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We report neutron-diffraction results on single-crystal CaMn2P2 containing corrugated Mn hon-
eycomb layers and determine its ground-state magnetic structure. The diffraction patterns consist
of prominent (1/6, 1/6, L) reciprocal lattice unit (r.l.u.; L = integer) magnetic Bragg reflections,
whose temperature-dependent intensities are consistent with a first-order antiferromagnetic phase
transition at the Néel temperature TN = 70(1) K. Our analysis of the diffraction patterns reveals
an in-plane 6 × 6 magnetic unit cell with ordered spins that in the principal-axis directions rotate
by 60-degree steps between nearest neighbors on each sublattice that forms the honeycomb struc-
ture, consistent with the PAc magnetic space group. We find that a few other magnetic subgroup
symmetries (PA2/c, PC2/m, PS 1̄, PC2, PCm,PS1) of the paramagnetic P 3̄m11′ crystal symmetry
are consistent with the observed diffraction pattern. We relate our findings to frustrated J1-J2-
J3 Heisenberg honeycomb antiferromagnets with single-ion anisotropy and the emergence of Potts
nematicity.

I. INTRODUCTION

Magnetic materials with local moments arranged on a
honeycomb lattice are known to exhibit a variety of com-
plex magnetic states in the presence of frustrated spin ex-
change interactions. Recent examples are the honeycomb
iridates [1, 2], the nickelate Ni2Mo3O8 [3], transition
metal oxides InCu2/3V1/3O3 [4, 5], Bi3Mn4O12(NO3) [6]
and verdazyl-based salts [7]. Often the complex behav-
ior of these systems can be rationalized using quantum
spin models such as the Kitaev-Heisenberg honeycomb
model [8–11] or the J1-J2-J3 Heisenberg honeycomb
model [12–23]. The former exhibits various complex
magnetically-ordered phases and a quantum-spin-liquid
ground state when Kitaev interactions are dominant and
the local moments have low spin S = 1/2, 1, 3/2 [8, 24,
25]. The latter hosts different collinear and non-collinear
magnetic states, including complex spirals, already in
the classical limit, and its phase diagram also includes
magnetically-disordered regions with intriguing valence-
bond crystal correlations for S = 1/2 [16]. Specifically,
for J3 = 0, the classical J1-J2 Heisenberg honeycomb an-
tiferromagnet exhibits a Néel-ordered ground state for
J2 < J1/6 and degenerate single-Q spiral states for
J2 > J1/6 [12–15]. Nonzero J3 or, alternatively, quantum
and thermal fluctuations [15] lift this continuous degen-
eracy and select six symmetry-related wavevectors out of
the degenerate manifold.

Another rich experimental platform for frustrated
honeycomb magnets consist of the trigonal com-
pounds CaMn2P2, CaMn2As2, CaMn2Sb2, CaMn2Bi2,
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SrMn2P2, SrMn2As2, SrMn2As2 and with space group
P 3̄m1 (no. 164) [26–32] and associated point group D3d.
As shown in Fig. 1, these systems contain the transition-
metal element Mn in a corrugated honeycomb structure,
which is formed by two adjacent trigonal layers (or sub-
lattices) that are stacked in an A-B type fashion. The
Mn atoms occupy Wyckoff positions 2d with site sym-
metry 3m. There are two Mn atoms per unit cell, which
form the A, B sublattice sites of the honeycomb lat-
tice. The transition-metal bilayer magnetic moments
have no intervening binding atoms, as shown in Fig. 1(a),
so that the major magnetic coupling between nearest
neighbors is likely a direct Mn-Mn coupling, and cou-
plings among next-nearest neighbors (NNN) are likely
due to Mn-Pn-Mn superexchange. Neutron diffraction
measurements of Mn compounds with Pn = As, Sb, or
Bi have revealed a simple Néel-type magnetic structure
in SrMn2As2, CaMn2Sb2, and CaMn2Bi2 [28, 30, 32, 33].
This Néel magnetic structure is shown schematically in
Fig. 1(b). For CaMn2Sb2, it has been suggested that
the moments are slightly canted towards the c-axis [31].
These observations are consistent with a dominant NN
interaction J1 � J2 for these materials.

It has recently been concluded that the superexchange
within an Mn-Pn-Mn moiety increases as the atomic
number of Pn is reduced, thereby increasing the mag-
netic frustration in the system. Thus, NNN are expected
to be stronger for Pn = P than for Pn = Bi, for simi-
lar bond configurations [34]. We thus expect CaMn2P2

to experience a sizable NNN coupling J2 and thus sub-
stantial magnetic frustration, which is one of the main
motivations for this work.

Here, we report neutron-diffraction results on single-
crystals of CaMn2P2, and determine its ground-state
magnetic structure. Recent 31P NMR measurements
[26] indicate that the magnetic structure of CaMn2P2
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FIG. 1. (a) Chemical structure of AMn2Pn2 (A = Sr, Ca;
Pn = P, As, Sb, Bi) showing the Mn trigonal bilayer with-
out intervening elements. (b) Projection of the two trigo-
nal Mn sublattices onto the ab-plane, shown with red and
green shades. The A and B layers are stacked with two atoms
per unit cell (the dotted rhombus shows the basal unit cell).
The Mn bilayer forms a corrugated honeycomb lattice, where
the nearest-neighbor (NN) interactions (J1), the next-nearest-
neighbor (NNN) interactions (J2), and third-neighbor inter-
actions (J3) are indicated. The magnetic structure shown is
typical for the AMn2Pn2 compounds with Pn = As, Sb, Bi,
for which the first-neighbor interactions are dominant and an-
tiferromagnetic: J1 � J2, J3. In contrast, here we report that
CaMn2P2 exhibits a different magnetic structure that emerges
mainly due to frustrated couplings J1/2 ≈ J2. (Although im-
plied in the figure, SrMn2Bi2 has not yet been synthesized or
discussed in the literature.)

is commensurate with the lattice. This is in con-
trast to SrMn2P2 that was found to experience an in-
commensurate magnetic order [26]. These observations
are consistent with neutron-diffraction measurements of
SrMn2P2 that indicate a complex and so far undeter-
mined magnetic structure [35]. Interestingly, CaMn2P2

and SrMn2P2 have recently been reported to undergo an
unusual first-order antiferromagnetic (AFM) transition
at TN = 70(3) and 53(1) K, respectively [26]. By con-
trast, the isostructural CaMn2As2 and SrMn2As2 com-
pounds undergo second-order AFM transitions [27]. Be-
low, we relate the observed first-order magnetic transi-
tion in CaMn2P2 with its more complex spiral magnetic
order that breaks threefold rotation symmetry and pro-
motes the emergence of a Potts-nematic order parame-
ter [15, 36, 37].

