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Multipartite entanglement refers to the simultaneous entanglement between multiple subsystems of a many-
body quantum system. While multipartite entanglement can be difficult to quantify analytically, it is known that it
can be witnessed through the Quantum Fisher information (QFI), a quantity that can also be related to dynamical
Kubo response functions. In this work, we first show that the finite temperature QFI can generally be expressed
in terms of a static structure factor of the system, plus a correction that vanishes as 𝑇 → 0. This implies that the
static structure factor witnesses multipartite entanglement near quantum critical points at temperatures below
a characteristic energy scale of the system. Therefore, in systems with a known static structure factor, we can
deduce finite temperature scaling of multipartite entanglement and low temperature entanglement depth without
knowledge of the full dynamical response function of the system. This is particularly useful to study 1D quantum
critical systems in which sub-power-law divergences can dominate entanglement growth, where the conventional
scaling theory of the QFI breaks down. The 1D spin- 12 antiferromagnetic Heisenberg model is an important
example of such a system, and we show that multipartite entanglement in the Heisenberg chain diverges non-
trivially as ∼ log(1/𝑇)3/2. We verify these predictions with calculations of the QFI using conformal field theory
and matrix product state simulations. Finally we discuss the implications of our results for experiments to probe
entanglement in quantum materials, comparing to neutron scattering data in KCuF3, a material well-described
by the Heisenberg chain.

I. INTRODUCTION

Entanglement is one of the most celebrated and defining
hallmarks of quantum theory and has become a central feature
of modern physics in the age of quantum information, with
a recent Nobel prize being awarded for the demonstration
of quantum entanglement and violations of Bell inequalities
[1, 2]. In the study of many-body quantum systems, the
perspective of entanglement as an emergent property of inter-
acting quantum degrees of freedom has become invaluable to
our understanding of phase transitions, critical phenomena,
and many-body dynamics. Universal scaling laws for
entanglement growth at quantum critical points (QCPs) [3–6]
have driven our understanding of quantum criticality and
the identification of novel phenomena specific to many-body
quantum systems, such as many-body localization [7, 8],
eigenstate thermalization [9, 10], topological phases [11], and
universal quantum quench dynamics [12], to name a few.

Entanglement is most commonly quantified through
the entanglement entropy [13], which measures quantum
correlations between two subsystems in a bipartition of a
larger system. Simultaneous entanglement between more than
two subsystems, a phenomenon known as multipartite entan-
glement, is more difficult to quantify. Multipartite entangled
states can exhibit different degrees of separability, and can host
stronger quantum correlations than the entanglement entropy
captures [14]. While measures of multipartite entanglement
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with information-theoretic properties similar to the entangle-
ment entropy have been proposed [14–17], such measures are
highly non-local and intractable to compute for large systems
in practice. Thus, understanding multipartite entanglement in
many-body systems, particularly how it behaves in different
phases and scales at quantum critical points, is of significant
theoretical interest. On the other hand, the rapidly growing
fields of quantum computing, communications, and sensing,
bring with them a perspective of viewing entanglement
as a computational resource. This perspective has driven
efforts to develop quantum materials that host ground states
with many-body entanglement that is robust to experimental
conditions, for example, to make cat-state qubits [18] for
quantum computers or probe states for quantum sensors [19].
Probing entanglement measures such as the entanglement
entropy requires knowledge of the spectrum of the density
matrix of a system, which is computationally expensive for
the complex ground states of quantum materials. There is
therefore a strong desire to connect quantities measured in
standard techniques for characterizing quantum materials,
such as neutron scattering [20] and NMR spectroscopy [21],
with measures of multipartite entanglement.

A first step towards understanding multipartite entan-
glement with a local measure was provided independently
by Tóth [22] and Hyllus et al. [23], who showed that the
Quantum Fisher Information (QFI), a measure originally from
the field of quantum metrology that quantifies the sensitivity
of a state to an unknown parameter [24], acts as a witness
of multipartite entanglement – an entanglement witness is a
functional of a state which takes values that distinguish states
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with different degrees of entanglement [17]. Although the
QFI is not an entanglement monotone [25], it has certain
properties that make it an attractive measure in addition to
its ability to distinguish multipartiteness of entanglement.
The QFI witnesses entanglement in highly mixed or thermal
states, unlike the entanglement entropy which degenerates
to the classical Shannon entropy, dominated by classical
correlations. As such, the QFI is a measure of pure quantum
fluctuations, and is insensitive to fluctuations at thermal
phase transitions [26], making it a particularly good probe
for quantum criticality. The QFI has since been used
to study multipartite entanglement in various many-body
phenomena such as topological phase transitions [27], many-
body localization [28, 29], and eigenstate thermalization
[30]. Moreover, Hauke et al. [26] demonstrated a general
relationship between the QFI and dynamical Kubo response
functions of certain operators. Since dynamical response
functions can be measured experimentally through neutron
scattering experiments, their results provide a method for
measuring multipartite entanglement in quantum materials,
as demonstrated in recent experiments by Scheie et al. and
Laurell et al. [31, 32].

As a quantity sensitive to quantum fluctuations in thermal
states, understanding how the QFI scales with finite tem-
perature near a quantum critical point is important to both
theoretical efforts to determine entanglement scaling laws,
as well as to experiments that aim to detect entanglement in
quantum materials. To this end, Hauke et al. proposed a
power-law for universal scaling of the QFI at quantum critical
points [26]. However, it is possible for the scaling exponent
in this power-law to be zero in some critical systems. In this
case, the scaling theory in Ref. 26 breaks down, and does not
reveal possible logarithmic corrections that could dominate
entanglement growth in the critical regime. An important
example of such a system is the critical spin- 12 antiferromag-
netic Heisenberg model in one dimension. Aside from being
a quintessential model of quantum criticality, the Heisenberg
chain is a test-bed for quantum magnetism, describing many
real antiferromagnetic materials. For example, it is well
known that the quasi one-dimensional material KCuF3 is well
described by the spin- 12 Heisenberg chain above 𝑇 ≈ 40 K
[33]. Recent experiments by Scheie et al. have demonstrated
up to 4-partite entanglement in KCuF3 and the XXZ chain
material Cs2CoCl4 through neutron scattering measurements
of the QFI [32, 34] [35]. However, a theoretical understanding
of multipartite entanglement in the Heisenberg chain at finite
temperature is still lacking.

