𝑅𝑖𝑗

𝑥𝑦
 is the distance between atoms i 195 

and j in the x-y plane; 𝑤𝑥𝑦(𝑅𝑖𝑗
𝑥𝑦

) =
1

1+𝑒
𝜎(𝑅

𝑖𝑗
𝑥𝑦

−𝑅𝑐
𝑥𝑦

)
 refers to a switching function; and 𝑅𝑐

𝑥𝑦
 (=10 Å) 196 

is the distance cutoff,. In addition, only atoms within a distance cutoff 𝑅𝑐
𝑧 (=3.5 Å) along the z 197 

direction are taken into account, and 𝑤𝑧(𝑅𝑖𝑗
𝑧 ) =

1

1+𝑒
𝜎(𝑅𝑖𝑗

𝑧 −𝑅𝑐
𝑧)

 refers to a switching function to make 198 

the descriptor smooth.  199 
 200 
Similarly, descriptors 𝑠𝑀𝑔

𝑥𝑧  and 𝑠𝑆𝑖
𝑥𝑧 are calculated as: 201 

 

𝑠ℎ𝑘𝑙
𝑥𝑧 =

1

𝑁
∑ ∑ 𝑓𝑖(𝑞)𝑓𝑗(𝑞)𝐽0(𝑄 ∙ 𝑅𝑖𝑗

𝑥𝑧)

𝑁

𝑖=1

𝑁

𝑖=1

𝑤𝑥𝑧(𝑅𝑖𝑗
𝑥𝑧)𝑤𝑦(𝑅𝑖𝑗

𝑦
), (7) 

where 𝑅𝑐
𝑥𝑧 and 𝑅𝑐

𝑦
 are set to 10 and 5.2 Å, respectively. 202 

 203 
In order to validate the sampling effectiveness of such CV (Eq. 4), we have further analyzed the 204 
local atomic environment of the configurations with a short-range order parameter. Here we 205 
adopted an orientationally targeted order parameters[31] building on the smooth overlap of atomic 206 
positions (SOAP). The local environment around an atom is denoted as 𝜒, and the associated local 207 
density is written as  208 
 

𝜌𝜒(𝒓) = ∑ 𝑒
−|𝒓𝒊−𝒓|2

2𝜎2

𝑖∈𝜒

 (8) 

in which i runs over the neighbors in the environment 𝜒, 𝒓𝑖 are the coordinates of the neighboring 209 
atoms relative to the central atom, and 𝜎2is the variance of the Gaussian functions. Here we set 𝜎 210 
to 0.5. In order to measure the difference between the environment 𝜒 and 𝜒0  of the reference 211 
structure that contains n reference positions, here the perfect crystal phase is used as the refence 212 
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structure. Importantly, the three element Mg, Si and O all have unique local environments. The 213 
similarity of two environments are compared by 214 
 

𝑘𝜒0
(𝜒) = ∫ 𝑑𝑟 𝜌𝜒(𝒓)𝜌𝜒0

(𝒓) (9) 

A spherical average over all the possible orientations of the refence 𝜒0 is then performed to get the 215 
SOAP kernel. As the orientation of the refence 𝜒0 is fixed, the similarity can be trivially performed 216 
and normalized to 217 
 

�̃�𝜒0
(𝜒) =

𝑘𝜒0
(𝜒)

𝑘𝜒0
(𝜒0)

=
1

𝑁
∑ ∑ 𝑒

−|𝒓𝑖−𝒓𝑗
0|2

4𝜎2

𝑗∈𝜒0𝑖∈𝜒

 (10) 

where N is the atom number in the configuration. Such CV is a per atom crystallinity metric of the 218 
specific phase considered.  219 
 220 
 221 

C. Iterative learning scheme 222 
 223 
Due to the vast pressure and temperature range targeted and the complex nature of MgSiO3 system, 224 
we use an iterative training scheme to train and gradually refine the MLP (Fig. 2). Here, one 225 
iteration means training a new MLP with updated training set. After seven iterations, we find a 226 
sufficiently robust and unified MLP for MgSiO3 bridgmanite, post-perovskite, and liquid at 0-220 227 
GPa and 2000-8000 K. We emphasize that the feature selection with PCA and the iterative training 228 
is crucial to building a balanced and succinct training set. Indeed, the final training set only consists 229 
of 4324 configurations while covering three phases over 6000 K and 220 GPa, compared with 230 
typically tens of thousands of frames for mono-atomic species at very narrow pressure and 231 
temperature conditions [23,25]. Compared with other active learning algorithm like DP-GEN, the 232 
iterative learning scheme presents two improvements: 1) efficient enhanced sampling is embedded 233 
in the workflow; 2) we use PCA analysis and comparison between the MLP prediction and VASP 234 
results (ground truth) to select the candidate frames, while DP-GEN relies on the model deviation 235 
of the candidate frames only. We found that the model deviation, although being computationally 236 
more efficient, is prone to selecting frames that are already predicted very well by the MLP, 237 
especially when the threshold of the model deviation is not well set.  238 
 239 