We note that AMn2Pn2 (A = Ca or Sr and Pn =
P, As, Sb) compounds display strong two-dimensional
(2D) magnetic fluctuations as manifested in magnetic

susceptibility (χ) measurements that do not show Curie-
Weiss behavior at temperatures much higher than TN

[26, 30–33]. In addition, the χ(T ) with applied magnetic
field along the ab-plane for all these compounds hardly
shows any anomaly at TN. This 2D behavior is also
manifested in the magnetic order parameter in neutron-
diffraction measurements of SrMn2As2 [30]. These char-
acteristics indicate that the dominant in-plane NN cou-
pling J1 is AFM and is likely much larger than the in-
terlayer couplings between honeycomb planes, leading to
sizable 2D AFM correlations above TN. Interestingly,
inelastic neutron-scattering measurements that were an-
alyzed using spin-wave theory for the J1−J2 Heisenberg
model determined a ratio of J2/J1 ≈ 1/6 for CaMn2Sb2.
This places the system in proximity to a tricritical point
that separates a Néel ordered phase and two different
spiral magnetic phases [14, 18, 38].

II. EXPERIMENTAL DETAILS AND
METHODS

Single crystals of CaMn2P2 were grown in Sn flux, as
described previously [26], and the crystal used in this
study is from the same growth batch. Single-crystal
neutron-diffraction experiments were performed in zero
applied magnetic field using the TRIAX triple-axis spec-
trometer at the University of Missouri Research Reactor
(MURR). An incident neutron beam of energy 14.7 meV
was directed at the sample using a pyrolytic-graphite
(PG) monochromator. A PG analyzer was used to reduce
the background. Shorter neutron wavelengths were re-
moved from the primary-beam using PG filters placed be-
fore the monochromator and in between the sample and
analyzer. Beam divergence was limited using collimators
before the monochromator; between the monochromator
and sample; sample and analyzer; and analyzer and de-
tector of 60′ − 60′ − 40′ − 40′, respectively. A 40 mg
CaMn2P2 crystal was mounted on the cold tip of an Ad-
vanced Research Systems closed-cycle refrigerator with a
base temperature of approximately 5 K. The crystal was
mounted in the (H, 0, L) and (H,H,L) scattering planes.
We measured the lattice parameters to be a = 4.096(1)
and c = 6.848(2) Å at base temperature. We also note
that our sample consists of at least two twins that are dis-
oriented with respect to each other, as indicated in Fig. 2.
Our diffraction patterns here and below also show Bragg
reflections from the polycrystalline Al sample holder.

III. EXPERIMENTAL RESULTS AND
ANALYSIS

A. Experimental results

Diffraction scans along the (H,H, 1) direction at T = 6
and 100 K in Fig. 2(a) show the emergence of a prominent
peak at H = 1/6 r.l.u. (reciprocal lattice units) at low
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FIG. 2. (a) Diffraction patterns along (H,H, 1) at T = 6 and
100 K showing the emergence of a prominent peak at H = 1/6
r.l.u. (b) The difference between the (H,H, 1) patterns at 6 K
and 100 K showing that the observed magnetic Bragg reflec-
tions in this direction are (η, η, 1) and (1 − η, 1 − η, 1), where
η = 1/6. Al peaks (originating from the sample holder) in
the difference pattern show both positive and negative sig-
nals due to the thermal shift in peak positions. The peaks
with asterisks originate from a twin of CaMn2P2 oriented in
a different direction.

temperatures. As shown in Fig. 2(b), the difference be-
tween these scans at 6 and 100 K displays magnetic Bragg
peaks at (η, η, 1) and (1−η, 1−η, 1), where η = 1/6. Fig-
ure 3(a) shows the difference between scans at 6 and 100
K along (−η,−η, L), indicating magnetic Bragg peaks at
L = −3,−2,−1, 1, 2, and 3. Figure 3(b) shows similar
observations of magnetic Bragg peaks at L = 1, 2, and
3 in the direction of (η, η, L). Scans along (H,H, 0) do
not show any newly-emerging peaks at low temperatures
(not shown). Figure 3(c) shows the difference of scans
along (H, 0, 0) at 6 and 100 K with a weak peak at the
nuclear (1, 0, 0) reflection and possibly another very weak
one at (2, 0, 0). The other signals that have a negative
intensity originate from the Al sample holder. Also, mag-
netic peaks from a small amount of MnP in the crystal
are present in the scan, as indicated. The temperature
dependence of (1, 0, 0) does not exhibit a transition at
TN. This implies that that splitting is not significantly
related to the observed magnetic structure.

The temperature dependence of the integrated inten-
sity of the (η,η,1) reflections in Fig. 4 shows a very
sharp transition at T = 70(1) K that coincides with a
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FIG. 3. Difference between scans at low and high tempera-
ture, as indicated, along (a) (−1/6,−1/6, L) showing peaks at
integer values of L between −3 and 3 (except for L = 0); (b)
(1/6, 1/6, L) showing peaks at the integer values of L between
1 and 3 (scans with negative L were not accessible due to the
experimental setup); and (c) (H, 0, 0) showing a weak peak at
the nuclear (1, 0, 0) position and possibly another at (2, 0, 0).
Signals from the Al sample holder are marked on the figures.
As indicated in (c), a minute inclusion of ferromagnetic MnP
crystals gives rise to weak peaks.

previous report indicating a strong first-order magnetic
phase transition at this temperature [26]. The fact that
the peak intensities of the (±η,±η, L) reflections fall off
for larger L, as expected from the magnetic form fac-
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FIG. 4. Integrated intensity as a function of temperature T
of the (1/6, 1/6, 1) magnetic peak showing a sharp transition
at T = 70 K, consistent with specific-heat measurements in
Ref. [26], which reveal a first-order transition at TN = 70 K.
This indicates that the first-order transition in the heat ca-
pacity is associated with the magnetic transition. The dashed
line is a guide to the eye. The data near TN = 70 K also in-
dicate a first-order magnetic transition. The inset shows the
(1/6, 1/6, 1) peak at T = 5 and 100 K. The weak minimum
below TN at ≈ 50 K does not appear in the specific-heat mea-
surements and is currently not understood.

tor of Mn2+, is further evidence that these newly ob-
served Bragg peaks are magnetic in origin. Below, we
propose various related magnetic structures that are con-
sistent with the experimental observations assuming the
magnetic propagation vector is τ = (η, η, 0) r.l.u. with
η = 1/6.