One objective of this work is to study multipartite entangle-
ment in the Heisenberg chain using analytical and numerical
techniques, and to establish finite temperature scaling laws that
agree with existing experimental data. To this effect, in section
IV, we show that the QFI density scales as

𝑓𝑄 ∼ log
(
1
𝑇

)3/2
(1)

in the asymptotic limit 𝑇 → 0. To prove (1), we also de-

rive general results that relate multipartite entanglement to
static structure factors of certain operators. In particular, in
section III we show that the QFI can be expressed as a quan-
tity proportional to the static structure factor of an operator,
plus a temperature dependent correction term that vanishes as
𝑇 → 0. We further show that this implies that the static struc-
ture factor witnesses multipartite entanglement at sufficiently
low temperatures, and that quantum fluctuations are the domi-
nant contribution to the structure factor below a characteristic
energy scale of the system. In section IVB, we apply these
results to analyze multipartite entanglement in the Heisenberg
chain from low-energy conformal field-theoretic expressions
of spectral functions [36, 37]. We further verify the predicted
scaling in (1) with a matrix product state (MPS) approach
[38] in section IVC. Finally, in section V we compare our
predictions to neutron scattering data for KCuF3, and discuss
experimental implications of our results, suggesting candidate
systems for future experiments to detect diverging multipartite
entanglement at non-zero temperature.

II. TECHNICAL BACKGROUND

We review the definition of multipartite entanglement in
terms of a separability hierarchy, the Quantum Fisher Infor-
mation and its expression in terms of dynamical response func-
tions, as well as its real-space renormalization scaling theory.
In this article, we assume units such that ℏ = 𝑘𝐵 = 1. This
implies that the temperature 𝑇 is in units of energy in our
expressions, implicitly carrying a factor of 𝑘𝐵 = 1.

A. Multipartite Entanglement

We define multipartite entanglement as in [22, 23, 39–42].
An 𝑁-particle pure state with density matrix 𝜌 is k-separable
if 𝜌 can be written as the tensor product of factor states of not
more than 𝑘 particles each. That is, 𝜌 can be expressed as

𝜌 =

𝑀⊗
𝑖=1

𝜌𝐾𝑖

where 𝜌𝐾𝑖 are density matrices on disjoint subsets
𝐾𝑖 ⊂ {1 · · · 𝑁} of no more than 𝑘 particles each.
A mixed state is 𝑘-separable if it can be expressed as a mixture
of 𝑘-separable pure states. That is, the state’s density matrix
𝜌 can be written as 𝜌 =

∑
𝑖 𝜆𝑖𝜌𝑖 where each 𝜌𝑖 is the density

matrix of a 𝑘-separable state, and 𝜆𝑖 is the probability of the
ith state in the mixture.

In either case (pure or mixed) the state is k-partite entangled
if and only if it is 𝑘-separable but not (𝑘 − 1)-separable. This
is a direct generalization of the definition of bipartite entangle-
ment to higher orders of infactorability of a many-body state.
In this work, we also use the term entanglement depth of a
quantum state, which is the largest positive integer 𝑘 for which
the state is 𝑘-partite entangled.
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B. Quantum Fisher Information

Analogous to the classical Fisher information [43], the
Quantum Fisher Information (QFI) was initially developed
as a measure of the statistical sensitivity of a quantum state
to a unitarily encoded parameter [24, 44, 45]. The QFI is a
functional of a quantum state, with density matrix 𝜌, and an
operator O. For a pure state, the QFI reduces to a quantity
proportional to the variance of the operator O in the state

𝐹𝑄 [𝜌,O] = 4Var(O) = 4
(〈
O2

〉
− 〈O〉2

)
(2)

For a mixed state, the QFI is a generalization of the variance
that captures the quantum, but not classical, fluctuations in
the operator O, defined for a mixed state with density matrix
𝜌 =

∑︁
𝑖

𝜆𝑖 |𝜓𝑖〉 〈𝜓𝑖 | as

𝐹𝑄 [𝜌,O] = 2
∑︁
𝑖≠ 𝑗

(𝜆𝑖 − 𝜆 𝑗 )2

𝜆𝑖 + 𝜆 𝑗
| 〈𝜓𝑖 | O |𝜓 𝑗〉 |2 (3)

where |𝜓𝑖〉 is the ith eigenstate of 𝜌 with eigenvalue 𝑝𝑖 [44].

1. QFI and multipartite entanglement

We consider observables that are total spin- 12 operators
O =

∑︁
𝑖

𝑒𝑖𝜙𝑖 ®𝑆𝑧
𝑖
, where ®𝑆𝑧

𝑖
= 1
2𝜎

𝑧
𝑖
is the z-component spin-

1
2 operator at site 𝑖, 𝜎

𝑧
𝑖
are Pauli 𝑧 operators, and 𝑒𝑖𝜙𝑖 are

phases. We use 𝑆𝑧 because the Heisenberg model is rotation-
ally invariant [46]. For spin models without 𝑆𝑈 (2) symmetry,
the spin direction that maximizes the QFI is an appropriate
choice [47]. Then for an 𝑁-particle density matrix 𝜌, if

𝑓𝑄 [𝜌,O] =
𝐹𝑄 [𝜌,O]

𝑁
> 𝑘 (4)

for 𝑘 a divisor of 𝑁 , then the state represented by 𝜌 is at least
𝑘 + 1-partite entangled [22, 23, 26][48]. Note that (4) is a one
way implication, that is, 𝑓𝑄 < 𝑘 does not imply less than 𝑘 + 1
partite entanglement in 𝜌.