 9 

 240 
Figure 2. Flowchart of the iterative training scheme.  1) We first build an initial dataset for liquid 241 
phase only and train a preliminary MLP as reported in our recent study [32]. Liquid, as a disordered 242 
phase, may encompass some of the local environments of the solid phases, and thus may serve as 243 
a good starting point for generating a unified MLP for both solid and liquid phases. 2) 244 
Multithermal–multibaric (MTMP) simulations are performed with the MLP using LAMMPS 245 
interfaced with PLUMED 2. Here, PLUMED 2 is used to calculate the CVs and implement the 246 
enhanced sampling method. The target pressure and temperature ranges are very large in this study, 247 
making it difficult to cover in one multithermal–multibaric simulation. We find that MTMP 248 
simulations with ~20 GPa and ~2000 K intervals yield good convergence and can sample the phase 249 
transition sufficiently. As a result, the target P/T ranges are divided into 20 GPa and 2000 K bins 250 
along the melting curves of bridgmanite and post-perovskite [4,33]. We gradually update the P/T 251 
intervals with the iteration.  3) The resulting trajectories are saved every 500 timesteps. The saved 252 
frames are converted to design matrices based on the smooth overlap of atomic positions descriptor 253 
[34]. We then perform principal component analysis on these design matrices and select the 254 
candidate configurations using the farthest point sampling technique [35,36]. The size of candidate 255 
configurations N is large at first a few iterations and gradually decreases at later iterations. 256 
Specifically, N=1000-2000 for the first two iterations, N=50-100 for the rest of iterations.  4) The 257 
selected frames were recalculated with DFT. The resulting energies and forces, are compared with 258 
the MLP predicted ones. For the first three iterations, the configurations with both energy 259 
difference >15 meV/atom and atomic forces difference >0.5 eV/Å are selected. For the rest of 260 
iterations, we relax the selection criteria to energy difference >5 meV/atom and atomic forces 261 
difference >0.25 eV/Å. The size of the selected configurations in this step is M. We emphasize the 262 
selection criteria here is unlikely to be universal for all other systems but the principle that relaxing 263 
the selection criteria with iterations should apply. 5) The selected configurations will be combined 264 
with the initial dataset to train a new MLP. We re-iterate above steps until we cannot select frames 265 
in step (4) (i.e., M=0) and all the target pressures and temperatures are covered by MTMP 266 
simulations in step 2).  267 
 268 

Initial dataset for liquid phase only

Train a MLP

MPMT simulation at  certain P/T interval

Selet a subset of size N with PCA analysis

DFT calculation of subset selected

Select a subset of size M 

by comparing MLP and 

DFT results

if M>0

M=0

All target P/T covered?
No

Yes

Final MLP

Selet a subset of size N with PCA analysis

DFT calculation of subset selected
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D. DeePMD approach. 269 
 270 
The DeePMD approach adopts an end-to-end strategy [22,37] and does not make a priori 271 
assumptions about the form of the descriptor but rather uses a deep neural network to determine 272 
its form based only on the spatial location, in a suitably defined coordinate frame, of the 273 
neighboring atoms. Neural networks are widely used in the development of machine learning 274 
potentials because they are, in principle, capable of approximating any continuous function to 275 
arbitrary accuracy [32,38,39]. With DeePMD, one uses a neural network to find the functional 276 
form of the descriptor and a second neural network (fitting network) to determine the form of the 277 
potential energy surface. The fitting network is composed of three layers with 240 nodes in each 278 
layer. A cutoff of 6 Å is employed to describe the atomic local environments. The loss function is 279 
defined as  280 
 

𝐿(𝑝𝜖 , 𝑝𝑓 , 𝑝𝜉) = 𝑝𝜖∆𝜖2 +
𝑝𝑓

3𝑁
∑|∆𝑭𝑖| +

𝑖

𝑝𝜉

9
‖∆𝜉‖2, (11) 

where 𝑝𝜖 , 𝑝𝑓 , 𝑝𝜉 are tunable prefactors for difference between the MLP prediction and training data. 281 

𝜖 is the energy per atom; 𝑭𝑖 atomic force of atom i ; 𝜉 the virial tensor divided by N; N the numbrer 282 
of atoms.  We adopt the conventional setting of increasing both 𝑝𝜖 and 𝑝𝜉  from 0.02 to 1 while 283 

decreasing 𝑝𝑓from 1000 to 1 over the course of training. 284 

 285 
 286 

E. Ab initio calculations 287 
 288 
All ab initio calculations were performed on MgSiO3 consisting of 160 atoms based on DFT in the 289 
PBEsol approximation [40] using VASP [41]. We used the projector augmented wave (PAW) 290 
method [42] as implemented in VASP [41]. We use the PBEsol approximation as it has been found 291 
to yield good agreement with experimental measurements of physical properties of silicates and 292 
oxides [43-45] and melting temperatures of MgO [46]. The core radii are O: 0.820 Å (2s22p4), Si: 293 
1.312 Å (3s23p2), Mg: 1.058 Å (2p63s2). To construct the initial dataset, we perform ab initio 294 
molecular dynamics (AIMD) simulations with relatively low precision settings: energy cutoff of 295 
500 eV, energy cutoff of 10-4 eV, and Gamma-point only k-mesh. AIMD simulations are 296 
performed in the NVT ensemble (constant number of atoms, volume, and temperature) using the 297 
Nosé-Hoover thermostat [47] and run for 5-20 ps with 1 fs time step. We assume thermal 298 
equilibrium between ions and electrons via the Mermin functional [48].  299 
 300 
The configurations generated by these AIMD simulations as well as the multithermal and/or 301 
multibaric MD simulations were then selected to construct the MLP. The energy, force, and stress 302 
of these selected configurations were recalculated at much higher precision with: the energy cutoff 303 
that sets the size of the basis set increased from 500 eV to 800 eV, the precision to which the self-304 
consistent solution to the Kohn-Sham equations is found lowered form 10-4 eV to 10-6 eV, and 305 
sampling of the Brillouin zone increased from the Gamma-point only to a 2×2×2 Monkhorst-Pack 306 
mesh.  We found this high precision recalculation to be essential for optimizing the accuracy and 307 
scope of the MLP [32] (Fig. 3). 308 
 309 
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 310 
Figure 3. Convergence tests of total energy (a) and pressure (b) with varying energy cutoff 311 
(ENCUT flag in VASP) for 32 MgSiO3 bridgmanite at static condition. An energy cutoff of 800 312 
eV is sufficient to obtain converged results for both energy and pressure. 313 
 314 