B. Analysis of experimental results

The observed (η, η, 0) propagation vector indicates
that the magnetic structure consists of a 6 × 6 nuclear
basal unit cell. Figure 5(a) is a compilation of the mag-
netic reflections observed in the (H,H,L) plane, where
the sizes of the circles (i.e., peaks) approximate the ob-
served intensities. A systematic analysis reveals that
there are seven magnetic space groups (MSGs) that are
consistent with the observed magnetic-diffraction pat-
terns. These are PA2/c, PC2/m, PAc, PS 1̄, PC2, PCm,
and PS1 (See Fig. 6). The first two have higher symme-
try and PAc, PC2 are descendants of PA2/c, while PS 1̄,
PC2, and PCm are descendants of PC2/m, and the group
PS1 has the lowest symmetry (see Fig. 3 and Appendix B
for details).

We now describe an intuitive approach to the mag-
netic model structure (corresponding to PAc), which is
constructed by creating a 6 × 6 in-plane nuclear unit

cell that spans the corrugated honeycomb structure, i.e.,
the bilayer magnetic structure stacked along the c-axis
[Fig. 5(b)]. Throughout, the red sites correspond to one
trigonal magnetic sublattice and the green sites to the
other magnetic sublattice. A magnetic model is con-
structed by assigning a moment along a high symmetry
direction at an origin, for instance, at the lower-left cor-
ner, and then successively rotating the spin on the near-
est neighbors on the same sublattice clockwise by 60◦.
The other sublattice is constructed similarly and stacked
with anti-parallel spins with respect to the first sublat-
tice. See more details on the construction of the mag-
netic structure in the Appendix A. Note that along the
[1, 0, 0] and [0, 1, 0] directions, the magnetic structure of
each sublattice is a cycloid with a 60◦ turn angle. Thus,
for each sublattice, the overall structure is a cycloid with
propagation vector (η, η, 0), with η = 1/6. Inspection of
Figure 5b shows that each hexagon consists of two NN
antiparallel pairs and one antiparallel NNN pair, such
that the net magnetic moment in each hexagon is zero.
Also, note that in this model all NN spins along the long
diagonal are antiparallel.

To model the intensities of the magnetic peaks, I, we
use the following equation:

I = C|f(Q)|2
∣∣∣∣∣∣

k∑

j=1

eiQ·rjQ̂× (m̂j × Q̂)

∣∣∣∣∣∣

2

, (1)

where C is a scale factor, Q is the scattering vector, rj
and m̂j are the position of Mn moment and the unit
vector of the magnetic moment, respectively. f(Q) is
the magnetic form factor of Mn2+. Using Eq. (1), the
calculated magnetic intensities shown in Fig. 5(c) are in
good agreement with the experimental results shown in
Fig. 5(a).

The intensity calculations [Eq. (1)] allow us to estimate
the average ordered magnetic moment, 〈gS〉, where g = 2
is the spectroscopic-splitting factor, S is the spin quan-
tum number, and µB is the Bohr magneton. By compar-
ing nuclear-peak intensities and their structure factors
to the observed magnetic-peak intensities, we estimate
〈gS〉µB = 4.2(5)µB, typical for Mn2+ moments.

IV. THEORETICAL DISCUSSION

A. Modeling in terms of a Heisenberg Hamiltonian

We interpret the experimental results in the framework
of a two-dimensional J1-J2-J3 Heisenberg model includ-
ing local anisotropy terms on the honeycomb lattice. We
find that this model adequately describes the moments
on the puckered-honeycomb Mn2+ ions in a single layer
of CaMn2P2. Since moments in different layers order fer-
romagnetically in the three-dimensional crystal, we focus
on a single honeycomb layer in the following. The cou-
pling between the layers could be simply modeled by a
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FIG. 5. (a) A compilation of the magnetic reflections observed in the (H,H,L) planes, where the sizes of the spheres roughly
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tally observed diffraction patterns [40].

ferromagnetic nearest-neighbor exchange Jz, which sets
the ordering temperature for weakly coupled layers. Our
model of a sinlge honeycomb layer includes NN interac-
tions J1, NNN J2, and third neighbor interactions J3. We
also include single-ion anisotropies Dz and Dxy that force
the moments to lie within the lattice xy plane (Dz > 0)
and introduce a sixfold in-plane anisotropy (Dxy), in
agreement with the crystalline (point group 3̄m or D3d)
and time-reversal symmetries. Since the orbital moment
of Mn2+ vanishes according to Hund’s rules, the sixfold
anisotropy Dxy in CaMn2P2 is expected to be small.
Since the second-neighbor exchange J2 is expected to be
significant in the material [34], and we find that the third-
neighbor exchange J3 affects the required anisotropy Dxy

for the experimentally observed spiral phase to occur, we
include a J3 term in the Hamiltonian. We will find that

J3/J1 . 0.1 is the most likely parameter range for the
third-neighbor exchange. We model the spins classically,
which is well justified given our experimental observation
that 〈gS〉 ≈ 4.3. The Hamiltonian reads

H = J1

∑

〈n,m〉1

Sn · Sm + J2

∑

〈n,m〉2

Sn · Sm

+ J3

∑

〈n,m〉3

Sn · Sm +Dz

∑

n

(Szn)2

+
Dxy

2

∑

n

[
(Sxn + iSyn)6 + c.c.