2. QFI of thermal states from dynamical response functions

The QFI for a thermal mixed state at inverse temperature
𝛽 = 1

𝑇
can be expressed in terms of dynamical Kubo response

functions as [26]

𝑓𝑄 [𝜌,O, 𝛽] =
4
𝜋

∫ ∞

0
d𝜔 tanh

(
𝛽𝜔

2

)
𝜒′′(𝜔, 𝛽) (5)

where 𝜒′′(𝜔, 𝛽) is the imaginary (dissipative) part of the dy-
namic response function with respect to O in the state repre-
sented by 𝜌, defined by the Kubo formula [49]

𝜒(𝜔, 𝛽) = 𝑖

𝑁

∫ ∞

0
d𝑡 𝑒𝑖𝜔𝑡 tr (𝜌 [O(𝑡),O]) (6)

Due to the suppression of low𝜔 contributions by the tanh( 𝜔2𝑇 )
term, equation (5) shows that high frequency quantum fluctua-
tions in 𝜒′′(𝜔,𝑇) are the primary contributions to multipartite
entanglement in the system [26]. As 𝑇 → 0 , tanh( 𝜔2𝑇 ) → 1
for all 𝜔, and quantum fluctuations at all energy scales con-
tribute to multipartite entanglement.

3. Power-law scaling theory of the QFI

Using real-space renormalization arguments, Ref. [26]
shows that at a 1-D quantum critical point, the QFI density
scales as

𝑓𝑄 = 𝜆Δ𝑄𝜙(𝑇𝜆𝑧 , 𝐿−1𝜆, ℎ𝜆 1𝜈 ) + 𝑐 (7)

where 𝜙 is a universal function of its dimensionless arguments,
𝑐 is a non-universal constant, and 𝜆 is the correlation length
cutoff-scale associated with perturbations from the critical
point. In Eq. (7), 𝜈 and 𝑧 are the correlation-length critical
exponent and dynamical critical exponent of the critical
point respectively [50], 𝐿 is the system size, and ℎ is the
strength of a conjugate field that drives the system away from
criticality. The scaling exponent of the QFI is Δ𝑄 = 1 − 2ΔO ,
where ΔO is the scaling dimension of the operator O under
a renormalization transformation [50]. Equation (7) implies
that critical points with Δ𝑄 > 0 host diverging multipartite
entanglement as the system is brought closer to criticality,
while for Δ𝑄 < 0 multipartite entanglement asymptotes to a
maximum value [26, 51].

At sufficiently low temperature 𝑇 such that the system is in
the critical regime and such that non-zero temperature is the
most relevant perturbation away from criticality, the correla-
tion length of the system is cut off at a length scale 𝜆 ∼ 𝑇− 1

𝑧

[26, 50]. Then, Eq. (7) implies that

𝑓𝑄 (𝑇) ∼ 𝑇−
Δ𝑄

𝑧 (8)

However, when Δ𝑄 = 0, (7) and (8) do not reveal possible
sub-power-law terms that may dominate critical scaling.

III. FINITE TEMPERATURE SCALING OF
MULTIPARTITE ENTANGLEMENT FROM SPECTRAL

FUNCTIONS

We consider one-dimensional lattices, and operators that are
sums of local operators at wavenumber 𝑞,

O =

𝑁∑︁
𝑥=0

𝑒𝑖𝑞𝑥𝑂 (𝑥) (9)

where 𝑂 (𝑥) is a a local operator acting at site 𝑥 of the lattice.
We also assume that 〈𝑂 (𝑥)〉 = 0. These operators are typical
order parameters of 1-D lattice models, sensitive to critical
fluctuations in these systems, and are appropriate to compute
the QFI with respect to as an entanglement witness [26].
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A. QFI and the Static Structure Factor

Wefirst show that theQFI of a thermal state can be expressed
as

𝑓𝑄 [𝜌,O, 𝛽] = 4𝑆(𝑞, 𝛽) − 16
∫ ∞

0
𝑑𝜔

𝑆(𝑞, 𝜔, 𝛽)
1 + 𝑒𝛽𝜔

= 4𝑆(𝑞, 𝛽) − 𝜖 (𝛽) (10)

where 𝑆(𝑞) is the static structure factor with respect to O

𝑆(𝑞) = 1
𝑁

∑︁
𝑥,𝑦

𝑒−𝑖𝑞 (𝑥−𝑦) 〈𝑂 (𝑥)𝑂 (𝑦)〉 (11)

and 𝑆(𝑞, 𝜔) is the associated dynamic structure factor (DSF)

𝑆(𝑞, 𝜔) = 1
2𝜋𝑁

∫ ∞

−∞
d𝑡

∑︁
𝑥,𝑦

𝑒−𝑖 (𝑞 (𝑥−𝑦)−𝜔𝑡) 〈𝑂 (𝑥)𝑂 (𝑦)〉 (12)

𝑆(𝑞, 𝛽) is equivalent to the variance of O in a thermal state
at inverse temperature 𝛽. Thus, the first term on the right
hand side of (10) is the finite temperature extrapolation of
the expression for the ground state QFI, while 𝜖 (𝛽) produces
a temperature dependent correction which, as we will show,
vanishes as 𝑇 → 0, reproducing (2).

To show (10), we first express the integral formulation of
the QFI (5) in terms of structure factors through the fluctuation
dissipation theorem (see footnote [52]) [53, 54]

𝜒′′(𝑞, 𝜔) = 𝜋
(
1 − 𝑒−𝛽𝜔

)
𝑆(𝑞, 𝜔) (13)

so that

𝑓𝑄 = 4
∫ ∞

0
d𝜔 tanh

(
𝛽𝜔

2

)
(1 − 𝑒−𝛽𝜔)𝑆(𝜔)

= 8
∫ ∞

0
d𝜔
cosh(𝛽𝜔) − 1
𝑒𝛽𝜔 + 1

· 𝑆(𝜔) (14)

where we drop the 𝑞 dependence when unambiguous. Next,
we use the sum rule relating the static structure factor to the
dynamic structure factor [55],

𝑆(𝑞) =
∫ ∞

−∞
d𝜔 𝑆(𝑞, 𝜔) (15)

and the detailed-balance condition 𝑆(−𝜔) = 𝑒−𝛽𝜔𝑆(𝜔) [53],
so that

𝑓𝑄 − 4𝑆(𝑞)

= 8
∫ ∞

0
d𝜔

[
cosh(𝛽𝜔) − 1
𝑒𝛽𝜔 + 1

− (1 + 𝑒−𝛽𝜔)
2

]
𝑆(𝜔)