F. Simulations 315 

For two-phase simulations, we use LAMMPS to build a 2-phase model of coexisting solid and 316 
liquid with the ratio of 1:1. Supercells of 900 atoms are constructed (3× 3 × 5 for Pbnm bridgmanite 317 
and 3 × 5 × 3 for Cmcm post-perovskite) and then relaxed for 1000 steps at the desired pressure 318 
and temperature conditions in the NPT ensemble. The relaxed cell is then used to perform NVT 319 
simulations at high temperatures far exceeding the melting temperatures with the atoms of half the 320 
cell fixed and the force applied to these atoms set to be 0. The resulting structure is half-molten 321 
and half-crystalline. We relaxed this structure again at the desired pressure and temperature 322 
conditions for 1000 steps to obtain the initial configuration for two-phase simulations. We also 323 
tested the size effect on the melting temperature by exploring larger system sizes of 1800 atoms 324 
and 3000 atoms, and found that systems of 900 atoms are sufficient to yield identical melting 325 
points as those larger systems. 326 

Simulations on the two-phase cell were performed at the desired pressure and temperature 327 
conditions (NPT). If the whole cell is molten (crystallized) in the end, the simulation temperature 328 
is above (below) the melting point. The state of the system can be determined by interrogating the 329 
radial distribution functions. In this way, we can obtain the upper and lower bounds of the melting 330 
curve.  331 

Phonon dispersions and zero-point energy were performed using the PHONOPY program [49]. 332 
Real-space force constants were calculated with density functional perturbation theory [50], with  333 
2×2×2 and 4×1×2  supercells for bridgmanite and post-perovskite, respectively. 334 
 335 

III. RESULTS 336 
 337 

A. Sampling of Configuration Space 338 
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 339 
Our approach yields a broad sampling of configuration space and an efficient selection of 340 
representative configurations (Fig. 4).  From a single MTMP run (40-60 GPa, 3000-5000 K), we 341 
generate liquid and bridgmanite configurations as well as configurations containing an interface 342 
between the two phases, and configurations containing distorted and defective crystalline 343 
structures. Post-processing with principal component analysis (PCA) selection and an iterative 344 
learning scheme yield balanced and succinct sampling over this range (Fig. 4). Indeed, the final 345 
training set is very small, consisting of only 4324 configurations, while covering a wide 346 
temperature and pressure (2000 to 8000 K and 0 GPa to 220 GPa), compared with typically tens 347 
of thousands of frames for mono-atomic species over much narrower ranges of pressure and 348 
temperature conditions [23,25]. 349 
 350 

 351 
Figure 4. Configurations explored by multi-thermal multibaric simulations at 40-60 GPa and 352 
3000-5000 K.  The energy of the system (160 atoms) is plotted against volume and color-coded 353 
by the value of collective variable (CV) defined in Eq. 4. Large and small CVs indicate a 354 
perovskite-like or liquid-like state, respectively. Snapshots of configurations are shown in the 355 
circles with atoms color-coded based on the orientationally targeted order parameters [31] building 356 
on the smooth overlap of atomic positions (SOAP) [34], with red indicating perovskite-like and 357 
blue indicating liquid-like local atomic environments.  The yellow and green ellipses show the 358 
regions sampled by standard molecular dynamics simulations at the same P/T range for liquid and 359 
solid states, respectively. 360 

 361 
B. Benchmarks of the Machine Learning Potential 362 

 363 
We compare the energies, atomic forces, and stresses from the machine learning potential with 364 
those from DFT simulations for 35585 configurations that are not included in the training set (Fig. 365 
5). The root-mean-square errors of the energies, atomic forces, and stresses are 4.9 meV/atom, 366 
0.24 eV/Å, and 0.37 GPa, respectively. These uncertainties are comparable to the typical precision 367 
of ab initio molecular dynamics simulations [45]. As all the testing structures supercells, the 368 

Liquid

Perovskite

Perovskite

Liquid-crystal 

interface
Liquid

Defective  

perovskite
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robustness of the MLP in predicting properties larger systems is unclear. We performed another 369 
verification test with data obtained using a larger supercell with 320 atoms. This structure is not 370 
included in the training set. The RMSE of energy prediction is similar to the error in the testing 371 
sets (Fig. 6). This verification test further proved the accuracy of energy prediction and also 372 
demonstrated the transferability of the MLP to larger structures.  373 
 374 

 375 

Figure 5. Comparisons of energies (a), atomic forces (b), and stresses (c) between DFT and the 376 
machine learning potential (MLP) for all the test data at 2000 to 8000 K and pressures from ~0 377 
GPa to 220 GPa. 35585 energies, 17080800 force components, and 213510 stress components are 378 
included in these comparisons. The red dashed lines are guides for perfect matches. 379 
 380 