]
, (2)

where Si are vectors normalized to |Si| = S, and n,m
denote lattice sites of the honeycomb lattice. The sum-
mation over 〈n,m〉ν runs over each ν-th-neighbor bond
once. The honeycomb lattice is generated by the tri-
angular Bravais lattice vectors Ri = i1a1 + i2a2 with

i1, i2 ∈ Z, a1 = (1, 0) and a2 = (− 1
2 ,
√

3
2 ). Here, we set

the Bravais lattice constant aL = 1. The basis sites are
δA = (0, 0) and δB = (0, 1/

√
3) such that the compos-

ite index in Eq. (2) reads n = (i, α) with α = A,B. The
reciprocal-lattice vectors are given by G1 = (2π, 2π√

3
) and

G2 = (0, 4π√
3
), and the first Brillouin zone is depicted in

Fig. 7(a). To connect to our experimental notation, we
write a vector in momentum space as k = HG1 + KG2

such that the K-point is located at (H,K) = ( 1
3 ,

1
3 ) (cor-

ners of the BZ) and one of the M -points is located at
(H,K) = (0, 1

2 ) (at the center of the BZ edges).
Next, we analyze the classical ground states of Eq. (2)

assuming coplanar magnetic order. The ground state
phase diagram of the J1-J2-J3 Heisenberg model was
derived in Refs. [12–14]. A coplanar ground state is in
agreement with our experimental data and findings in the
literature for the J1-J2-J3 model [12–14]. It can always
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6
, 1
6
) spiral phase extends from 0.2 ≤ J2/J1 ≤ 0.5 and the critical

value of Dxy exhibits a minimum of zero at J2/J1 = 0.25. (d) Critical value of the sixfold anisotropy Dcrit
xy as a function of

J3 required to favor a commensurate spirals with (H,K) = ( 1
6
, 1
6
) (solid) or (H,K) = (0, 0) (dashed). Nonzero J3 moves the

ground state wavevector Q closer to the origin, resulting in monotonously decreasing dashed lines. Dcrit
xy for (H,K) = ( 1

6
, 1
6
)

(solid) decreases if J3 moves Q closer to ( 1
6
, 1
6
) (see J2/J1 = 1/3), and increases otherwise (see J2/J1 = 0, 1/4).

be favored by a sufficiently-large single-ion anisotropy
Dz. In the following we assume Dz > 0, correspond-
ing to easy-plane anisotropy, forcing the spins to lie in
the ab plane. Following Ref. [15], we parameterize the
coplanar spin configuration on the two sublattices as

SA(Ri) = S
(
sin(Q ·Ri), cos(Q ·Ri)

)
(3a)

SB(Ri) = −S
(
sin(Q ·Ri + φ), cos(Q ·Ri + φ)

)
. (3b)

Here, φ + π describes the phase difference between the
spins on the A and B sublattices in the same unit cell

Ri. Note that Eq. (3b) contains an explicit minus sign
such that φ = 0 corresponds to an antiferromagnetic ar-
rangement of A and B spins in the same unit cell. Using
this spin parametrization, the classical energy per spin
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(N = number of spins) reads

E

NS2
= −J1

2

[
cos(Qb − φ) + cos(Qa +Qb − φ)− cos(φ)

]

+ J2

[
cos(Qa) + cos(Qb) + cos(Qa +Qb)

]

− J3

2

[
cos(Qa + 2Qb − φ) + cos(Qa) cos(φ)

]
. (4)

Here, Qa = Q · a1 and Qb = Q · a2 such that Q =
HG1 +KG2 = Qa

2πG1 + Qb
2πG2. We can analytically find

the classical ground state energy from the conditions

∂E

∂Qa
=

∂E

∂Qb
=
∂E

∂φ
= 0 . (5)

Let us first discuss the case of J3 = Dxy = 0. Then, the
ground state exhibits a continuous degeneracy of spiral
states with wavevectors Q = (Qa, Qb) that fulfill [15]

cos(Qa) + cos(Qb) + cos(Qa +Qb) =
1

2

( J2
1

4J2
2

− 3
)
. (6)

The phase difference φ is determined by

sin(φ) = 2J2

[
sin(Qb) + sin(Qa +Qb)

]
. (7)

For 1
6 < J2/J1 <

1
2 , the manifold of degenerate wavevec-

tors forms a circle around the Γ point, as shown in
Fig. 7(a) for J2/J1 = 0.25. The radius of the circle in-
creases continuously with increasing J2. For J2/J1 > 0.5,
the degenerate states are located around the K and K ′

points, which they approach in the large J2 limit [15].
We refer to Appendix C for a detailed derivation of
these results. In CaMn2P2 we find the propagation vec-
tor (H,K) = ( 1

6 ,
1
6 ), which lies along the Γ-K direc-

tion and corresponds to one of the degenerate states for
J2/J1 = 0.25. This regime of large frustration is thus
relevant for CaMn2P2 and will be our focus in the fol-
lowing.

Nonzero J3 selects a discrete subset of six wavevectors
for the ground state spin configuration. For AFM J3 > 0
these lie along the Γ-K (and symmetry related) directions
in the Brillouin zone [see red hexagons in Fig. 7(a)]. In
contrast, for FM J3 < 0 these lie along the Γ-M direction
for J2/J1 < 1/2 [see blue dots in Fig. 7(a)] and along
the K-M line for 1/2 < J2/J1 < 1 (not shown). The
wavevectors shown in Fig. 7(a) are for AFM J3/J1 = 0.05
(red hexagons) and for FM J3/J1 = −0.05 (blue circles).
Since AFM J3 favors Néel order, which is described by
(H,K) = (0, 0) and φ = 0, the red wavevectors move
towards the Γ point with increasing AFM J3. In con-
trast, with increasing FM J3 < 0 (i.e. more negative
values), they move towards the M point. We note that
quantum and thermal fluctuations also select six discrete
wavevectors, which correspond to the ones favored by FM
J3 [15]. We therefore conclude that the experimentally-
observed wavevector (H,K) = ( 1

6 ,
1
6 ) is consistent with

AFM J3 > 0. In contrast, it is not favored by FM J3

and it is also not selected via an order-by-disorder mech-
anism.

We now analyze the effect of a local sixfold single-ion
anisotropy term whose strength is parametrized by Dxy

[see Eq. (2)]. As shown in Fig. 7(b), nonzero Dxy favors a
discrete number of spiral states, which are consistent with
an alignment of spins along one of the six high symme-
try directions on every site. Moving along the direction
H = K in the Brillouin zone, we find that Dxy equally
favors Néel order (H = K = 0), the experimentally ob-
served spiral order with H = K = 1

6 and a shorter spiral

with wavevector H = K = 1
3 (K-point). These three

wavevectors are also highlighted in Fig. 7(a) as purple
squares. In addition to these three wavevectors, Dxy

also favors symmetry-related wavevectors as shown in the
lower panel of Fig. 7(b), which are obtained by 60◦ rota-
tions. In Fig. 7(c), we show that a magnetic spiral with
the experimentally-observed wavevector (H,K) = ( 1

6 ,
1
6 )

is stabilized over a wide region of J2/J1 and Dxy. Specif-
ically, for 0.2 < J2/J1 < 0.5 and J3 = 0, the system will
enter a magnetic spiral with H = K = 1

6 at a critical

value of Dcrit
xy (yellow region). The critical value Dcrit

xy is
a convex function of J2/J1 and exhibits a minimum of
zero at J2/J1 = 0.25. For smaller values of J2/J1 < 0.2,
the sixfold anisotropy will drive the system into a Néel-
ordered phase instead (gray region), while for larger val-
ues of J2/J1 > 0.5, it will transition into a magnetic
spiral with H = K = 1

3 (red region). For nonzero AFM
J3 the Néel phase extends until larger values of J2/J1,
which sets a limit to the size of J3/J1 in CaMn2P2.