= 8
∫ ∞

0
d𝜔

(cosh(𝛽𝜔) − 1) − (cosh(𝛽𝜔) + 1)
1 + 𝑒𝛽𝜔

𝑆(𝜔)

= −16
∫ ∞

0
d𝜔

𝑆(𝜔)
1 + 𝑒𝛽𝜔

(16)

which proves (10). The coefficient of 𝑆(𝜔) in (16) is a Fermi-
Dirac distribution and is step-function-like as ≈ Θ(𝑇 −𝜔). For

non-critical many-body systems, the dynamic structure factor
𝑆(𝜔) is finite and decays to 0 rapidly for 𝜔 ' Δ, where Δ is
the spectral bandwidth of excitations created by the operator O
[56]. As 𝑇 → 0 the Fermi-Dirac factor in the integral in (16)
reduces the effective domain of integration of 𝑆(𝜔) to 0, which
causes the term on the right side of (16) to vanish, implying
that 𝑓𝑄 = 4𝑆(𝑞, 𝑇 = 0) = 4Var( ®𝑆total (𝑞)) as expected. At a
quantum critical point, it is possible for 𝑆(𝜔) to be dominated
by gapless excitations, so that the dynamic structure factor
diverges at most algebraically at 𝑇 = 0 [57–59]

𝑆(𝜔) ∼ 𝜔−𝛼

However, as 𝑇 → 0, the width of the Fermi-Dirac factor
in (16) vanishes exponentially fast, removing contributions
from the divergence of 𝑆(𝜔) at 𝜔 = 0, implying once more
that 𝑓𝑄 = 4Var( ®𝑆total (𝑞)). Equation (16) can be given
the following physical interpretation: at 𝑇 = 0, the QFI is
identically 4𝑆(𝑞), and quantum fluctuations at all energy
scales contribute to the QFI through the sum rule (15). As
𝑇 increases, thermal fluctuations introduce excitations into
the static structure factor at higher energies. As the QFI is
sensitive to purely quantum fluctuations [26], these higher
energy thermal excitations are removed by the Fermi-Dirac
weight in the integral in (16) to isolate quantum fluctuations
in the spectral bandwidth of 𝑆(𝜔) – it is precisely such
quantum fluctuations which signify strong entanglement
in the system. This can also be interpreted as a decom-
position of the variance of a thermal state into quantum
and classical contributions in terms of spectral functions.
The integral correction term in (16) is then the variance of
the operator that comes from thermal occupation probabilities.

Equation (16) also implies that all the information about
the low temperature scaling of multipartite entanglement is
contained in the static structure factor. In particular, since
the right side of (16) goes to 0 as 𝑇 → 0, there exists some
non-zero temperature 𝑇𝑄 such that

𝜖 (𝑇𝑄) = 4𝑆(𝑞, 𝑇𝑄) − 𝑓𝑄 (𝑇𝑄) = 16
∫ ∞

0
d𝜔

𝑆(𝑇𝑄, 𝜔)

1 + 𝑒
𝜔
𝑇𝑄

< 1

(17)
Then, the relation (4) between the QFI and multipartite

entanglement implies that the static structure becomes an en-
tanglement witness below 𝑇 < 𝑇𝑄, as

4𝑆(𝜌, 𝑞, 𝑇) > 𝑘 ⇒ 𝜌 at least k-partite entangled (18)

for 𝑘 a divisor of N. Note that this differs by the bound in
Eq. (4) by a difference of 1. Therefore, calculating the static
structure factor at sufficiently low temperature provides a
path to determining multipartite entanglement content in the
system. This approach has significant merits in practice, as
it is generally more tractable to calculate static properties
at finite temperature than the full spectrum of dynamic
interactions or determining exact scaling dimensions of
critical operators as required by (5) or (7). Furthermore, the
static structure factor of operators of the form (9) can be
measured in various quantum materials in neutron scattering
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[60–62] and NMR [63–65] experiments with relative ease.

B. 𝑇𝑄 as an energy scale

The temperature 𝑇𝑄 from Eq. (18) can be interpreted as
an energy scale below which 𝑆(𝑞) is dominated by quantum
fluctuations and becomes an effective entanglement witness.
We discuss the dependence of 𝑇𝑄 on other characteristic
energy scales of the system.

In gapped systemswith energy gap 𝛿, 𝑆(𝑞, 𝜔) has no spectral
weight at 𝜔 / 𝛿. The Fermi-Dirac factor in (10) weights
frequencies below 𝑇 , which implies that 4𝑆(𝑞) − 𝑓𝑄 ≈ 0 for
𝑇 / 𝛿, and becomes non-zero at higher temperatures. Thus,

𝑇𝑄 ∼ 𝛿 (19)

in gapped systems, and 𝛿 is the only energy scale that
determines 𝑇𝑄.

The situation is different at 1-D quantum critical points
where a gap closes. We focus on the case where the system
possesses a single overall energy scale 𝐽 in its Hamiltonian.
For example, 𝐽 could be the nearest-neighbour coupling energy
in a spin-chain. We set 𝐽 = 1 for this discussion. Focusing
on Lorentz invariant QCPs with dynamical critical exponent
𝑧 = 1 [50, 66], scale invariance implies a low temperature
scaling form of the dynamic structure factor

𝑆(𝜔) = 𝐴

𝑇 (1−𝜂)𝜈
𝜙( 𝜔

𝑇
)

(1 − 𝑒− 𝜔
𝑇 )

(20)

at fixed wavenumber 𝑞, where 𝜙 is a universal real function
of 𝜔

𝑇
, 𝐴 is a non-universal dimensionless amplitude, 𝜈 is the

correlation length critical exponent, and 𝜂 is the critical expo-
nent associated with anomalous dimension [57, 58, 66]. This
holds for 𝑇 � 𝐽 and 𝜂 ≠ 1. At 𝑇 ∼ Δ, where Δ is the spectral
bandwidth of 𝑆(𝜔), the coefficient of 𝑆(𝜔) in the integral (14)
is smaller than 𝐽 = 1 for𝜔 < 𝑇 ∼ Δ. Comparing (14) and (15),
we then expect 𝑇𝑄 � Δ ∼ 𝐽, where the scaling in Eq. (20)
holds. Inserting equation (20) into (16), at low temperatures
we find