 381 

Figure 6. Comparisons of the total energy changes along molecular dynamics trajectories between 382 
the DFT (thick colored lines) and MLP potential (thin black lines) for MgSiO3 bridgmanite (blue), 383 
post-perovskite (red), and liquid (green) at 140 GPa and 5000 K. The models used in this 384 
simulation contain 320 atoms, and none of the structures in the trajectories were included in the 385 
training set. The root mean square error of MLP is 4.2, 2.4, 7.1 meV/atom for perovskite, post-386 
perovskite, and liquid, respectively. 387 
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C. Two-Phase Simulations  388 
 389 
Two-phase simulations yield precise determinations of the melting temperature.  Starting with a 390 
two-phase simulation cell of bridgmanite at 140 GPa, a simulation at 6100 K melts completely 391 
after 260 ps, whereas a simulation at 6000 K crystallizes after 730 ps (Fig. 7).  Post-perovskite, on 392 
the hand, melts at 6000 K and crystalizes at 5900 K (Fig. 8). These simulations, performed at 393 
constant pressure and temperature show that the system expands upon melting, and contracts upon 394 
crystallization, yielding the volume of melting, the Clapeyron slope (=dP/dTm) and the entropy 395 
of melting (ΔSm=ΔVm) (Table 1).   396 

 397 

Figure 7. Machine learning molecular dynamics simulations of the coexistence of MgSiO3 398 
bridgmanite and liquid at 140 GPa and 6100 K (upper panel) and 6000 K (lower panel). The 399 
simulation cell contains 600 MgSiO3 formula units (3000 atoms). The simulation timestep and the 400 
corresponding cell shape are also shown.  401 
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 402 

Figure 8. Machine learning molecular dynamics simulations of the coexistence of MgSiO3 post-403 
perovksite and liquid at 140 GPa and 5900 K (upper panel) and 6000 K (lower panel). The 404 
simulation cell contains 600 MgSiO3 formula units (3000 atoms). The simulation timestep and the 405 
corresponding cell shape are also shown.  406 

 407 

Figure 9. Melting of MgSiO3 bridgmanite (a), post-perovskite (b), and the phase boundary 408 
between bridgmanite and post-perovskite (c). Results from this study are shown solid blue circles 409 
for bridgmanite, red circles for post-perovskite, green circles for triple point and zero-K transition 410 
point. The uncertainties for melting temperatures are 50 K. The solid colored lines in (a) and (b) 411 
represent the Simon fit. The green dashed line in (a), (b), and (c) is the bridgmanite-post-perovskite 412 
phase transition boundary. Blue, green, and red shadings cover the stability fields of liquid, 413 
bridgmanite, and post-perovskite, respectively. (a) Previous experimental results on melting of 414 
MgSiO3 bridgmanite are denoted by upward triangles [8], squares [51], leftward triangles [52], 415 
rightward triangles [53].  Experimental results of bridgmanite containing ~10 mol% Fe are shown 416 
in solid dark upward triangles [8], downward triangles [9], and stars [54]. Prediction based on 417 
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Lindemann law is shown dotted line [8]. Estimates based on atomistic modeling includes two-418 
phase simulations based on classical potential with corrections [15] (dashed line), molecular 419 
dynamics simulations with empirical overheating correction [16] (loosely dashed line), and [17] 420 
(thin diamond), the integration of Clausius-Clapeyron equation by [33] (dashed-dotted line). (b) 421 
Previous results for the melting of post-perovskite include two shock compression experiments 422 
[11] (upward triangle) and [10] (downward triangle), the inferred melting curve using the 423 
Lindemann law [4] (dotted line), and two-phase simulations based on classical potential with 424 
corrections [15] (dashed line). (c) The results of sub-solidus experiments of MgSiO3 [55,56] are 425 
shown with upward triangles, downward triangles, and squares denoting bridgmanite-only, post-426 
perovskite-only, and bridgmanite-post-perovskite coexistence, respectively.  427 

 428 

Table 1. Calculated melting properties of MgSiO3: pressure P, melting temperatures Tm, slope of 429 
the melting curve dT/dP, volume (ΔVm) and entropy (ΔSm) of melting at the melting point. 430 
Entropy is shown in NkB unit where N is the number of atoms per formula unit and kB is the 431 
Boltzmann constant. 432 

Phase P (GPa) Tm (K) dT/dP (K/GPa) ΔVm (Å
3/atom) ΔSm (NkB) 

Bridgmanite 

20 2875(50) 95.1(4.7) 1.26(0.02) 0.95(0.04) 

40 4000(50) 38.3(1.2) 0.71(0.01) 1.33(0.04) 

75 5000(50) 21.2(0.6) 0.43(0.02) 1.46(0.04) 

120 5750(50) 14.3(0.5) 0.27(0.02) 1.38(0.04) 

140 6050(50) 12.6(0.4) 0.21(0.02) 1.20(0.04) 

160 6250(50) 11.4(0.4) 017(0.01) 1.11(0.04) 

Post-perovskite 

120 5600(50) 17.2(3.1) 0.35(0.01) 1.49(0.27) 

140 5950(50) 15.5(2.7) 0.31(0.01) 1.45(0.25) 

160 6200(50) 14.2(2.5) 0.27(0.02) 1.41(0.24) 

180 6450(50) 13.1(2.2) 0.25(0.02) 1.37(0.23) 

200 6750(50) 12.2(2.1) 0.23(0.02) 1.33(0.23) 

 433 
Our results agree well with a number of experimental studies at the low-pressure end of the 434 
bridgmanite stability field (Fig. 9).  In order to better constrain the slope of the bridgmanite melting 435 
curve, we have performed a simulation at 20 GPa, below the stability field of bridgmanite, but 436 
accessible to our simulations because of kinetic hindrances to crystal-crystal transitions. At 20 GPa, 437 
we obtained a melting temperature of 2875±50 K, slightly higher than the result (i.e., 2700±50  K) 438 
of the multi-anvil experiments [51], suggesting that PBEsol may overestimate the melting 439 
temperature consistent with the previous study on MgO melting [46]. Our melting curve of 440 