To study the dependence on J3/J1 more systemati-
cally, we plot in Fig. 7(d) the evolution of Dcrit

xy as a
function of AFM J3/J1 for several fixed values of J2/J1.
We focus on the region of J2/J1 < 0.5, where the Néel-
ordered phase competes with the H = K = 1

6 phase.

First, we find that the behavior of D
crit,1/6
xy (solid lines)

depends on the value of J2/J1. Since increasing J3

moves the minimum-energy spiral wavevector towards

the Γ point, J3 reduces D
crit,1/6
xy for J2/J1 > 1/4, but

increases it for J2/J1 < 1/4. Second, since J3 favors the
Néel ordered state over the spiral, we observe that in-
creasing J3 generally reduces the critical value Dcrit, Néel

xy

needed to stabilize the Néel phase (dashed lines). The
dashed lines are thus monotonously decreasing as a func-
tion of J3. For a given value of J2/J1, we thus find that

Dcrit,Néel
xy < D

crit, 1/6
xy for sufficiently large J3 such that

the sixfold anisotropy drives the system into the Néel
phase. The position of the crossing point between solid
and dashed lines in Fig. 7(d) increases with increasing
J2/J1, which is a result of the minimum-energy wavevec-
tor lying closer to H = K = 1

6 than to the origin [see
Fig. 7(a)].

We conclude from this analysis that when 0.2 <
J2/J1 < 0.5, the presence of a sixfold anisotropy Dxy

is sufficient to stabilize the H = K = 1
6 spiral order

even without a third-neighbor interaction term J3. The
required value of Dxy to drive the system from an incom-
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mensurate spiral into the commensurate H = K = 1
6 spi-

ral phase vanishes at J2/J1 = 0.25 and remains small in
the vicinity of this point. Regarding the effect of nonzero
J3, we find that AFM J3 selects a wavevector along the
observed H = K direction while FM J3 selects different
wavevectors that are at 30◦-rotated directions in the Bril-
louin zone. An AFM third-neighbor interaction is thus
more consistent with our experimental findings than a
FM one. Since AFM J3 also favors the Néel state, the
minimum-energy spiral wavevector Q moves towards the
origin with increasing J3. For large J2/J1 > 0.5, where
the wavevector lies between the ( 1

6 ,
1
6 ) and the K point,

this moves Q closer to ( 1
6 ,

1
6 ) and thus reduces the value

of Dxy necessary to enter the commensurate H = K = 1
6

spiral phase [see blue line in Fig. 7(d)]. For smaller val-
ues of J2/J1, a larger value of J3 drives the system into
the Néel phase and can thus be excluded for CaMn2P2.
To summarize, the most likely parameter range describ-
ing CaMn2P2 is J2/J1 ≈ 0.25 − 0.4, J3/J1 . 0.1 and
Dxy > Dcrit

xy ≈ 0− 0.1J1. Further experimental work, for
example, inelastic neutron scattering results are needed
to determine the values of the exchange and anisotropy
parameters more precisely.

B. Emergent Potts-nematic order and first-order
phase transition

The frustration-induced spiral magnetic order that we
observe in CaMn2P2 leads to the emergence of a Potts-
nematic order parameter. This composite order parame-
ter is bilinear in the spins and involves their scalar prod-
uct on nearest-neighbor sites:

ψ(R) = SA(R) · SB(R) + e−
2πi
3 SA(R) · SB(R− a2)

+ e−
4πi
3 SA(R) · SB(R− a1 − a2) . (8)

This complex bond order parameter is finite and
translationally invariant in any of the three spiral
magnetic states with (H,K) = {Q1,Q2,Q3} =
( 1

6 ,
1
6 ), (− 1

3 ,
1
6 ), ( 1

6 ,−
1
3 ). In Fig. 8, we show the three

degenerate ground states of the J1-J2-J3-Dxy Heisen-
berg model in the regime where Dxy > Dxy,crit and
0.2 < J2/J1 < 0.5 [see Fig. 7(c)]. When placed on the Mn
ions in CaMn2P2, this magnetic structure corresponds to
magnetic space group (MSG) PS1, which is one of the
MSGs that are consistent with experiment (see Fig. 6).
The related magnetic structure for Dxy < 0, for which
the spin at the origin (yellow circle) is rotated by π

2 , lies in
the MSG PCm that is also consistent with the experimen-
tal data. The three panels in Fig. 8 depict the symmetry-
related states with propagation vectors Qi and the insets
show the value of the spatially homogeneous complex
Potts-nematic order parameter, whose argument follows
the direction of the ordering wavevector. It is a general-
ization of the Ising nematic bond order parameter known
to underlie the tetragonal to orthorhombic transition via

(a)

(b)

(c)

Q1=(H, K)=(1/6, 1/6)

Q2=(H, K)=(-1/3, 1/6)

Q3=(H, K)=(1/6, -1/3)

Q1

Q2

Q3

FIG. 8. The panels (a,b,c) show the three degenerate ground
states (H,K) = ( 1

6
, 1
6
), (− 1

3
, 1
6
), ( 1

6
,− 1

3
) of the J1-J2-Dxy

Heisenberg model for Dxy > 0. In each panel, the bond order
parameter ψ(R) is invariant under translations, but different
panels describe different bond orders: the antiparallel nearest-
neighbor spin pair occurs along three different bonds in the
three panels (a-c). The complex argument of ψ is given by
the polar angle of the corresponding wavevector Qi in the
Brillouin zone (see red hexagons in Fig. 7).

magneto-elastic couplings that is observed in tetragonal
iron-based arsenides such as CaFe2As2 [41, 42].

Under a threefold rotation around an A site, the Potts-

nematic order parameter transforms as ψ
C3−−→ exp

(
2πi
3

)
ψ.

