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In this paper we study the structural, scattering, and wave localization properties of multifractal
arrays of electric point dipoles generated from multiplicative random fields with different spectra of
fractal dimensions. Specifically, using the rigorous Green’s matrix method, we investigate the scat-
tering resonances and wave localization behavior of systems with N = 104 dipoles and demonstrate
an enhanced localization behavior in highly inhomogeneous multifractal structures compared to ho-
mogeneous fractals, or monofractals. We show distinctive spectral properties, such as the absence
of level repulsion in the strong multiple scattering regime and power-law statistics of level spacings,
which indicate a clear localization transition enhanced in non-homogeneous multifractals. Our find-
ings unveil the importance of multifractal structural correlations in the multiple scattering regime
of electric dipole arrays and provide an efficient model for the design of multiscale nanophotonic
systems with enhanced light-matter coupling and localization phenomena beyond what is possible
with traditional fractal systems.

I. INTRODUCTION

In recent years, self-similar structures attracted a sig-
nificant interest in photonics and nano-optics technolo-
gies [1–4] adding novel functionalities to the manipu-
lation of optical fields in complex media [5–7] beyond
periodic [8] or disordered systems [9, 10], with applica-
tions to resonant nano-devices and metamaterials [11–
13]. Statistically-homogeneous optical media with frac-
tal geometries, which naturally occur in a wide variety of
physical systems including colloidal aggregates [14] and
certain emulsions [15], motivated earlier studies on the
single scattering properties of light in self-similar struc-
tures [16]. Recently, the light transport through fractal
structures beyond the single scattering regime has also
been studied, leading to the demonstration of photon
super-diffusive phenomena in novel Lévy glass optical
media [17, 18]. These are novel homogeneous materi-
als containing TiO2 nanoparticles and engineered fractal
distributions of poly-dispersed glass spheres that enable
control of photon scattering events in a self-similar envi-
ronment with a small refractive index contrast. However,
the complex geometry of many physical structures and
multi-scale phenomena, ranging from fully developed tur-
bulence and weather systems to the clustering of galaxies,
network traffic, and the stock market, display very irreg-
ular fluctuations that cannot be adequately described by
simple homogeneous fractal models. Starting from the
pioneering work of Hentschel and Procaccia, multifrac-
tal systems have been characterized by a distribution of
fractal scaling exponents Dq, where q often is not an in-
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teger [19]. In particular, Halsey et al. proposed the con-
tinuum spectrum of fractal scaling exponents f(α), also
known as the singularity spectrum, which is frequently
used for the characterization of multifractal structures
[20]. These ideas led to the rigorous theory of multi-
fractality [21–25] which, originally introduced in order to
analyze multiscale energy dissipation in turbulent flows
[25, 26], significantly broadened our understanding of
complex structures in science and engineering [27–32].
Critical phenomena in disordered quantum and classical
systems have been the subject of intense theoretical and
experimental research leading to the discovery of mul-
tifractality in electronic and optical wave functions at
the metal-insulator Anderson transition for conductors
[33–36], superconductors [37], atomic matter waves [38],
and engineered nanophotonic structures [39–43]. Besides
its fundamental interest, understanding the behavior of
optical waves in strongly scattering multifractal media
could offer a novel mechanism to localize and resonantly
distribute classical and quantum light states at multi-
ple length scales and to enhance light-matter coupling
across broad frequency spectra. However, to the best
of our knowledge, the distinctive multiple scattering and
localization behavior of optical waves in multifractal ar-
rays with controlled spectra of scaling exponents is still
missing.

In this paper, we use the rigorous Green’s matrix spec-
tral method that enables a systematic investigation of
complex scattering resonances and their spectral statis-
tics in order to investigate the localization properties of
light in open two-dimensional scattering arrays of elec-
tric dipoles ( i.e., systems with in-plane radiation losses)
with fractal and multifractal geometrical arrangements.
Specifically, by studying the Thouless conductance g [44]
and the first-neighbor level spacing statistical distribu-
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tion for different values of the optical density, our work
demonstrates clear signatures of a broadband localiza-
tion transition with significantly reduced g values in mul-
tifractals compared to their monofractal counterparts.
Moreover, we discover that multifractal arrays support
a significantly larger density of eigenmodes in the lo-
calization regime. Finally, we demonstrate a crossover
in the spectral statistics of level spacing from a level
repulsion behavior, described by the Gaussian unitary
ensemble (GUE) of random matrices [45] at low opti-
cal density, to a level clustering behavior with power-law
level spacing distributions at large optical density. Our
findings show enhanced localization properties in highly-
inhomogeneous multifractal arrays compared to tradi-
tional fractal systems and provide yet-unexplored possi-
bilities to systematically exploit multifractality as a novel
strategy for the engineering of nanophotonic systems and
metamaterials with broadband localization properties for
optical sensing, random lasing, and multi-spectral de-
vices.

Our paper is organized as follows. In section II, we in-
troduce background concepts on fractals and multifrac-
tals. In section III, we discuss the generation of the in-
vestigated fractal and multifractal arrays and introduce
their structural and wave diffraction properties. In sec-
tion IV, we present our results on the spectral and local-
ization properties of the scattering resonances of fractals
and multifractals and we draw our conclusions in sec-
tion V. Finally, in Appendix A we review the relevant
concepts of multifractal analysis and in Appendix B we
summarize the single scattering (i.e., diffraction) proper-
ties of fractals and multifractals.