MgSiO3 bridgmanite may be expressed by the Simon equation, T𝑚 = 2875 ± 50 (
𝑃−20

8.11±0.37
+441 

1)

1

3.73±0.06
 , where Tm is in K and P in GPa. This fitted melting curve agrees very well with the 442 

results of some laser-heated diamond anvil cell experiments [8,52] up to 50 GPa. The resulting 443 
melting slope at 25 GPa is around 69 K/GPa, broadly consistent with experimental result of ~80 444 
K/GPa by ref. [8],  but deviate from the results of ref. [9,54] (~0 K/GPa), and those of ref. [51] (30 445 



 17 

K/GPa),  implying a vanishing small volume of melting, contrary to our findings and that of 446 
previous ab initio determination of the volume of melting [33].  Our results agree well with the 447 
only determination of the melting temperature at pressure greater than 100 GPa from shock wave 448 
experiments [53].   449 

The melting temperature of post-perovskite increases more rapidly with increasing pressure than 450 

that of bridgmanite (Fig. 9b); our results can be represented by T𝑚 = 5600 ± 50 (
𝑃−120

113.60±16.13
+451 

1)

1

2.85±0.32
.  Our melting curve is consistent with a shock wave measurement of melting at 500 GPa 452 

[10], but is significantly higher than that determined in another study at 210 GPa [11]. We note 453 
that extrapolating the melting curve beyond ~200 GPa is subject to uncertainty: for example, our 454 
best-fit melting curve of post-perovskite predicts a melting point of 9376±656 K at 500 GPa. More 455 
experiments at these extreme conditions are clearly warranted.  456 

From our simulations, we also determine the volume of melting, and from the Clausius-Clapeyron 457 
relation, the entropy of melting (Table 1, Fig. 10).  The volume of melting diminishes rapidly with 458 
increasing pressure because the liquid is more compressible than the solid.  The entropy of melting 459 
initially increases with increasing pressure and then decreases with increasing pressure at pressure 460 
greater than 100 GPa.  The volume and entropy of melting increase at the triple point as the volume 461 
and entropy of the post-perovskite are less than those of the bridgmanite phase. 462 

 463 

Figure 10.  The volume (top) and the entropy (bottom) of melting from the bridgmanite (blue) 464 
and the post-perovskite (red) phases.  For comparison we also show experimental values for 465 



 18 

melting from the low-pressure enstatite structure [57,58], and theoretical results for the melting 466 
of monatomic systems interacting with inverse-power repulsion with the value of the power 467 
indicated ranging from 1 (one-component plasma) to infinite (hard-spheres)[59]. 468 

 469 

D. Bridgmanite to post-perovskite transition 470 

The intersection of the melting curves of bridgmanite and post-perovskite yields the 471 
bridgmanite/post-perovskite/liquid triple point at 180 GPa and 6420 K (Fig. 9).  We combine this 472 
result with our computed values for the phase transition pressure at 0 K (96 GPa), the volume 473 
contrast between the two phases (0.467 Å3/formula unit) and the Einstein temperatures of the two 474 
phases (773 K for bridgmanite and 791 K for post-perovskite) to determine the solid-solid phase 475 
boundary following the formalism of Jeanloz (1989) which accounts for the vanishing Clapeyron 476 
slope in the limit of zero temperature (Fig. 9c). The resulting Clapeyron slope at 2000 K is 13.9 477 
MPa/K, very close to the experimental result of 13.3±1.0 MPa/K [55], although we note that the 478 
experimental value may have considerable systematic uncertainty due to the non-unique choice of 479 
pressure scale [14].  480 
 481 
 482 

IV. DISCUSSION 483 
 484 

A. Melting Curve and Crystal Buoyancy 485 

The Lindemann law has been widely used to predict the melting curve of materials including at 486 
high pressure [60,61]. We find that for both bridgmanite and post-perovskite, the Lindemann law 487 
tends to predict much larger melting slopes (dTm/dP), thus leading to extremely high melting 488 
temperatures at high pressure (Fig. 9).  The difference between our results and the Lindeman law 489 
reveals the importance of liquid structure. Whereas the Lindemann law can be derived by assuming 490 
that scaled liquid structure is constant along the melting curve. We find, in agreement with 491 
previous studies, that liquid structure changes substantially with increasing pressure [33]. 492 
Moreover, the change in the liquid strucutre, including increases in the Si-O coordination number, 493 
are such as to cause the liquid to become denser with increasing pressure, thus decreasing the 494 
volume of melting and the Clapeyron slope.   495 

The entropy of melting determined here (Table 1, Fig. 10) is much larger than that of many 496 
monatomic systems at high pressure  (Rln2 where R is the gas constant) [62].  We attribute the 497 
larger entropy of melting to the range of different Si-O coordination environments in the liquid 498 
present at all pressures, producing a liquid structure that is much richer than the nearly close-499 
packed structures of monatomic liquids.  At the highest pressures of our simulations, the entropy 500 
of melting decreases with increasing pressure, but is still much larger than Rln2, and larger than 501 
that of simple monatomic liquids interacting with inverse-power repulsion.   502 

The volume of the liquid closely approaches, but does not fall below that of the solid phases (Table 503 
1, Fig. 10).  The volume of melting at the highest pressure of our study (4 %) is much less than 504 
that at ambient pressure (18 %), reflecting the greater compressibility of the liquid as compared 505 