𝜖 (𝑇) = 𝐴

𝑇 (1−𝜂)𝜈

∫ ∞

0
d𝜔

𝜙( 𝜔
𝑇
)

sinh( 𝜔
𝑇
) =

𝐴𝐷

𝑇 (1−𝜂)𝜈−1 (21)

where

𝐷 =

∫ ∞

0
d𝑢

𝜙(𝑢)
sinh(𝑢)

is a universal constant [67]. From (17), we deduce that

𝑇𝑄 ∼ (𝐴𝐷)
1

(1−𝜂)𝜈−1 (22)

for QCPs with 𝜂 ≠ 1. (22) implies that the scale 𝑇𝑄 is
determined by universal critical exponents of the critical

point, a non-universal amplitude, and the overall energy scale
𝐽. For a given model, the only energy scale of the system that
𝑇𝑄 depends on is 𝐽, and in particular, this analysis suggests
that specific systems with smaller 𝐽 have lower 𝑇𝑄, implying
that their structure factors become dominated by quantum
fluctuations at lower temperatures than for systems with
higher 𝐽.

Note that for critical points with 𝜂 = 1, (20) breaks
down and sub leading corrections to 𝑆(𝜔) that violate
scale-invariance could determine 𝑇𝑄. The Heisenberg model
is one such example, which we discuss in section IVB.

In practice, 𝑇𝑄 can be estimated from Eq. (16) given a low
energy approximation of the finite temperature DSF. Because
of the Fermi-Dirac factor in (16), it suffices to use an approxi-
mation of 𝑆(𝜔,𝑇) that is accurate at only low energies. Such
estimates can often bemade for spin chains using Bosonization
and effective field theory methods [36, 68–70].

IV. FINITE TEMPERATURE MULTIPARTITE
ENTANGLEMENT IN THE HEISENBERG CHAIN

We apply the ideas of section III to the spin- 12 antiferro-
magnetic Heisenberg chain in one dimension, defined by the
Hamiltonian

𝐻 = 𝐽
∑︁
𝑖

𝑆𝑥𝑖 𝑆
𝑥
𝑖+1 + 𝑆

𝑦

𝑖
𝑆
𝑦

𝑖+1 + 𝑆
𝑧
𝑖
𝑆𝑧
𝑖+1 (23)

where 𝑆𝛼
𝑖
= 1
2𝜎

𝛼
𝑖
is the 𝛼 component of the total spin operator

at site 𝑖, 𝛼 ∈ {𝑥, 𝑦, 𝑧}. The 𝑇 = 0 Heisenberg chain is the
𝑆𝑈 (2) symmetric critical point that separates gapped and
gapless phases of the XXZ model [46, 71].

We set 𝐽 = 1 in the following sections, and we measure
temperature in units of 𝐽. For example, a temperature𝑇 = 0.01
in our choice of conventions corresponds to 𝑘𝐵𝑇 = 0.01𝐽 for
a real system with lattice coupling 𝐽.

A. Critical scaling of multipartite entanglement

The power-law scaling theory of the QFI utilizes the scal-
ing dimension ΔO of relevant operators. For the antifer-
romagnetic spin- 12 Heisenberg chain, it is known that the
most relevant operator is the staggered total spin operator
𝑆𝑧total (𝑞 = 𝜋) =

∑
𝑖 (−1)𝑖𝑆𝑧𝑖 [72] and has scaling dimension

Δ = 1
2 [73]. Thus, the scaling exponent of the QFI in (8)

is Δ𝑄 = 0, which does not reveal sub-power-law terms that
contribute to multipartite entanglement. Our discussion in
section III implies that at sufficiently low temperature, the
static structure factor with respect to 𝑆𝑧total (𝑞 = 𝜋) witnesses
multipartite entanglement through equations (16) and (18).
The finite temperature staggered spin structure factor of the
Heisenberg chain has been well studied analytically, numer-
ically, and experimentally [36, 60, 61, 74] and is known to



6

display a power-logarithmic divergence, from general scaling
arguments, as 𝑇 → 0

𝑆(𝜋, 𝑇) = 𝐷
(
log

(
𝑇0
𝑇

))3/2
(24)

for constants 𝐷 and 𝑇0 [37]. Therefore, we expect multipartite
entanglement in the Heisenberg chain to diverge at low tem-
peratures, with critical scaling as in (24), which reduces to (1)
as 𝑇 → 0.

B. QFI from Conformal Field Theory

We first estimate the temperature scale 𝑇𝑄 below which
the static structure factor witnesses multipartite entanglement
through the bound (18). At low energies, the Hamiltonian
(23) can be expressed in terms of an effective Tomonaga-
Luttinger-Liquid (TLL) conformally invariant quantum field
theory [75, 76]. From the TLL model, Starykh, Singh, and
Sandvik [36] proposed an analytical expression for the dynam-
ical susceptibility 𝜒(𝜔, 𝑞) of the staggered spin operator in the
Heisenberg chain, which extends the free-boson approach de-
veloped by Schulz [77] with multiplicative logarithmic correc-
tions that violate universal 𝜔

𝑇
scaling of 𝜒(𝑞, 𝜔). By adopting

known finite-size scaling relations [78] to finite temperatures
with conformal mappings of space-time correlation functions,
their results imply the following low-energy expression:

𝜒′′(𝜔, 𝑞 = 𝜋) = 2
2Δ− 32𝐷

𝜋𝑇
sin(2𝜋Δ)

(
log

(
𝑇

𝑇0

)) 1
2

× Im
Γ2 (1 − 2Δ) ·

(
Γ

(
Δ − 𝑖 · 𝜔

4𝜋𝑇
)

Γ
(
1 − Δ − 𝑖 · 𝜔

4𝜋𝑇
) )2 (25)

where

Δ =
1
4

©­­«1 −
1

2 log
(
𝑇0
𝑇

) ª®®¬ (26)

and 𝐷 and 𝑇0 are effective constants in the low-temperature
regime. Quantum Monte Carlo simulations in [36] provide
the estimates 𝐷 = 0.075 and 𝑇0 = 4.5, which have been
demonstrated to agree well with experimental data [79].
Because (25) is derived from a low-energy continuum
field theory, it fails to capture the effect of finite spectral
bandwidth due to finite lattice spacing, and overestimates
contributions at large energies 𝜔 ' 1