II. FRACTALS AND MULTIFRACTALS

Fractal objects are characterized by non-integer frac-
tal dimensions and exhibit power-law scaling of struc-
tural (i.e., density-density correlation, structure factor)
and dynamical (i.e., density of modes, spectral functions)
properties [46]. In fractal systems, the exponent of the
power-law scaling of the mass with the system size does
not coincide with the Euclidean dimension. This prop-
erty implies very large local density fluctuations and high
lacunarity [46], leading to the existence of both very
dense and very empty regions. The fractal dimensions of
physical objects is operationally defined using the box-
counting method [47]. In this approach, the space embed-
ding the fractal is sub-divided into a hyper-cubic grid of
boxes (i.e., cells) of linear size ε (i.e., line segments in the
case of one-dimensional objects, squares in two dimen-
sions, cubes in three dimensions, and so on). For a given
box of size ε, the minimum number of boxes N(ε) needed
to cover all the points of the object is determined and
this procedure is repeated for several box sizes. Finally,
the (box-counting) fractal dimension D0 is obtained from
the power-law scaling:

N(ε) ∝ ε−D0 (1)

The procedure can be extended to any suitable mea-
sure defined on a set, and the fractal properties of the
measure (e.g., the number of components or the mass
density of an object) are deduced by studying the scal-
ing behavior of its moments with respect to the size of
covering partitions of the set. Alternatively, for arrays
of point particles we can determine the fractal dimen-
sion by drawing a sphere of radius r and computing the
total number (or the mass) of the particles included in
this sphere, denoted by N(r). Moreover, if randomness is
involved in the fractal object, we then consider the scal-
ing of N(r) over spheres with different centers and the
(average) fractal dimension Dm follows from the scaling
law:

〈N(r)〉 ∝ rDm (2)

Here 〈. . .〉 denotes the average over different spheres with
radius r and the fractal dimension Dm is also called
the mass fractal dimension [46]. The box-counting or
mass fractal dimension introduced above provides a con-
cise description of how the size or mass of a fractal vary
with respect to the magnification scale ε. Objects that
are uniquely described by a constant (scale-independent)
fractal dimension are called homogeneous fractals, or
monofractals, and possess features that repeat identically
at every scale i.e., they exhibit scale-invariance symme-
try or self-similarity over a large range of scales. The
relevance of fractals to physical sciences and other disci-
plines (i.e., economics) was originally pointed out by the
pioneering work of Mandelbrot [48]. More recently, the
concept of multifractals, or inhomogeneous fractals, has
been introduced to characterize complex systems with
space or time dependent self-similar properties and a rig-
orous multifractal formalism has been developed to quan-
titatively describe their local scaling [22, 25, 26], which
is briefly reviewed in Appendix A.

Examples of multifractal structures and phenomena
are commonly encountered in dynamical systems theory
(e.g., strange attractors of nonlinear maps), physics (e.g.,
diffusion-limited aggregates, fluid dynamics), engineering
(e.g., random resistive networks, image analysis), geo-
physics (e.g., rock shapes, creeks), atmospheric science
(analysis of rain and clouds), as well as in statistics and
finance (e.g., extreme value theory, stock markets fluctu-
ations) [22, 25, 28, 29, 47, 49]. Generally, when dealing
with multifractals on which a local measure µ is defined
(i.e., a mass density, a velocity component, an electrical
signal, or some other scalar physical parameter defined on
the fractal object), the (local) singularity strength α(x)
of the multifractal measure µ obeys the more complex
scaling law [27]:

µ[Bx(ε)] ∝ εα(x) (3)

where Bx(ε) denotes a ball (i.e., an open interval) of small
radius ε centered at x. The exponent α(x) measures the
local singularity of the measure, i.e., the smaller the ex-
ponent α(x), the more singular is the measure around x.
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The multifractal spectrum f(α), also known as the singu-
larity spectrum, characterizes the statistical distribution
of the singularity exponent α(x) of the multifractal mea-
sure [47, 49]. Moreover, if we cover the support of the
measure µ with balls of size ε, the number of balls Nα(ε)
which, for a given α, scales like εα, is given by [27]:

Nα(ε) ∝ ε−f(α) (4)

It has been established that in the limit of vanishingly
small ε, f(α) coincides with the fractal dimension of the
set of all points x with the same scaling index α. The
spectrum f(α) was originally introduced by Frisch and
Parisi [25] to investigate the energy dissipation of turbu-
lent fluids. From a physical point of view, the multifractal
spectrum is a quantitative measure of structural inhomo-
geneity and it is well suited for characterizing complex
spatial signals because it can efficiently resolve their lo-
cal fluctuations. In the case of multifractal measures with
a recursive multiplicative structure, such as the ones in-
vestigated in this work, the multifractal spectrum can
be calculated analytically [50]. However, in general it is
obtained numerically by implementing the formalism re-
viewed in Appendix A using, for example, the efficient
approach developed by Chhabra and Jensen [24].