 19 

with solid phases.  The very small volume of melting that we find means that crystals freezing out 506 
of deep molten portions of rocky planets, are likely to be buoyant.  With similar volumes, the liquid 507 
is likely to be denser than coexisting crystals because major heavy elements, like Fe, tend to 508 
partition favorably into the liquid.  Deep crystal buoyancy in cooling rocky planets has important 509 
implications for understanding their thermal and chemical evolution [7,63].   510 

 511 
B. Thermal structure of Earth’s lowermost mantle 512 

 513 
To examine whether the bridgmanite to post-perovskite transition may be encountered in the deep 514 
Earth, we assume that the geotherm consists of an adiabat and a lower thermal boundary layer, 515 
following previous studies [13] 516 
 517 
 𝑇(𝑟) = 𝑇𝐶𝑀𝐵 − (𝑟 − 𝑟𝐶𝑀𝐵)𝑇𝑆

′ − Δ𝑇erf (
𝑟 − 𝑟𝐶𝑀𝐵

𝛿
) (12) 

 518 
where T(r) is the temperature as a function of radius, subscript CMB indicates values at the core-519 
mantle boundary, T and  are the temperature contrast and thickness of the thermal boundary 520 
layer, respectively, and 𝑇𝑆

′ is the adiabatic gradient at the base of the mantle.  The pressure of the 521 
CMB is 136 GPa and temperature (TCMB) is assumed to be 4000 K. We compute the adiabat TS(r) 522 
for a given potential temperature from HeFESTo [64-66], yielding the adiabatic gradient 𝑇𝑆

′ and 523 
the temperature contrast Δ𝑇 = 𝑇𝐶𝑀𝐵 − 𝑇𝑆(𝑟𝐶𝑀𝐵).  The heat flux at the core-mantle boundary is 524 
then 525 
 

𝐹𝐶𝑀𝐵 = 𝑘 (𝑇𝑆
′ +

2

√𝜋

Δ𝑇

𝛿
) (13) 

 526 
with the thermal conductivity k=8.1 W/m/K[67]. 527 
 528 
Our results for the bridgmanite to post-perovskite phase transition suggests that post-perovskite 529 
may exist as a lens in the cooler parts of the deep lower mantle (Fig. 9).  Along an average mantle 530 
geotherm with the potential temperature TP=1600 K and a bottom thermal boundary layer of 531 
greater than =120 km thickness, only bridgmanite is stable and post-perovskite is absent, 532 
consistent with the absence of observations of seismic reflections from the lowermost mantle in 533 
most regions [68]. If we examine a geotherm representative of a cooler portion of the mantle (TP 534 
=1300 K, d=170 km), we find two crossings of the bridgmanite to post-perovskite transition, at 535 
100 and 300 km above the core-mantle boundary.  The depths to these reflections are consistent 536 
with paired reflections of opposite polarity seen in cooler parts of the mantle [13,69].   The 537 
presence of a post-perovskite lens therefore places important constraints on the thermal structure 538 
of the lower-most mantle and on the heat flow emanating from the core.  For our cool model 539 
geotherm, we find a heat flux into the base of the mantle of 100 mW/m2, or 15 TW.  This heat flux 540 
is more than sufficient to drive dynamo action in the underlying outer core [70].  In detail, the 541 
pressure-temperature conditions of the bridgmanite to post-perovskite transition may depend on 542 
the concentration of Fe, Al, and other secondary oxides [71]. Moreover, the heat flux into the 543 
mantle is likely to vary greatly laterally, and may approach zero in some regions of the mantle [67].  544 
Our result for the cool mantle geotherm is therefore consistent with a global average heat flux of 545 
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80 mW/m2 or 12 TW, which agrees with estimates of the minimum heat flux required to drive 546 
magnetic field generation in the underlying core.     547 
 548 
 549 

V. Conclusion 550 
 551 
It is now possible to develop machine learning potentials that accurately capture the physics of 552 
multiple phases in multi-atom systems over a wide range of pressure and temperature.  We have 553 
overcome the challenges posed by planetary-scale applications with an iterative training scheme 554 
that entails multithermal-multibaric enhanced sampling driven by structure factors as collective 555 
variables, feature selection, deep learning, and DFT calculations. This scheme allows us to build 556 
a MLP of MgSiO3 liquid, bridgmanite, and post-perovskite up to 220 GPa and 8000 K using only 557 
4324 training frames. The phase stability relations that we have determined using this machine 558 
learning potential place important constraints on processes in the deep Earth and in super-Earth 559 
exoplanets.  Liquids are likely to be denser than coexisting solids within the bridgmanite and post-560 
perovskite pressure-ranges of stability.  The Clapeyron slope of the bridgmanite to post-perovskite 561 
transition indicates the presence of double-crossings of the phase transition in colder portions of 562 
the mantle, consistent with seismic observations and heat flux from the core-mantle boundary 563 
compatible with magnetic field generation in Earth’s outer core.   564 
 565 
 566 
 567 
 568 