Under a mirror operation myz that sends x → −x, it

transforms as ψ
myz−−−→ ψ∗. Its finite temperature behav-
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ior is thus described by the Landau-Ginzburg free energy
functional of a three-state Potts model [15]. In three di-
mensions this analysis predicts a first-order phase tran-
sition into a state with long-range Potts order due to a
symmetry-allowed third-order term. This is also in agree-
ment with Monte-Carlo simulations [43]. The emergence
of long-range Potts-nematic order can therefore naturally
account for the experimentally-observed first-order mag-
netic phase transition in CaMn2P2. Note that differ-
ent honeycomb layers are ordered ferromagnetically along
the c direction in CaMn2P2, corresponding to an order-
ing wavevector with integer L, where Q = (H,K,L).
Since ψ is a composite magnetic order parameter, it is
strongly intertwined with magnetism, and the discontin-
uous development of long-range Potts order at the first-
order transition can thus uplift the magnetic transition
to occur as a joint first-order transition. The system
then simultaneously develops long-range Potts-nematic
and magnetic order. Such a behavior is known to oc-
cur, for example, in the triangular lattice antiferromagnet
Fe1/3NbSe2 [36]. This can also explain why the related
compounds CaMn2Pn2 with Pn = Sb, Bi that exhibit
Néel order, for which such a 3-state Potts-nematic order
is absent, develop magnetic order via a continuous phase
transition.

Since long-range Potts-nematic order breaks the three-
fold rotation symmetry of the lattice, we predict the
emergence of three lattice distortion domains due to a
finite magneto-elastic coupling. The domains are char-
acterized by different values of the Potts-nematic order
parameter ψ, as shown in Fig. 8. However, the cou-
pling between magnetic and lattice degrees of freedom
is expected to be small in this system, since the orbital
moment of the magnetic ions Mn2+ vanishes according
to the Hund’s rules and spin-orbit coupling is therefore
small. This could be the reason why lattice distortion and
crystal symmetry lowering could not be detected in pre-
vious x-ray diffraction studies [26]. An alternative expla-
nation is the emergence of a complex multi-Q magnetic
order that preserves all lattice symmetries. It is worth
noting, however, that Raman scattering studies have re-
ported the appearance of additional peaks when going

from the paramagnetic phase at room temperature to the
magnetic phase at T < TN [44]. Further investigations
of the effects of magnetic ordering on the lattice and its
excitations are needed to address these open questions.
We emphasize that magnetic spiral-Q order with a sin-
gle finite-momentum wavevector breaks threefold rota-
tion symmetry via selection of one of the three symmetry-
equivalent propagation vectors Qi. In the single-Q spiral
state we thus expect the appearance of three magnetic
domains characterized by different magnetic propagation
vectors in the magnetically ordered state.

V. CONCLUSIONS

Using neutron-diffraction measurements, we find that
CaMn2P2 undergoes a first-order antiferromagnetic tran-
sition at TN = 70 K into a state with a 6 × 6 times en-
larged magnetic unit cell. The average ordered magnetic
moment is 〈gS〉µB = 4.2(5) µB. The integrated intensity
of the major (H,K,L) = ( 1

6 ,
1
6 , 1) magnetic peak ver-

sus temperature shows an abrupt decrease in intensity at
TN that is a characteristic of a first-order phase transi-
tion. Focusing on the experimentally discovered ground-
state, we interpret these results using a frustrated J1-
J2-J3 Heisenberg model with easy-plane anisotropy Dz

and a sixfold in-plane anisotropy Dxy, and show that this
propagation wavevector signals the presence of a substan-
tial degree of frustration. We relate the appearance of the
first-order magnetic transition to a composite three-state
Potts-nematic bond order parameter that simultaneously
develops long-range order and drives the magnetic tran-
sition to become first-order. Based on our analysis we
predict the emergence of three symmetry related mag-
netic and lattice distortion domains that deserve further
studies.
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Appendix A: Constructing the Magnetic Structure

We describe the proposed magnetic structures with
space group PAc, shown in Fig. 5(b) in the main text.
The magnetic structure is constructed by generating two
6 × 6 in-plane trigonal sublattices that are stacked to-
gether to form the honeycomb structure. In Fig. 9(a),
the trigonal sublattice is constructed by assigning a spin
at the origin (lower-left corner) pointed along one of the
high-symmetry directions, and successively rotating the
nearest neighbors in the a- and b- directions by a 60◦

angle in the counter-clockwise direction. In Fig. 9(b) we
construct the other trigonal sublattice for magnetic struc-
ture. The spin at the origin (lower-left corner) is flipped
with respect to the spin at the origin of the trigonal sub-
lattice depicted in Fig. 9(a). The nearest neighbors along
the a− and b− directions are rotated successively by a
60◦ angle in the counter-clockwise direction, the same
way as before, to construct the other sublattice. The
magnetic structure with spacegroup PAc is formed by
stacking the trigonal sublattice shown in Fig. 9(b) on the
trigonal sublattice shown in Fig. 9(a) to form the corru-
gated honecycomb lattice, as depicted in Fig. 9(c).

Appendix B: Systematically Searching Other
Magnetic Structures

We emphasize that the magnetic structure shown in
Fig. 5(b) of the main text with magnetic space group PAc
[40] is not unique with respect to the neutron-diffraction
data. Systematically searching through the Symmetry-
Based Computational Tools for Magnetic Crystallogra-
phy [40] (Fig. 6 in the main text), we find a few more
magnetic structures shown in Fig. 10 that are consis-
tent with the peak positions in the diffraction measure-
ments. The Bilbao crystallographic database allows for
other magnetic structures with the propagation vector of

(1/6, 1/6, 0), as shown in Fig. 11; however, the inten-
sity calculations are inconsistent with the experimental
observations. In particular, these configurations show in-
tensities at (±1/6, ±1/6, 0), which are not observed ex-
perimentally. We note that when constructing the mag-
netic structure using the Bilbao database, we assume that
the spin direction at the origin is a high-symmetry direc-
tion, and rotate nearest-neighbor moments in the same
sublattice by 60◦. For simplicity, we divide the rotation
between the spin at the origin and the edge by six, i.e.
360◦/6.
Appendix C: Details of ground state analysis of spin

Hamiltonian

The honeycomb lattice is generated by the Bravais lat-
tice vectors

a1 = (1, 0) (C1)

a2 =
(

cos
2π

3
, sin

2π

3

)
=
(
−1

2
,

√
3

2

)
. (C2)

A Bravais lattice vector is given by Ri = i1a1 + i2a2 with
i1, i2 ∈ Z. Here, we have set the Bravais lattice constant
to one. The honeycomb model has two atoms (or spins)
per unit cell. The basis vectors are given by bA = (0, 0)

and bB =
(

0, 1√
3

)
.