III. MULTIFRACTAL ARRAYS

Multifractal structures were originally proposed to
study turbulent flows and chaotic dynamical systems,
where they originate from nonlinear mechanisms [25, 26,
51]. However, in the context of wave scattering and
diffraction physics, simpler and non-generic multifractals
with analytical spectra are often constructed using ran-
dom multiplicative cascade processes in order to investi-
gate complex media [52]. Moreover, simple multiplicative
processes are also utilized to describe complex structures
that appear in a variety of fields from atmospheric tur-
bulence, astrophysics, and in the study of porous media.
[22, 50, 52–55]. The multifractal scattering arrays inves-
tigated in this paper are generated using random mul-
tiplicative cascades. A random multiplicative cascade
model [52] is constructed by first dividing a square into
four equal squares. To each of the sub-squares, one as-
signs the probabilities pi ∈ [0, 1] with i = 1, 2, 3, 4. This
constitutes the first iteration of the process (n = 1). At
the second iteration (n = 2), each of the four sub-squares
is further divided in four squares, and the probabilities
associated with each sub-division are multiplied in ran-
dom order with the ones of the previous iterations. At
the third iteration, one performs a similar division into
sub-squares and to each of them assigns the probabil-
ities in random permutations from the previous itera-
tions, i.e., n = 1 and n = 2. The resulting multiplica-
tive cascade multifractal distribution is the probability
field obtained in the limit of a large number of iterations
[50]. The probability value attached to a square region

is the product of the pi’s of the square and all its an-
cestors at previous generations and the distribution of
cell values strictly depends on the initial choice of the
probability vector pi. Because the random numbers in
the probability fields are generated multiplicatively, the
corresponding process is a multiplicative random process
that is generally non-Gaussian. Random point patterns
(i.e., point processes) with multifractal scaling properties
induced by the probability fields introduced above are
generated by distributing N particles on the underlying
square lattice with probabilities that are simply propor-
tional to the square-cell values. We used a Monte Carlo
rejection scheme for generating multifractal arrays with
N = 104 point dipoles [50].

In Fig. 1 we show the investigated arrays in panels
(a-d) and the corresponding probability fields in panels
(e-h). The arrays are constructed from the four probabil-
ity vectors reported in the caption. These are chosen so
that the array in panel (a) is a statistically homogeneous
fractal while the arrays in panels (b-d) are multifractals
with an increasing degree of spatial non-uniformity and
structural properties intermediate between uncorrelated
random point patterns and monofractal ones. All the
length scales in Fig. 1 are normalized with respect to
the minimum interparticle separation dmin = 1µm. The
multifractal spectra of the considered particle arrays are
computed analytically in the limit of systems with large
size L. In particular, the spectrum of generalized dimen-
sions has the following expression [50]:

Dq =
1

1− q
log2(fq1 + fq2 + fq3 + fq4 ) (5)

where fi = pi/
∑4
i=1 pi with i = 1, 2, 3, 4. The corre-

sponding multifractal spectrum f(α) is then calculated
according to Eq. A7 where τ(q) = (1−q)Dq. The spectra
of generalized dimensions Dq and the multifractal spec-
tra f(α) for the investigated arrays shown in Fig. 1 are
displayed in Fig. 2. The results show clearly a transition
from an homogeneous fractal structure, featuring a con-
stant box-counting D0 ≈ 1.58 with f(α) supported only
by a single point, to more inhomogneous multifractals
characterized by increasingly broader f(α) spectra for
decreasing amplitudes of the initial probability vectors.

In Fig. 3 we further characterize the geometrical struc-
ture of the investigated arrays by analyzing the normal-
ized probability distributions of the first-neighbor dis-
tances of the particles averaged over 25 realizations of the
disorder. Our findings show that multifractal arrays have
significantly broader probability distributions compared
to the monofractal case shown in panel (a), consistently
with the increased degree of spatial non-uniformity asso-
ciated to their broader multifractal spectra. Specifically,
we found that the arrays with the broader support of the
spectrum f(α) also feature the larger range of distances
in the distribution histograms shown in Fig. 3.

In Fig. 4 we address the single scattering wave proper-
ties of the analyzed fractal and multifractal structures by
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showing in panel (a) the azimuthally-averaged structure
factors. In the plot, the radial wavenumber q has been
normalized with respect to the maximum wavenumber
qmax = 1µm−1. As a comparison, we also report the re-
sults obtained on uniform random structures (URs) with
the same density and averaged over 25 different realiza-
tions. We notice that the averaged structure factor of the
URs deviates from unity close to the origin of the q space
due to the finite size of the patterns that we have investi-
gated. Therefore, in order to accurately characterize the
structural properties of all the investigated systems, we
also computed their radial distribution functions which
are shown in Fig. 4 (b). We note that the correlation

distance d̂1 has been normalized with respect to the mini-
mum interparticle separation dmin. It is well-known that
for fractals and multifractals these quantities display a
power-law decay with a slope determined by the aver-
age fractal dimension [56, 57] (see Appendix B). In par-
ticular, for a homogeneous fractal, the pair-correlation
scales as g2(r) ∝ r−β and similarly for the structure
factor S(q) ∝ |q|−(d−β) where 0 < β < d, consistently
with the data presented in Fig. 4. In particular, for the
monofractal structure (green lines) the slopes extracted
from the linear fit of the structure factor and the g2(r) in
double logarithmic scale yield exactly the box-counting
fractal dimension D0 = 1.58 with β = d−D0. However,
the exact relation between the exponent β and the frac-
tal dimension D0 is non-trivial for more general fractals
and multifractals as it depends on the process of struc-
ture formation as well as their spatial distributions [58].
In all cases, it is important to realize that realistic finite-
size systems exhibit lower and upper bound cutoffs in
their fractal or multifractal nature. This implies that the
power-law decays are observed only over a small range of
scales and the correlation g2(r) eventually converges to 1
at large r, as shown in Fig. 4 (b). Moreover, Fig. 4 shows
how the selected arrays display structural properties that
interpolate in between homogeneous fractals and uncor-
related random media, offering a representative overview
of the behavior of scalar waves in these large-scale com-
plex systems. We provide additional information on the
single scattering properties of fractals and multifractals
in Appendix B and focus next on the multiple scattering
regime.