𝑎
for lattice spacing

𝑎. Eq. (25) also becomes less accurate at 𝑇 ∼ 𝐽 (= 1) as
thermal fluctuations break the assumed linear dispersion of
the TLL theory. However, the Fermi-Dirac weight in Eq.
(16) implies that at low temperature, contributions from
high frequency components of 𝑆(𝜔) decay to 0 rapidly,
making the correction term 𝜖 = 4𝑆(𝜋) − 𝑓𝑄 from the low
energy field theory an accurate approximation. In Fig. 1
we plot 𝜖 (𝑇) using Eq. (16) and Eq. (25), and find that the
finite temperature correction from the static structure factor

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
T

0

1

2

3

4

5 (T)
4S( )
fQ
(TQ) = 1

FIG. 1. 𝜖 = 4𝑆(𝜋) − 𝑓𝑄 = 16
∫ ∞
0 d𝜔

𝑆 (𝜔)
1+𝑒𝜔/𝑇 as a function of temper-

ature using Eq. (25). The circle indicates where 4𝑆(𝜋) − 𝑓𝑄 becomes
negligible at 𝑇𝑄 ≈ 0.04, below which the static structure factor wit-
nesses entanglement through Eq. (18). 4𝑆(𝜋) approximated from the
TLL model is also shown, along with 𝑓𝑄 = 4𝑆(𝜋) − 𝜖 . At 𝑇 = 0.01,
at least 6−partite entanglement is witnessed.

becomes negligible at 𝑇𝑄 ≈ 0.04 [80]. Since 𝜂 = 1 for
the Heisenberg antiferromagnet [66], the scaling analysis of
section III B does not hold, and the energy scale 𝑇0 introduced
by the logarithmic correction to 𝑆(𝜋, 𝜔) in (25) also affects𝑇𝑄.

We can further determine the low-temperature entanglement
depth in the Heisenberg chain using results fromBosonization.
Starykh et al. [36] also proposed an expression for the static
structure factor using conformal mappings of equal time cor-
relation functions to include finite temperature effects, which
for 𝑞 = 𝜋 reduces to

𝑆(𝑞 = 𝜋, 𝑇) = 2Δ+ 12𝐷 log
(
𝑇0
𝑇

) 1
2

× Γ(1 − 4Δ) · Re
(
Γ(1 − 2Δ)
Γ(2Δ)

)
(27)

which reproduces the expected
(
log

(
1
𝑇

)) 3
2 scaling of 𝑆(𝑞 =

𝜋, 𝜔) at low 𝑇 . For 𝑇 < 0.04, we expect |𝜖 (𝑇) | < 1, so
that 𝑆(𝜋) witnesses multipartite entanglement according to the
bound (18). In Fig. 1, we plot 4𝑆(𝜋) from (27), which suggests
that at 𝑇 = 0.01, the Heisenberg chain hosts 5-partite entan-
glement, with diverging entanglement depth at lower temper-
atures. By including 𝜖 (𝑇) to compute 𝑓𝑄 = 4𝑆(𝜋) − 𝜖 , we see
that the chain actually hosts at-least 6-partite entanglement at
this temperature. We note that the Tomonaga-Luttinger-Liquid
is a continuum field theory, which implies that the scaling form
for the equal-time correlation function in Ref. 36 is valid at
distances 𝑥 > Λ � 𝑎 where Λ is a coarse-grained cutoff much
larger than the lattice spacing 𝑎. Contributions from short
distances 𝑥 � Λ to the true 𝑆(𝜋) will diverge as 𝑇 → 0
[37]. However, the scaling-form for the equal-time correlation
function in Ref. 36 produces finite contributions to 𝑆(𝜋) at
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FIG. 2. 𝑓𝑄 computed from MPS simulations of 𝑆(𝜋, 𝜔) using Eq.
(5). The QFI density is fit to the scaling form 𝐷 log(𝑇0𝛽) from Eq.
(24), for 𝛽 ≥ 4, where 𝛽 = 1/𝑇 . Crosses indicate 4𝑆(𝑞) −𝜖 computed
from 𝑆(𝜋, 𝜔) using Eq. (15) and Eq. (10). Inset: Asymptotic scaling
collapse of 𝑓 2/3

𝑄
against log(𝛽), fit to 𝛽 ≥ 4.

short distances as 𝑇 → 0. The positivity of 𝑆(𝜋) then implies
that the static structure factor from (27) is an underestimate,
as it does not include the effect of diverging short distance
contributions close to criticality, while capturing correlations
at distances greater than the coarse-grained cutoff scale accu-
rately. Together, these effects suggest that (27) produces at
most a lower bound to the true entanglement depth at low 𝑇 .

C. Numerical Results

We evaluate the QFI in the Heisenberg model and verify
its asymptotic scaling from MPS simulations of the dynamic
structure factor, on a chain of length 𝐿 = 256 with bond
dimension 𝜒 = 1024. More details of the simulations are
discussed in the appendix.

The inset of Fig. 2 shows that the finite temperature QFI
scales as we expect as log(𝛽)3/2 in the low temperature limit.
𝑓
2/3
𝑄
is fit linearly against log(𝛽) for 𝛽 ≥ 4, showing an asymp-

totic scaling collapse consistentwithEq. (1). Fig. 2 also shows
excellent agreement with the power-logarithmic model in Eq.
(24) even at intermediate temperatures. By extrapolating the
QFI from the fit in Fig. 2, we find that 𝑓𝑄 (𝑇 = 0.01) ≈ 5.9,
which suggests 6-partite entanglement at 𝑇 = 0.01, consis-
tent with the prediction from the low-energy CFT methods in
section IVB. Moreover, we see that (bipartite) entanglement
persists up to temperatures as high as 𝛽 = 2 (𝑇 = 0.5). In Fig.
2, we also show that 𝑓𝑄 computed directly from equation (5)
exactly matches the QFI computed as 4𝑆(𝜋) −𝜖 , where 𝑆(𝜋) is
computed fromMPS data for 𝑆(𝜋, 𝜔) using the sum-rule (15),
and 𝜖 is calculated using the integral formula (16), consistent
with the decomposition of the QFI in Eq. (10).