Our choice of ai leads to the reciprocal lattice vectors
Gi · aj = 2πδij being given by

G1 =
(

2π,
2π√

3

)
(C3)

G2 =
(

0,
4π√

3

)
(C4)

For later reference, we introduce the notation k = HG1+
KG2. The K point is located at (H,K) = (1

3 ,
1
3 ) or k =(

2π
3 ,

2π√
3

)
and the M point is located at (H,K) = (0, 1

2 )

or k =
(

0, 2π√
3

)
.

The Hamiltonian of the classical J1-J2-J3 Heisenberg model on the honeycomb lattice then reads

H = J1

∑

Ri

δ
(1)
3∑

δ
(1)
i =δ

(1)
1

SA(Ri) · SB(Ri + δ
(1)
i ) +

J2

2

∑

Ri

δ
(2)
6∑

δ
(2)
i =δ

(2)
1

[
SA(Ri) · SB(Ri + δ

(2)
i ) + SB(Ri) · SB(Ri + δ

(2)
i )

]

+ J3

∑

Ri

δ
(3)
3∑

δ
(3)
i =δ

(3)
1

SA(Ri) · SB(Ri + δ
(3)
i ) . (C5)

The set of first, second and third (Bravais) neighbors reads

{δ(1)
i } = {(0, 0),−a1 − a2,−a2} (C6)

{δ(2)
i } = {a1,a1 + a2,a2,−a1,−a1 − a2,−a2} (C7)

{δ(3)
i } = {a1,−a1,−a1 − 2a2} . (C8)
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Following Ref. [15], we parameterize the ground state in the following way

SA(Ri) = S
(

sin(Q ·Ri), cos(Q ·Ri)
)

(C9)

SB(Ri) = −S
(

sin(Q ·Ri + φ), cos(Q ·Ri + φ)
)
. (C10)

We often write

Q = HG1 +KG2 =
Qa
2π

G1 +
Qb
2π

G2 , (C11)

where it also holds that Qa = Q · a1 and Qb = Q · a2.
The classical energy per spin (N = number of spins) using this spin parameterization reads

E(Q, φ)

NS2
= −J1

2

[
cos(Qb − φ) + cos(Qa +Qb − φ)− cos(φ)

]
+ J2

[
cos(Qa) + cos(Qb) + cos(Qa +Qb)

]

− J3

[1

2
cos(Qa − φ) + cos(Qa +Qb) cos(Qb − φ)

]
(C12)

The J3 term can also be written as

− J3

2

[
cos(Qa + 2Qb − φ) + cos(Qa) cos(φ)

]
. (C13)

We can analytically find the minimum energy, which equals the classical ground state energy, via

∂E

∂Qa
=

∂E

∂Qb
=
∂E

∂φ
= 0 . (C14)

Numerically, it is advantageous to directly minimize E(Qa, Qb, φ) for different random starting points of 0 ≤ Qa, Qb ≤
2π and 0 ≤ φ ≤ 2π.

1. Case of J3 = 0

Let us first consider the case of J3 = 0. Here, we find from ∂E
∂Qa

= ∂E
∂Qb

= ∂E
∂φ = 0 the set of equations

2J2

[
sin(Qa) + sin(Qa +Qb)

]
= sin(Qa +Qb − φ) (C15)

2J2

[
sin(Qb) + sin(Qa +Qb)

]
= sin(Qb − φ) + sin(Qa +Qb − φ) (C16)

sin(Qb − φ) + sin(Qa +Qb − φ) = sin(φ) . (C17)

Here, we have set J1 = 1 and thus J2 ≡ J2/J1. Inserting the third equation into the second one yields

sin(φ) = 2J2

[
sin(Qb) + sin(Qa +Qb)

]
. (C18)

The first equation then becomes

2J2

[
sin(Qa) + sin(Qa +Qb)

]
= sin(Qa +Qb − φ) (C19)

= sin(Qq +Qb) cos(φ)− cos(Qa +Qb) sin(φ) (C20)

= sin(Qq +Qb) cos(φ)− 2J2 cos(Qa +Qb)
[
sin(Qb) + sin(Qa +Qb)

]
(C21)

Solving for cos(φ) and using that

sin(Qa) + cos(Qa +Qb) sin(Qb)

sin(Qa +Qb)
= cos(Qb) (C22)

we arrive at

cos(φ) = 2J2

[
1 + cos(Qb) + cos(Qa +Qb)

]
(C23)
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Finally, using that cos2(φ) + sin2(φ) = 1, we derive

cos(Qa) + cos(Qb) + cos(Qa +Qb) =
1

2

( 1

4J2
2

− 3
)
. (C24)

The last equation (C24) determines the set of degenerate wave vectors (Qa, Qb) in the ground state, while the two
equations (C18) and (C23) set the phase difference for a given value of Q.

2. Case of nonzero J3

Let us now discuss the case of nonzero J3, where the set of equations ∂E
∂Qa

= ∂E
∂Qb

= ∂E
∂φ = 0 reads

sin(Qa +Qb − φ) = 2J2

[
sin(Qa) + sin(Qa +Qb)

]
− J3

[
2 cos(Qb − φ) sin(Qa +Qb) + sin(Qa − φ)

]
(C25)

sin(Qb − φ) + sin(Qa +Qb − φ) = J2

[
sin(Qb) + sin(Qa +Qb)

]
− 2J3 sin(Qa + 2Qb − φ) (C26)

sin(φ)− sin(Qb − φ)− sin(Qa +Qb − φ) = J3

[
sin(Qa − φ) + 2 cos(Qa +Qb) sin(Qb − φ)

]
. (C27)

We will restrict our attention to sufficiently small J3, where we numerically find that a set of six symmetry related
wavevectors are selected from the continuous manifold of wavevectors defined by Eq. (C24). Numerically we find that
for J3 > 0 one of them is given by Qa = Qb, while for J3 < 0 one of them is given by (Qa, Qb) = (Qa, 0). The other
five are obtained by C6 rotations. In Fig. 12 we show numerical results for J3 = 0 and for small values of J3, which
shows that six discrete wavevectors are selected by nonzero J3, which are of the form described above.