569 
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The main data supporting the findings of this study are available within the paper and its 571 
supplementary information. Data set used in this study has been deposited at the Open Science 572 
Framework ( https://osf.io/dt4xs/) with doi: 10.17605/OSF.IO/DT4XS. The software packages 573 
used in this study are standard codes: VASP (version 5.4) is a commercial code 574 
(see www.vasp.at) whereas DeePMD-kit (https://github.com/deepmodeling/deepmd-kit), 575 
PHONOPY (http://phonopy.github.io/phonopy/), LAMMPS (https://www.lammps.org/), 576 
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(https://github.com/BingqingCheng/ASAP)  are open-source.  579 
 580 
ACKNOWLEDGMENTS  581 
We thank Ian Ocampo for helpful discussions. We are grateful to reviewers for comments that improved 582 
the manuscript. We acknowledge the following grants: National Science Foundation (EAR-583 
1853388 to Lars Stixrude), National Natural Science Foundation of China (grant No. 22003050 to 584 
Haiyang Niu), and the Research Fund of the State Key Laboratory of Solidification Processing 585 
(NPU), China (grant No. 2020-QZ-03 to Haiyang Niu). This work used computational and storage 586 
services associated with the Hoffman2 Shared Cluster provided by UCLA Institute for Digital 587 
Research and Education's Research Technology Group.   588 

http://www.vasp.at/
https://github.com/deepmodeling/deepmd-kit
http://phonopy.github.io/phonopy/
https://www.lammps.org/
https://www.plumed.org/doc-v2.6/user-doc/html/index.html
https://github.com/stixrude/HeFESToRepository
https://github.com/BingqingCheng/ASAP


 22 

 589 
 590 

References 591 
 592 

[1] C. Dorn, A. Khan, K. Heng, J. A. D. Connolly, Y. Alibert, W. Benz, and P. Tackley, A&A 577, 593 
A83 (2015). 594 
[2] B. J. Fulton and E. A. Petigura, The Astronomical Journal 156, 264 (2018). 595 
[3] C. Dorn and T. Lichtenberg, The Astrophysical Journal Letters 922, L4 (2021). 596 
[4] L. Stixrude, Philos Trans A Math Phys Eng Sci 372, 20130076 (2014). 597 
[5] R. G. Kraus, R. J. Hemley, S. J. Ali, J. L. Belof, L. X. Benedict, J. Bernier, D. Braun, R. E. 598 
Cohen, G. W. Collins, F. Coppari et al., Science 375, 202 (2022). 599 
[6] A. Boujibar, P. Driscoll, and Y. Fei, Journal of Geophysical Research: Planets 125, 600 
e2019JE006124 (2020). 601 
[7] S. Labrosse, J. W. Hernlund, and N. Coltice, Nature 450, 866 (2007). 602 
[8] A. Zerr and R. Boehler, Science 262, 553 (1993). 603 
[9] D. L. Heinz and R. Jeanloz, Journal of Geophysical Research: Solid Earth 92, 11437 (1987). 604 
[10] Y. Fei, C. T. Seagle, J. P. Townsend, C. A. McCoy, A. Boujibar, P. Driscoll, L. Shulenburger, 605 
and M. D. Furnish, Nature Communications 12, 876 (2021). 606 
[11] D. Fratanduono, M. Millot, R. G. Kraus, D. K. Spaulding, G. W. Collins, P. M. Celliers, and J. H. 607 
Eggert, Phys Rev B 97, 214105 (2018). 608 
[12] K. Umemoto, R. M. Wentzcovitch, S. Wu, M. Ji, C.-Z. Wang, and K.-M. Ho, Earth and Planetary 609 
Science Letters 478, 40 (2017). 610 
[13] T. Lay, J. Hernlund, E. J. Garnero, and M. S. Thorne, Science 314, 1272 (2006). 611 
[14] S.-H. Shim, Annual Review of Earth and Planetary Sciences 36, 569 (2008). 612 
[15] A. B. Belonoshko, N. V. Skorodumova, A. Rosengren, R. Ahuja, B. Johansson, L. Burakovsky, 613 
and D. L. Preston, Phys Rev Lett 94, 195701 (2005). 614 
[16] Z.-J. Liu, C.-R. Zhang, X.-W. Sun, J.-B. Hu, T. Song, and Y.-D. Chu, Physica Scripta 83, 045602 615 
(2011). 616 
[17] C. Di Paola and J. P. Brodholt, Scientific Reports 6, 29830 (2016). 617 
[18] D. Alfè, M. J. Gillan, and G. D. Price, The Journal of Chemical Physics 116, 6170 (2002). 618 
[19] D. Alfè, Phys Rev Lett 94, 235701 (2005). 619 
[20] L. Vočadlo, D. Alfè, G. D. Price, and M. J. Gillan, The Journal of Chemical Physics 120, 2872 620 
(2004). 621 
[21] J. Behler and M. Parrinello, Phys Rev Lett 98, 146401 (2007). 622 
[22] L. Zhang, J. Han, H. Wang, R. Car, and W. E, Phys Rev Lett 120, 143001 (2018). 623 
[23] M. Yang, T. Karmakar, and M. Parrinello, Phys Rev Lett 127, 080603 (2021). 624 
[24] P. M. Piaggi and M. Parrinello, Phys Rev Lett 122, 050601 (2019). 625 
[25] H. Niu, L. Bonati, P. M. Piaggi, and M. Parrinello, Nature Communications 11, 2654 (2020). 626 
[26] G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, and G. Bussi, Computer Physics 627 
Communications 185, 604 (2014). 628 
[27] S. Plimpton, Journal of Computational Physics 117, 1 (1995). 629 
[28] H. Wang, L. Zhang, J. Han, and W. E, Computer Physics Communications 228, 178 (2018). 630 
[29] H. Niu, P. M. Piaggi, M. Invernizzi, and M. Parrinello, Proceedings of the National Academy of 631 
Sciences 115, 5348 (2018). 632 
[30] H. Niu, Y. I. Yang, and M. Parrinello, Phys Rev Lett 122, 245501 (2019). 633 
[31] P. M. Piaggi and M. Parrinello, The Journal of Chemical Physics 150, 244119 (2019). 634 
[32] J. Deng and L. Stixrude, Geophysical Research Letters 562, 116873 (2021). 635 
[33] L. Stixrude and B. Karki, Science 310, 297 (2005). 636 
[34] A. P. Bartók, R. Kondor, and G. Csányi, Phys Rev B 87, 184115 (2013). 637 
[35] G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler, and M. Ceriotti, The Journal of Chemical 638 
Physics 148, 241730 (2018). 639 