IV. SPECTRAL AND LOCALIZATION
PROPERTIES OF MULTIFRACTAL ARRAYS

We now investigate the wave transport and localiza-
tion properties of TM-polarized electric dipoles that are
spatially arranged as in Fig.1. Multiple scattering ef-
fects in two spatial dimensions (i.e., for cylindrical waves)
are studied by analyzing the spectral properties of the
Green's matrix defined as:

Gij = i
(
δij + G̃ij

)
(6)

where the elements G̃ij are given by [59]:

G̃ij =
2

iπ
K0(−ik0|ri − rj |) (7)

and K0(−ik0|ri − rj |) denotes the modified Bessel func-
tion of the second kind, k0 is the wavevector of light, and
ri specifies the position of the i-th scattering dipole in
the array. The non-Hermitian matrix (6) describes the
electromagnetic coupling among the scatterers and the
real and imaginary part of its complex eigenvalues Λn
(n ∈ 1, 2, · · ·N) correspond to the detuned frequency
(ω0−ω) and decay rate Γn (both normalized to the reso-
nant width Γ0 of an isolated dipole) of the scattering res-
onances of the system [59, 60]. This formalism accounts
for all the multiple scattering orders and enables the sys-
tematic study of the scattering properties of 2D waves
with an electric field parallel to the invariance axis of the
scatterers [61]. Even though the 2D model in (6) does not
take into account the vector nature of light [62, 63], it still
provides useful information on the localization properties
of light in 2D disorder media [59] and aperiodic structures
[64], and transparency in high-density hyperuniform ma-
terials [61]. Moreover, it correctly describes the coupling
between one or several quantum emitters embedded in
structured dielectric environments [42, 65, 66].

To investigate the spectral properties of the designed
arrays, we analyze the distributions of the complex eigen-
values and representative scattering resonances, the be-
havior of the Thouless number g as a function of the
frequency ω and study its minimum value for each con-
sidered optical density ρλ2, as well as the level spacing
statistics for different values of ρλ2. Here, ρ denotes the
number of scatterers per the unit area, and λ is the op-
tical wavelength. The spectral information is derived by
numerically diagonalizing the N ×N Green's matrix (7).

At low optical density (i.e., ρλ2 = 10−6) all the inves-
tigated systems are in the diffusive regime. Accordingly,
their eigenvalue distributions, color-coded according to
the log10 of the modal spatial extent (MSE), do not show
the formation of any long-lived scattering resonances, as
shown in Fig. (5) (a-d). The MSE parameter quantifies
the spatial extension of a given scattering resonances Ψi

of the system and it is defined as [67]:

MSE =

(
N∑
i=1

|Ψi|2
)2/ N∑

i=1

|Ψi|4 (8)

On the other hand, at large optical density ρλ2 = 50,
we observe the appearance of long-lived scattering reso-
nances forming near ω ≈ −2, as visible in Fig. 5 (e-h).
Consistently, the corresponding Green's matrix eigen-
vectors, reported in Fig.6, are spatially localized over
small clusters of dipoles demonstrating the formation
of Efimov-type few-body scattering resonances occurring
due to locally symmetric particle clusters distributed
across the investigated structures [62, 68]. Moreover,
Fig. 5 also shows the formation of critical scattering res-
onances for point patterns with multifractal properties.
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Critical modes are spatially extended and long-lived reso-
nances with spatial fluctuations at multiple length scales
characterized by a power-law scaling behavior [69, 70],
which are the results of the effect of local correlations on
wave interference across the structures [41].

The Thouless number g as a function of ω is evaluated
as:

g(ω) =
δω

∆ω
=

(1/=[Λn])−1

<[Λn]−<[Λn−1]
(9)

following the same procedure as in our previous work
[62, 64, 68, 71]. In particular, we have sampled the real
parts of the eigenvalues of the Green's matrix in 5000
equi-spaced intervals and we computed eq. (9) in each fre-

quency sub-interval. The symbol {· · · } in eq. (9) denotes
the sub-interval averaging operation, while ω indicates
the central frequency of each sub-interval. We have veri-
fied that the utilized frequency sampling resolution does
not affect the presented results.

Figure 7 shows the results of the Thouless number anal-
ysis in both the dilute and multiple scattering regimes.
Consistently with the low value of the optical density, we
found that the Thouless number is always larger than the
one, indicating a diffusive regime [63, 64]. At larger op-
tical density, the Thouless number shows a completely
different behavior with clear spectral ranges where g
drops below one, indicating the onset of light localiza-
tion. We remark that the long-lived scattering resonances
that are spatially confined over few scatterers appear
at the frequency positions where the Thouless number
becomes lower than one. Interestingly, we found that
point patterns with multifractal geometrical feature en-
hanced localization effects characterized by significantly
smaller Thouless numbers compared to the investigated
monofractal structures generated with a probability p
equal to [1, 1, 1, 0] (i.e., pastel green markers). This out-
come is more evident by looking at the insets in Fig.7 (e-
h), showing an enlarged view of the Thouless number in
the frequency range ω ∈ [−10, 2].