a. Antiferromagnetic J3 > 0

Numerically, we find that the wavevector solution is given by Qa = Qb for J3 > 0. In this case, the three equations
simplify to

sin(2Qa − φ) = 2J2

[
sin(Qa) + sin(2Qa)

]
− J3

[
2 cos(Qa − φ) sin(2Qa) + sin(Qa − φ)

]
(C28)

sin(Qa − φ) + sin(Qa +Qa − φ) = J2

[
sin(Qa) + sin(2Qa)

]
− 2J3 sin(3Qa − φ) (C29)

sin(φ)− sin(Qa − φ)− sin(2Qa − φ) = J3

[
sin(Qa − φ) + 2 cos(2Qa) sin(Qa − φ)

]
. (C30)

In the third equation (C30), we can use that sin(φ) − sin(2Qa − φ) = −2 cos(Qa) sin(Qa − φ) to bring it into the
following form

sin(Qa − φ)
[
1 + 2 cos(Qa) + J3(1 + 2 cos(2Qa))

]
= 0 . (C31)

This equation can either be fulfilled by sin(Qa − φ) = 0 or if the term in the square brackets vanishes, which is the
case when cos(Qa) = −1/2 (K-point) or when cos(Qa) = (−1+J3)/(2J3). Note that in the latter case, the wavevector
is independent of J2.

The first case sin(Qa−φ) = 0 is the case of interest to us, as we know (e.g. from a numerical investigation) that Qa
depends on J2 in the region J2 > J3 > 0, which we are mostly interested in. Therefore, Eq. (C30) gives a condition
for φ as a function of the wavevector Qa. In fact, the same condition applies to the case J3 = 0, which means that
the solution for φ at the minimum is independent of J3 and identical to our previous solution in Eq. (C18) and (C23).

Assuming that sin(Qa − φ) = 0 in the following, we find that the first and second equation (C28) and (C29) are
identical and read

2J2

[
sin(Qa) + sin(2Qa)

]
− 2J3 cos(Qa − φ) sin(2Qa) = sin(Qa) cos(Qa − φ) . (C32)

Since sin(Qa − φ) = 0, it immediately follows that cos(Qa − φ) = ±1. Solving the above equation in the two cases
yields

cos(Qa) =
1− 2J2

4(J2 − J3)
for cos(Qa − φ) = 1 (C33)

cos(Qa) =
−1− 2J2

4(J2 + J3)
for cos(Qa − φ) = −1 . (C34)
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It turns out that the first solution is the relevant one in the regime J2 > 0 . We thus find that

Qa = 2πH = arccos
1− 2J2

4(J2 − J3)
. (C35)

Finally, the experimentally observed wavevector H = K = 1/6 is found for

J2(J1, J3) =
1

4

(
J1 + 2J3

)
. (C36)

Therefore, to observe H = K = 1/6, we need an antiferromagnetic J3 > 0 and the required second neighbor exchange
J2 increases with the value of J3. Note that this corresponds to a highly frustrated set of coupling constants. In
the next section, we show that a finite sixfold single-ion anisotropy significantly increases the phase space of the
H = K = 1/6 solution in the model.

3. Effect of finite sixfold single-ion anisotropy Dxy

Let us now determine the effect of a sixfold in-plane single-ion anisotropy term that is allowed by symmetry:

HDxy =
Dxy

2

∑

Ri

∑

α=A,B

{[
Sxα(Ri) + iSyα(Ri)

]6
+
[
Sxα(Ri)− iSyα(Ri)

]6}
. (C37)

Inserting the spin ansatz in Eq. (C9) and focusing on the solutions with H = K that we found for J3 > 0, we find
that [see also Fig. 7(b)]

EDxy
NS6

= −Dxy

(
δH,1/6 + δH,1/3

)
. (C38)

Note that to determine EDxy for states with H 6= K, we would first need to solve for the phase φ of those states
analytically. Instead, we have investigated the problem numerically for general (H,K) and φ (see Fig. 7(b)). From
Eq. (C38) we observe that states with H = K = 1/3 and H = K = 1/6 are favored by Dxy, because they are
compatible with the sixfold anisotropy on every site. Spiral states with any other wavevector yield an average energy
of zero in the limit of large system sizes as every angle occurs at some site and the average anisotropy thus vanishes.
To determine the region in the phase diagram, where spirals with H = 1/6 are stabilized as a function of Dxy, we
compare the energy of the spiral found for Dxy = 0 with the energy of the spiral with H = 1/6 and finite Dxy, and
the results are given in Fig. 7(c,d).
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(a) (b) (c)

FIG. 9. (a) and (b) depict the 6 × 6 in-plane trigonal sublattices that form the honeycomb structure. In (a), we assign a
spin along a high-symmetry direction at the origin (lower-left corner), and the nearest neighbors along the a- and b- axes
are successively rotated by a 60◦ angle in the clockwise direction to create the sublattice. The sublattice shown in (b) is
constructed by flipping the spin direction at the origin (lower-left corner) with respect to the one in the origin of (a), and the
nearest neighbors along the a- and b- axes are successively rotated by a 60◦ angle in the clockwise direction. (c) The corrugated
honeycomb structure with magnetic spacegroup PAc is constructed by stacking the sublattices shown in (a) and (b).

FIG. 10. Illustration of possible magnetic structures allowed by the Bilbao magnetic spacegroups [40] with calculated intensities
consistent with the experimental observation. Calculated intensities for these configurations are similar to the one shown in
the main text for PAc magnetic space group.
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FIG. 11. Illustration of possible magnetic structures allowed by the Bilbao magnetic spacegroups [40] with calculated intensities
inconsistent with the experimental observation. In particular, these configurations show intensities at (±1/6, ±1/6, 0), which
are not observed experimentally [see Fig. 3(b and c)].

FIG. 12. Ground state wavevectors for parameters J1 = 1. Wavevectors kx, ky are in units of 1/aL. The two panels show
results for different values of J2: J2 = 0.25 (left), J2 = 0.5 (right). The yellow curves are for J3 = 0, the red dots are for
J3 = 0.1, and the blue dots are for J3 = −0.1. The black hexagon shows the first Brillouin zone. Note that nonzero J3 selects
six symmetry related wavevectors, while there exists a continuous manifold of degenerate states for J3 = 0.
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