0.1 0.2 0.3 0.4 0.5
T

0

1

2

3

4

fQ
4S( )

2 4
log( )

1.0

1.5

2.0

2.5

f2/
3

Q

FIG. 3. Calculated normalized Quantum Fisher Information 𝑓𝑄 and
static structure factor 4𝑆(𝜋) for KCuF3. Temperature is in units of
𝐽/𝑘𝐵 . Error bars indicate one standard deviation uncertainty. Inset:
𝑓
2/3
𝑄
shown to scale linearly with log(𝛽) within uncertainty. The low-

est temperature point is excluded from scaling due to non-negligible
interchain coupling causing deviations from the one-dimensional
model.

V. EXPERIMENTAL CONSIDERATIONS

To experimentally demonstrate the relationship between
the Quantum Fisher Information and integrated scattering,
we calculate 𝑓𝑄 and 4𝑆(𝜋) for the 1D Heisenberg spin chain
KCuF3, for which 𝐽 ≈ 33.5 meV, using the inelastic neutron
scattering data from Ref. [34], shown in Fig. 3. For clarity,
we note that in this section we no longer assume that 𝐽 = 1
and 𝑘𝐵 = 1, and we measure 𝑇 in units of 𝐽/𝑘𝐵, where 𝐽
is the lattice coupling energy of the material, and 𝑘𝐵 is the
Boltzmann constant in SI units.

Fig. 3 shows that the measured normalized QFI in the
temperature range of the experimental data for KCuF3 is
consistent with the predicted entanglement depths from
the CFT theory and MPS simulations in sections IVB
and IVC. The inset of Fig. 3 shows the expected scaling
collapse of 𝑓 2/3

𝑄
against log(𝛽), where we exclude the lowest

temperature point at 𝑇 = 6K = 0.015𝐽/𝑘𝐵 from the fit
because non-zero interchain coupling [81] causes magnetic
order below 39K in KCuF3, causing deviations from the
idealized one-dimensional Heisenberg chain [82]. For every
temperature except the lowest (6K), 4𝑆(𝜋) is greater than
𝑓𝑄 by approximately 1, confirming that total scattering is a
reliable approximation to the QFI. At 6K, 𝑓𝑄 and 𝑆(𝜋) are
identical to within uncertainty. This is partially because 4𝑆(𝜋)
and 𝑓𝑄 converge at the lowest temperatures, but also because
KCuF3 does not have a true logarithmic divergence at 6K.
The interchain coupling produces a finite energy maximum in
KCuF3 [83], and thus the tanh factor in the integral form of
the QFI (5) suppresses a negligible amount of scattering at
the lowest temperatures. Measuring other antiferromagnetic
Heisenbergmaterials with smaller interchain coupling, such as
CuPzN [84] [85] or Sr3CuO3 [86] [87], would allow 𝑇𝑄 to be
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reached without magnetic order. Examining these materials in
detail should yield multipartite entanglement far greater than
KCuF3. A noteworthy example to be considered for future
experiments is Sr3CuO3, which has 𝐽 ≈ 190 meV [87]. At
𝑇 = 6 K ≈ 0.0027𝐽/𝑘𝐵, the logarithmic fit in Fig. 2 predicts
𝑓𝑄 ≈ 7.7 – an entanglement depth of at least 8 for this material.

Another important consideration is that magnetic Bragg
peaks in the scattering spectrum must be excluded from 𝑆(𝑞).
The QFI explicitly excludes elastic scattering at 𝜔 = 0 [26],
and so must 𝑆(𝑞) if it is to be used as an entanglement witness.
This is not a consideration if thematerial is being studied above
its magnetic ordering temperature, however, below the order-
ing temperature, Bragg peaks develop which will increase the
elastic contribution to 𝑆(𝑞) dramatically – but this does not in-
dicate increased entanglement. Thus 𝑆(𝑞) must be measured
either (i) above the magnetic ordering temperature, (ii) at a
reciprocal space vector transverse to chains where no Bragg
intensity appears (as was done for KCuF3 in Fig. 3), or else
(iii) the Bragg intensity must be manually removed. It should
be noted that nonzero interchain coupling is unavoidable in
real materials, and dimensional crossovers, where the sys-
tem acts three-dimensional rather than one-dimensional, are
manifest even above the ordering temperatures [88, 89]. Nev-
ertheless, while such effects will cause deviation from theory
and simulations, the QFI still gives a meaningful lower bound
on multipartite entanglement. In fact, as the KCuF3 example
shows, without the true low-energy divergence, 4𝑆(𝜋) and 𝑓𝑄
will converge even faster.

VI. CONCLUSION

A. Summary

We studied the finite temperature multipartite entangle-
ment properties of the 1-D spin- 12 antiferromagnetic Heisen-
berg model, showing that multipartite entanglement scales as
∼ (log(1/𝑇))3/2. We also make an analytical argument that
static structure factors of certain operators witness entangle-
ment below a characteristic temperature scale, by demonstrat-
ing a general decomposition for the Quantum Fisher Informa-
tion (QFI) in terms of the static structure factor and a correction
term that vanishes at 𝑇 → 0. Using these results, we deter-
mine the multipartite entanglement depth at low temperatures
in the Heisenberg chain, and verify the logarithmic scaling law
using results from conformal field-theory [36, 37] and MPS
simulations, showing that entanglement persists at tempera-
tures as high as 𝑇 = 0.5𝐽. We also demonstrate agreement
of our results with neutron scattering data for the Heisenberg-
like material KCuF3. Our work shows that the Heisenberg
chain hosts a non-trivial logarithmic critical scaling of low-
temperature multipartite entanglement, a result that comple-
ments the known logarithmic scaling of entanglement entropy
at the Heisenberg critical point. Moreover, our results suggest
that Heisenberg-like materials host high levels of entangle-
ment even at intermediate temperatures, potentially useful for
quantum technologies that require robust entanglement.