To obtain additional insights on the localization be-
havior of multifractal structures, we analyze the mini-
mum value of the Thouless number as a function of ρλ2.
Specifically, we have evaluated g = g(ω) by using eq. (9)
for each ρλ2 value and we have repeated this procedure
for 25 different point pattern realizations for each inves-
tigated structures. The circle markers and the error bars
in Fig. 8 (a) are the averaged values and the standard de-
viations corresponding to this ensemble-averaged opera-
tion, in the follow identifies by the symbol 〈· · · 〉e. Specifi-
cally, all these curves cross the delocalization-localization
threshold value g = 1 at the same optical density range,
i.e., ρλ2 ∈ [10−1, 1], demonstrating the diffusion to local-
ization transition.

In order to understand the observed transition in these
novel structures we must consider the ratio ξ/L, where L
is the system size and ξ identifies the localization length
provided by [72]:

ξ ∼ lt exp[π<(ke)lt/2] (10)

with lt the transport mean free path and <(ke) the real
part of the effective wavenumber in the medium. Al-
though the numerical factor in Eq. (10) may not be ac-
curate [72, 73], it nevertheless tells us that the local-
ization length in 2D systems is an exponential function
of lt and can be extremely large in the weak scatter-
ing regime (i.e., at low optical density). Specifically, for
isotropic scattering systems discussed here, the transport
mean free path lt coincides with the scattering mean
free path ls, i.e., lt = 1/(ρσd). Here, σd is the cross
section of a single point scatterer, which is related to
the 2D electric polarizability α(ω) [60, 61, 64]. At res-

onance, σd is equal to k30 |α (ω0)|2 /4. Therefore, under
the effective medium approximation, ke can be expressed
as k0 + i/ (2ls) [60, 61] and Eq. 10 can be rewritten as

πλe2π
3ρλ2

/
(
2ρλ2

)
, which relates the localization length

of isotropic structures with their optical density. Us-
ing this estimate into Eq. 10, we found that the ratio of
ξ/L is very large in the low optical density regime (i.e.,
ρλ2 = 10−6), while it becomes smaller than one at larger
optical density. This result is shown in Fig. 8 (b) where
the width of the frequency range ∆ωloc corresponding to
a Thouless number lower than 1 is reported for different
optical densities. Moreover, Fig. 8 (c) also displays the
ensemble-averaged number of localized scattering reso-
nances 〈Nloc〉e. Fig.8 clearly demonstrates that multi-
fractal point patterns generated by multiplicative cas-
cade processes localize scalar waves more efficiently than
monofractal structures. Moreover, the data in Fig. 8 (b)
show a broader range of ∆〈ωloc〉 for multifractals and
URs compared to the monofractal structure (i.e., green-
pastel markers). These results can be understood by con-
sidering the different structural properties of the inves-
tigated systems displayed in Fig. 4. Indeed, we observe
that the multifractal structures with a radial distribution
function that approaches unity, which from a structural
view point are the most “disordered” of the multifractal
systems, show localization properties more similar to the
ones of uncorrelated disordered media (i.e., black mark-
ers in Fig. 8 (a)). Moreover, the multifractal structures
with g2(r) that approaches the monofractal scaling of
Fig. 4 display a progressively weaker localization behav-
ior. Summarizing, the investigated systems are charac-
terized by multi-scale correlation properties that facili-
tate light localization of scalar waves and also support
localized scattering resonances over broader frequency
spectra akin to the ones predicted for uniform random
systems.

In order to better understand the nature of localiza-
tion in the investigated systems we perform a statistical
analysis of the level spacing distribution that is often
utilized to identify different transport regimes in closed
(Hermitian) and open systems [41, 62, 68, 74]. In closed
random systems, established results from random ma-
trix theory (RMT) predict the suppression of level re-
pulsion in the presence of localized states [45]. In these
systems, spatially isolated, exponentially localized modes
hardly influence each other and can coexist at energies
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that are infinitely close. The transition from diffusion
to localization is confirmed by the switching from level
repulsion to level clustering of the quantity 〈P (ŝ)〉e as a
function of ρλ2, which is demonstrated in Fig. 9. Here,
P (ŝ) denotes the probability density function of the first-
neighbor level spacing distribution of the complex eigen-
values of the Green's matrix [75]. It is well-established
that the suppression of the level repulsion (i.e., P (ŝ)→0
when ŝ goes to zero) indicates the transition into the
localization regime for both scalar and vector waves in
two-dimensional and three-dimensional disordered sys-
tems [74–76] as well as non-uniform aperiodic determin-
istic structures [39, 62, 71]. We found that ρλ2 = 10−6,
the distribution of the level spacing of the investigated
arrays show an excellent agreement with the Gaussian
unitary ensemble (GUE) formula [45, 77]:

P (ŝ) =
32 ŝ2

π2
e−4ŝ

2/π (11)