 23 

[36] B. Cheng, R.-R. Griffiths, S. Wengert, C. Kunkel, T. Stenczel, B. Zhu, V. L. Deringer, N. 640 
Bernstein, J. T. Margraf, K. Reuter et al., Accounts of Chemical Research 53, 1981 (2020). 641 
[37] H. Wang, L. Zhang, J. Han, and E. Weinan, Comput. Phys. Commun. 228, 178 (2018). 642 
[38] S. Lorenz, A. Groß, and M. Scheffler, Chemical Physics Letters 395, 210 (2004). 643 
[39] K. Hornik, M. Stinchcombe, and H. White, Neural Networks 2, 359 (1989). 644 
[40] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. 645 
Zhou, and K. Burke, Phys Rev Lett 100, 136406 (2008). 646 
[41] G. Kresse and J. Furthmüller, Computational Materials Science 6, 15 (1996). 647 
[42] G. Kresse and D. Joubert, Phys Rev B 59, 1758 (1999). 648 
[43] E. Holmström and L. Stixrude, Phys Rev Lett 114, 117202 (2015). 649 
[44] R. Scipioni, L. Stixrude, and M. P. Desjarlais, Proceedings of the National Academy of Sciences 650 
114, 9009 (2017). 651 
[45] J. Deng and L. Stixrude, Earth and Planetary Science Letters 562, 116873 (2021). 652 
[46] Y. Yoshimoto, Journal of the Physical Society of Japan 79, 034602 (2010). 653 
[47] W. G. Hoover, Phys Rev A 31, 1695 (1985). 654 
[48] N. D. Mermin, Physical Review 137, A1441 (1965). 655 
[49] A. Togo and I. Tanaka, Scripta Materialia 108, 1 (2015). 656 
[50] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev Mod Phys 73, 515 (2001). 657 
[51] E. Ito and T. Katsura, in High‐Pressure Research: Application to Earth and Planetary 658 
Sciences1992), pp. 315. 659 
[52] G. Shen and P. Lazor, Journal of Geophysical Research: Solid Earth 100, 17699 (1995). 660 
[53] J. A. Akins, S.-N. Luo, P. D. Asimow, and T. J. Ahrens, Geophysical Research Letters 31 (2004). 661 
[54] E. Knittle and R. Jeanloz, Geophysical Research Letters 16, 421 (1989). 662 
[55] S. Tateno, K. Hirose, N. Sata, and Y. Ohishi, Earth and Planetary Science Letters 277, 130 663 
(2009). 664 
[56] K. Hirose, R. Sinmyo, N. Sata, and Y. Ohishi, Geophysical Research Letters 33 (2006). 665 
[57] R. A. Lange and I. S. E. Carmichael, Geochimica et Cosmochimica Acta 51, 2931 (1987). 666 
[58] J. F. Stebbins, I. S. E. Carmichael, and L. K. Moret, Contributions to Mineralogy and Petrology 667 
86, 131 (1984). 668 
[59] D. A. Young, Phase diagrams of the elements (University of California Press, Berkeley, 1991). 669 
[60] J. Deng and K. K. M. Lee, Am Mineral 104, 1189 (2019). 670 
[61] G. H. Wolf and R. Jeanloz, Journal of Geophysical Research: Solid Earth 89, 7821 (1984). 671 
[62] S. M. Stishov, I. N. Makarenko, V. A. Ivanov, and A. M. Nikolaenko, Physics Letters A 45, 18 672 
(1973). 673 
[63] L. Stixrude, N. de Koker, N. Sun, M. Mookherjee, and B. B. Karki, Earth and Planetary Science 674 
Letters 278, 226 (2009). 675 
[64] L. Stixrude and C. Lithgow-Bertelloni, Geophys J Int 162, 610 (2005). 676 
[65] L. Stixrude and C. Lithgow-Bertelloni, Geophys J Int 184, 1180 (2011). 677 
[66] L. Stixrude and C. Lithgow-Bertelloni, Geophys J Int 228, 1119 (2021). 678 
[67] S. Stackhouse, L. Stixrude, and B. B. Karki, Earth and Planetary Science Letters 427, 11 (2015). 679 
[68] L. Cobden, C. Thomas, and J. Trampert, in The Earth's Heterogeneous Mantle: A Geophysical, 680 
Geodynamical, and Geochemical Perspective, edited by A. Khan, and F. Deschamps (Springer 681 
International Publishing, Cham, 2015), pp. 391. 682 
[69] C. Thomas, E. J. Garnero, and T. Lay, Journal of Geophysical Research: Solid Earth 109 (2004). 683 
[70] F. Nimmo, in Treatise on Geophysics (Second Edition), edited by G. Schubert (Elsevier, Oxford, 684 
2015), pp. 27. 685 
[71] B. Grocholski, K. Catalli, S.-H. Shim, and V. Prakapenka, Proceedings of the National Academy 686 
of Sciences 109, 2275 (2012). 687 
 688 