B. Outlook

A natural extension of this work would be to study the
quantum critical scaling of multipartite entanglement at fi-
nite temperature in two-dimensional systems with dominant
logarithmic corrections to spectral functions. One such exam-
ple is the square-lattice spin- 12 antiferromagnetic Heisenberg
chain, for which the static structure factor and susceptibility
have been studied numerically with Quantum Monte-Carlo
simulations, experimentally in neutron scattering studies, as
well as with chiral perturbation theory [90, 91]. Another
interesting direction could be to study the transition from log-
arithmic divergence of finite temperature multipartite entan-
glement to a power-law divergence as next-nearest neighbor
interactions are tuned in the 1D Heisenberg chain, as suffi-
ciently strong next-nearest neighbor interactions are expected
to remove marginally irrelevant operators from the Bosonized
Hamiltonian [36, 37]. Moreover, our work introduces many
potential directions for experimental work to studymultipartite
entanglement at finite temperature, by measuring static struc-
ture factors in both 1D and 2D quantum materials, such as
the 1D Heisenberg antiferromagnet Sr3CuO3 [87], or the 2D
square-lattice Heisenberg antiferromagnet Sr2CuO2Cl2 [91].
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Appendix: Details of MPS Simulations

In section 2, we calculate theQFI from the dynamic structure
factor according to Eq. (14), which is computed from MPS
simulations of two-point space-time correlation functions of
the 𝑆𝑧 operator,

𝐺 (𝑥, 𝑡) =< 𝑆𝑧𝑥 (𝑡), 𝑆𝑧𝑐 (0) >

where 𝑐 = 𝐿/2 is the center site of the chain. We use data for
the two-point correlation functions from a previous work [92],
computed from matrix product states of length 𝐿 = 256, with
bond dimension 𝜒 = 1024. For the time dependence, we use
the Time Evolution Block Decimation (TEBD) [38] algorithm
with Δ𝑡 = 0.1 and a maximum time of 𝑡𝑚𝑎𝑥 = 100. This in
turn sets a minimum and maximum range of confidence in the
𝜔 dependence of 𝑆(𝑞, 𝜔) between 𝜔𝑚𝑖𝑛 ∼ 1

𝑡𝑚𝑎𝑥
and 𝜔𝑚𝑎𝑥 ∼

1
Δ𝑡
. For the finite temperature dependence, we use the ancilla

purification method along with imaginary time evolution [38,
93] with an ancilla system of equal length, and Δ𝛽 = 0.1
for the imaginary time block decimation. As shown in our
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previous work, the correlation functions have been checked
for convergence in 𝐿, 𝜒, and 𝑡𝑚𝑎𝑥 [92]. Using space-time
translational invariance, the dynamic structure factor is defined
as

𝑆(𝑞, 𝜔) = 1
2𝜋𝑁

∫ ∞

−∞
d𝑡

∑︁
𝑥

𝑒−𝑖 (𝑞 (𝑥−𝑐)−𝜔𝑡)𝐺 (𝑥, 𝑡)

and is a real and non-negative quantity. By exploiting symme-
try relations of the equal time correlation function [53], wemay
write the DSF in terms of only the positive time correlations
as

𝑆(𝑞, 𝜔) = 1
√
𝑁

∫ ∞

0
d𝑡

∑︁
𝑥

cos(𝑞(𝑥 − 𝑐))

× (cos(𝜔𝑡)Re(𝐺 (𝑥, 𝑡)) − sin(𝜔𝑡)Im(𝐺 (𝑥, 𝑡)))

which additionally ensures that 𝑆(𝑞, 𝜔) is strictly real [31].
We then normalize 𝑆(𝑞, 𝑤) so that it satisfies the total inelastic
moment sum rule for one spin component in the isotropic
Heisenberg model [53]:∫ ∞

−∞

∫ 2𝜋

0
dq d𝜔 𝑆𝑧 (𝑞, 𝜔) = 𝑆(𝑆 + 1)

3
=
1
4

where 𝑆 = 1
2 is the spin of the model, and the 𝑧 superscript on

𝑆𝑧 (𝑞, 𝜔) is to explicitly indicate that this sum rule holds for one
spin component of the full DSF. This gives 𝑆𝑧 (𝑞, 𝜔) in units
of 2𝜋, so we renormalize 𝑆𝑧 (𝑞, 𝜔) accordingly to absolute
units. To mitigate the effects of finite spectral resolution, we
use Gaussian broadening when computing the DSF by making
the substitution

𝐺 (𝑥, 𝑡) → 𝐺 (𝑥, 𝑡)𝑒−𝜂𝑡2

We use the smallest value of 𝜂 that produces a strictly
non-negative spectrum. This amounts to 𝜂 ≈ 0.01 for all 𝑇 in
our simulations. In Fig. 4, we show the resulting spectra for
the staggered component of the DSF, 𝑞 = 𝜋, from of our data
analysis at inverse temperatures 𝛽 = 4, 5, 6, 8, 10, 16, 20 that
is used to calculate the QFI values in Fig. 2. The maximum
value of 𝛽 in our range of data is 𝛽 = 20. Since the dynamical
critical exponent for the Heisenberg universality class is 𝑧 = 1,
finite temperature introduces a cutoff scale in the correlation
length which is at most 𝜆 ∼ 𝛽1/𝑧 = 20 � 256. Similarly,
using finite entanglement scaling arguments [94], it can be
shown that the length scale introduced by the finite bond

dimension 𝜒 = 1024 is much larger than 𝛽1/𝑧 = 20. Thus,
finite size and finite bond dimension effects are expected to
be negligible for the majority of the spectrum, as temperature
is the most relevant perturbation away from criticality.
However, as 𝜔 → 0, 𝑆(𝜋, 𝜔) diverges as a power law at low
temperature [59, 70], and effects from finite 𝑡𝑚𝑎𝑥 , size, and
bond dimension can cause the tensor network description to
underestimate the critical divergence at 𝜔 = 0 as 𝑇 → 0.
Thus, the QFI computed from our MPS simulations is also a
lower-bound in the worst case.
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FIG. 4. Finite temperature staggered spin dynamic structure
factor computed from MPS and TEBD simulations for 𝛽 =

4, 5, 6, 8, 10, 16, 20.
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