We emphasize that the black-dashed lines in Fig. 9 (a-d)
are not the results of a numerical fitting procedure but
are obtained by directly using eq. (11). This distribution
falls off quadratically for ŝ → 0 [45, 77], demonstrating
that the eigenvalues of the investigated structures exhibit
quadratic level repulsion in the low scattering density
regime. Interestingly, the GUE distribution (11) has also
been discovered in the characteristic spacing of the non-
trivial zeros of the Riemann’s zeta function [78], whose
properties are intimately related to the distribution of
prime numbers. Approaching the threshold of the dis-
covered transition, the quantity 〈P (ŝ)〉e manifests level
repulsion described by the critical cumulative probability
defined as [79]:

I(s) = exp
[
µ−

√
µ2 + (Acs)2

]
(12)

where µ and Ac are fitting parameters, as shown in
Fig. 9 (e-h). The critical cumulative probability was suc-
cessfully applied to describe the energy level spacing dis-
tribution of an Anderson Hamiltonian containing 106 lat-
tice sites at the critical disorder value, i.e., at the metal-
insulator threshold where it is known that all the wave
functions exhibit multifractal scaling properties [79]. Our
findings demonstrate the applicability of critical statis-
tics to this new class of multifractal structures reflecting
the formation of critically localized eigenmodes with self-
similar scaling properties.

In contrast, the level spacing distributions of all the
investigated structures are well-reproduced by the in-
verse power law scaling curve P (s) ∼ s−β (see black-
dotted lines in Fig. 9 (i-l)) in the strong multiple scatter-
ing regime (ρλ2 = 50). In the context of random ma-
trix theory, it has been demonstrated that the power-law
distribution describes complex systems with multifrac-
tal spectra that produce uncountable sets of hierarchi-
cal level clustering [80, 81]. Moreover, this power-law
scaling is related to the phenomenon of anomalous diffu-
sion. Anomalous diffusion is a transport regime in which

the width of a wavepacket σ2 increases upon propaga-
tion according to t2ν with ν ∈ [0, 1] [80]. Such a behav-
ior was observed in different one and two dimensional
aperiodic systems [81–83], and, more recently, in three-
dimensional scattering arrays designed from sub-random
sequences [71] and stealthy hyperuniform disordered sys-
tems [68]. The anomalous exponent ν is related to the
parameter β through the relation ν = (β − 1)/d where
d is the Euclidean dimension of the system [80, 81]. By
substituting the values of β obtained from the numerical
fitting of the data in Figure 9 (i-l), we find that the expo-
nent ν is equal to 0.11±0.03, 0.08±0.01, 0.08±0.01, and
0.06±0.01 for structures generated with the probabilities
vector p equal to [1,1,1,0], [1,1,0.75,0.5], [1,0.75,0.75,0.5],
and [1,0.75,0.5,0.25], respectively. These values are very
small and in fact approaching zero, which is consistent
with the localization regime achieved at the largest opti-
cal density.

V. CONCLUSIONS

In conclusion, we have addressed the structural, spec-
tral and localization properties of multifractal arrays of
electric point dipoles with different degrees of multiscale
structural correlations. We systematically studied the
multiple scattering properties of classical waves using
the spectral Green’s matrix method and demonstrated
an enhanced localization behavior in multifractal struc-
tures compared to homogeneous fractals. In particular,
we found strongly reduced Thouless numbers in the local-
ization regime of multifractals accompanied by a larger
number of localized scattering resonances with critical
level spacing statistics at large optical density. Our re-
sults demonstrate the importance of tailoring multifrac-
tal correlations in the multiple scattering regime for the
engineering of novel nanophotonic systems with broad-
band localization properties for optical sensing, lasing,
and multi-spectral devices.
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Appendix A: Multifractal analysis

Multifractal analysis is based on the scaling properties
of the partition function Zq(ε). We consider an object on
which a measure µ is distributed with constant density
so that its multifractal properties are manifested purely
in the scaling of its geometry. In this case the measure µ
can be regarded simply as the mass density of the fractal
object and the multifractal spectrum describes the ge-
ometrical support itself. The widespread box-counting
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method considers a uniform square grid of boxes with
linear size ε and then introduces the local measure µi as
the proportion of total mass of the object inside the i-th
box of size ε. Then the partition function is defined as:

Zq(ε) =

N∑
i=1

µqi (ε) (A1)

The expression above denotes the sum of the q-th mo-
ments of the local measures over all the boxes needed to
cover the support and is also known as the moment sum.
We note that the higher the values of q in A1, the more
dense are the selected regions.

Multifractal analysis assumes a power-law behavior for
the partition function in the limit ε→ 0 (or N →∞) and
therefore Eq. A1 can be rewritten as:

Zq(ε) ∝ ε(q−1)Dq (A2)

where Dq is the spectrum of generalized dimensions.
Note that the factor q − 1 in the exponent ensures the
validity of the normalization condition Z1(ε) = 1. Inside
each ε× ε box, the local contribution of the multifractal
measure µ is assumed to scale according to:

µi ∝ εαi (A3)

where the local scaling exponent αi = αi(ε), also called
the crowding index, is generally a position dependent
quantity. Furthermore, the number of boxes with a given
crowding index α can be expressed as:

Nα(ε) ∝ ε−f(α) (A4)

Therefore, these boxes cover a subset with the fractal
dimension f(α). At this point, we can immediately es-
tablish the following relation between the scaling func-
tion τ(q), the generalized dimension, and the partition
function:

τ(q) = (1− q)Dq = − lim
ε→0

logZq(ε)

log ε
(A5)

Moreover, by using Eq. A3 and Eq. A4 we see that the
partition function satisfies:

Zq(ε) ∝
∫
εαq−f(α)dα (A6)

where the integral above is slowly varying over the small-
est scales. In the limit ε→ 0, the integral above is dom-
inated by the α values that minimize the exponent and
it can be approximated using the saddlepoint method.
Therefore, when Dq and f(α) are differentiable functions
we can obtain:

f(α) = αq − (q − 1)Dq (A7)

where α is given by:

α = α(q) =
d

dq
[(q − 1)Dq] (A8)

The results above show how the spectrum of generalized
dimensions Dq (or τq) and the singularity (i.e., the mul-
tifractal) spectrum f(α) are connected by the Legendre
transform and offer equivalent descriptions of the multi-
fractal.

Finally, the generalized dimension Dq can be related
to the partition function as follows:

Dq =
1

1− q
lim
ε→0

logZq(ε)

− log ε
=

1

1− q
lim
ε→0

log
∑N
i=1 µ

q
i (ε)

− log ε
(A9)

where we recall that the local measure is the relative mass
of the object in the i-th box, i.e., µi = Mi(ε)/M and Mi

is the mass of the i-th box and M is the total mass.
For q = 0 the expression above yields the box-counting
dimension, for q = 1 the information dimension, for q =
2 the two-point correlation dimension. The generalized
dimensions for q > 2 provides information about higher-
order correlations. For example, D3 characterizes the
correlations between triples of points in each box, D4

between qaudruples, etc.

Appendix B: Single scattering properties

The fractal dimension df of a structure can be obtained
directly by measuring its correlation function, which is an
observable quantity of fundamental importance in wave
scattering experiments (e.g., in light, X-ray, and neutron
scattering) [52]. The density-density correlation function
is defined as:

g(r, r′) = 〈ρ(r)ρ(r′)〉 (B1)

where ρ(r) is the number density of atoms at position
r and 〈. . .〉 denotes an ensemble average. The expres-
sion above quantifies the correlations in the fluctuation
of the number density. For isotropic atomic distributions,
the correlation function depends on the radial distance
r = |r − r′|, which is often defined in spherical coor-
dinates. Additionally, for systems that display transla-
tional invariance on average (i.e., statistically homoge-
neous), we can fix r′ = 0 and write:

g(r) = 〈ρ(r)ρ(0)〉 (B2)

We note that the g(r) defined above, known as the pair
correlation function, is proportional to the probability
of finding a particle at a distance r from another par-
ticle of the system, which is proportional to the par-
ticle density ρ(r) within a sphere of radius r. Since
ρ(r) = dM(r)/dV ∝ rdf−d for a monofractal distribu-
tion, it follows that the correlation function scales as:

G(r) ∝ rdf−d (B3)

where d is the dimension of the embedding Euclidean
space. The scattering intensity observed in actual exper-
iments is proportional to the structure factor S(q), which
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is essentially the Fourier transform of the pair correlation
function:

S(q) = 1 +
N

V

∫
V

[G(r)− 1]e−iq·rdr (B4)

where N is the total number of particles in the system
of volume V and q = k − k′ = (4π/λ) sin(θ/2) is the
momentum transfer. Note that the momentum transfer
should not be confused with the parameter q used in the
multifractal analysis. Here θ is the angle between the
wavevectors k and k′.

The scaling of the structure factor based on a pair dis-
tribution function with a generic power-law singularity
G(r) ∝ r−α can be easily estimated by noting that:

S(q) ∝
∫
e−iq·rddr/rα = (qα/qd)

∫
e−iq·r[dd(qr)/(qr)α]

∝ qα−d
∫
e−ixx−αddx (B5)

where x = qr. Remembering that in our case −α =
df − d, we obtain immediately:

S(q) ∝ q−df (B6)

More sophisticated models for the structure factor of frac-
tals that include finite-size effects have also been devel-
oped and are discussed in [56, 57, 84].

We now concisely address the role of structural cor-
relations in the diffraction (single scattering) proper-
ties of multifractals. For simplicity we consider a one-
dimensional measure µ(x) attached to some geometrical
support of size L. We would like to evaluate the two-
point correlations of the moments of µ(x) defined by:

Gmn(y) = 〈µm(x)µn(x+ y)〉x (B7)

where the brackets indicate averaging over all sites x and
the correlation is between the local measures of boxes
with fixed size ε and separation y. It has been shown in

[85] that the correlation function of box measures can be
described by exponents characterizing the multifractality
of the set. In fact, due to the absence of characteristic
length scales in the multifractal system, its pair correla-
tion can be generally written as [27]:

Gmn(y) ∝ εx1(m,n)L−x2(m,n)yyx3(m,n) (B8)

where the new quantities x1, x2, x3 must be related to
the previously introduced multifractal exponents. This
is obtained by computing the correlation between boxes
separated by the box-size distances ε and L at which the
boxes decorrelate. The steps of this derivation can be
found in [27] where the following expression for x3(m,n)
has been obtained:

x3(m,n) = df − τ(m)− τ(n) + τ(m+ n) (B9)

where df = D0 is the fractal dimension of the support
(Note the opposite sign convention for τ(q) used here
compared to the one in ref. [27]). Therefore, the pair
correlation scales generally as [85]:

Gmn(y) ∝ ydf−τ(m)−τ(n)+τ(m+n) (B10)

Thus, the measurement of spatial correlations can pro-
vide a quantitative test for multifractal behavior. Using
the same argument that led to establish Eq. B6, we can
deduce the general scaling of the structure factor of a
multifractal for given m and n values:

Smn(q) ∝ q−df+τ(m)+τ(n)−τ(n+m) (B11)

The relation above is quite important because it allows
one to characterize the multifractality of a structure with-
out box-counting procedures in numerical calculations,
directly by studying the scaling of the structure factor
for any given values of m and n. However, when spatial
or angular averages are performed on scattering data, as
in Fig. 4, the above formula cannot be directly applied
and a more complex approach, beyond the scope of our
paper, must be introduced.
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FIG. 1. (a-d) Point patterns and (e-h) probability matrices for single realization multifractal structures. Panels (a,e), (b,f), (c,g),
and (d,h) refer to the single realization of multifractal patterns composed by 10000 elements and generated with probabilities
p = [1, 1, 1, 0], p = [1, 1, 0.75, 0.5], p = [1, 0.75, 0.75, 0.5], p = [1, 0.75, 0.5, 0.25], respectively.

FIG. 2. (a) Spectra of generalized dimensions Dq and (b)
multifractal singularity spectra f(α) for multifractal struc-
tures generated with probability vectors p = [1, 1, 1, 0] (thin
solid line and star symbol), p = [1, 1, 0.75, 0.5] (dotted line),
p = [1, 0.75, 0.75, 0.5] (dashed line), and p = [1, 0.75, 0.5, 0.25]
(thick solid line).
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FIG. 3. Normalized histograms of first-neighbor distances
for multifractal structures generated with probabilities (a)
p = [1, 1, 1, 0], p = [1, 1, 0.75, 0.5], p = [1, 0.75, 0.75, 0.5],
p = [1, 0.75, 0.5, 0.25].

(a) (b)

FIG. 4. (a) Azimuthally averaged structure factor 〈S(q̃)〉,
where q̃ = q/qmax, and (b) radial distribution function g2(r̃)
which gives the probability of finding two particles separated
by a normalized distance r̃ = r/dmin, over 25 realizations
for multifractal structures generated with the probability vec-
tors specified in the legend and the uniform random patterns.
Both panels share the same legend.
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FIG. 5. Panel (a-h) show the complex eigenvalue distribution, color coded with respect to the MSE parameter, of 25 different
realizations of the point patterns presented in Fig.1. Specifically, panels (a-d) and panels (e-h) refer to two different optical
regimes characterized by a value of ρλ2 equal to 10−6 and 50, respectively. The different markers in the panels (e-h) identify
the spectral positions of the representative scattering resonances reported in Fig.5.
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FIG. 6. Representative scattering resonances of the investigated structures in the multiple scattering regime. While panels
(a,e,i) refer to the monofractal point pattern generated with a probability p = [1, 1, 1, 0], panels (b,f,j), (c,g,k), and (d,h,l)
display critical and Efimov-type few-body scattering resonances characterizing multifractal point patterns when p is equal to
[1, 1, 0.75, 0.5], [1, 0.75, 0.75, 0.5], and [1, 0.75, 0.5, 0.25], respectively. The point patterns length scales are the same as shown in
Fig. 1.
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FIG. 7. Panels (a-d) and (e-h) display the Thouless number as a function of the frequency ω extrapolated from the distribution
reported in Fig.4 (a-d) and (e-h), respectively. The pastel green, violet, red, and blue dots correspond to the Thouless number of
25 different disorder realizations produced when ρλ2 is equal to 10−6 (i.e, panels (a-d)) and to 50 (i.e, panels (e-h)), respectively.
The dashed-black lines identify the threshold of the diffusion-localization transition. Panels (e-h) show a zoom-in view in the
range ω ∈ [−10, 2].
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FIG. 8. Panel (a) shows the trend of the minimum of the Thouless number as a function of ρλ2. Panel (b) displays the width
of the frequency range ∆ωloc for different optical densities where all the scattering resonances have a Thouless number lower
than 1. Panel (c) shows the number of localized scattering resonances as a function of ρλ2. All these parameters are averaged
with respect to 25 different realizations and the error bars are the statistical errors associated with this average ensemble
operation. The pastel green, violet, red, and blue markers refer to point patterns generated with a probability p equal to
[1, 1, 1, 0], [1, 1, 0.75, 0.5], [1, 0.75, 0.75, 0.5], and [1, 0.75, 0.5, 0.25], respectively. The black markers denote the UR structure.
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FIG. 9. Ensemble averaged level spacing distribution P (ŝ) as a function of the nearest-neighbor Euclidean distance of the
complex eigenvalues |∆Λ|=|Λn+1 − Λn| normalized to their average value, i.e, ŝ=|∆Λ|/〈|∆Λ|〉. Panels (a-d), (e-h), and (i-
l) correspond to a low (i.e, ρλ2 = 10−6), intermediate (i.e, ρλ2 = 10−1), and high (i.e, ρλ2 = 50) optical density regime,
respectively. The black-dotted lines in panels (a-d), (e-h), and (i-l) identifies the different statistics that better describe the
evolution of 〈P (ŝ)〉e by increasing ρλ2 (see the main text for more details). The pastel green, violet, red, and blue markers
refers to point patterns generated with a probability p equal to [1, 1, 1, 0], [1, 1, 0.75, 0.5], [1, 0.75, 0.75, 0.5], and [1, 0.75, 0.5, 0.25],
respectively.
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