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We calculate the theoretical contribution to the doping and temperature (T ) dependence of elec-
trical resistivity due to scattering by acoustic phonons in Bernal bilayer graphene (BBG) and rhom-
bohedral trilayer graphene (RTG). We focus on the role of nontrivial geometric features of the
detailed, anisotropic k · p band structures of these systems - e.g. Van Hove singularities, Lifshitz
transitions, Fermi surface anisotropy, and band curvature near the gap - whose effects on transport
have not yet been systematically studied. We find that these geometric features strongly influence
the temperature and doping dependencies of the resistivity. In particular, the band geometry leads
to a nonlinear T -dependence in the high-T equipartition regime, complicating the usual T 4 to T
Bloch-Grüneisen crossover. Our focus on BBG and RTG is motivated by recent experiments in these
systems that have discovered several exotic low-T superconductivity proximate to complicated hi-
erarchies of isospin-polarized phases. These interaction-driven phases are intimately related to the
geometric features of the band structures, highlighting the importance of understanding the influ-
ence of band geometry on transport. While resolving the effects of the anisotropic band geometry
on the scattering times requires nontrivial numerical solution, our approach is rooted in intuitive
Boltzmann theory. We compare our results with recent experiment and discuss how our predictions
can be used to elucidate the relative importance of various scattering mechanisms in these systems.

I. INTRODUCTION

Rapid progress in the ability to produce clean, sta-
ble, 2D layered van der Walls heterostructures made
up of graphene and/or transition metal dichalcogenides
(TMDs) has opened a new subfield of condensed mat-
ter physics [1–42]. The sensitivity of the band structures
of these systems to external control parameters, espe-
cially twist angle and displacement field, gives an un-
precedented experimental ability to engineer flat bands
and control the location of geometric band features (e.g.
Van Hove singularities and Lifshits transitions), and thus
to tune the relative strength of interaction-driven physics.

This family of systems has already shown various
correlated insulating states [7, 13], ferromagnetism [15,
16], correlation-driven valley and iso-spin polarization
[18, 19], anomalous quantum hall physics [21], topologi-
cal insulator physics [23–25], metal-insulator transitions
[35–40], possible “strange metal” resistance scaling at
very low temperature [26–29], and most conspicuously,
possibly-exotic superconductivity [8, 18–20, 22, 30–32],
including phases with verified non-spin-singlet pairing
[18, 20]. The rich phase diagrams and high experimental
control that characterize these systems has quickly made
them into one of the most studied platforms in condensed
matter physics. The above-listed discoveries demonstrate
that geometric band features can have a profound influ-
ence on the effects of interactions on transport properties.
In turn, this highlights the need for a refinement of the
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FIG. 1: We depict the lattice structure of Bernal bilayer
graphene (top) and rhombohedral trilayer graphene (bottom).
The left side of the image shows top-down views of the xy-
plane, labelling atoms with their layer number ({1, 2}) and
sublattice index ({A,B}). The right side of the figure shows
the stacking from a cross-section view.

basic theories of phonon-limited resistivity as applied to
these materials, accurately taking complex band geome-
try into account.

In particular, recent experiments in ABC-stacked
rhombohedral trilayer graphene (RTG) and AB-stacked
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FIG. 2: Overview of phonon scattering in Bernal bilayer and rhombohedral trilayer layered graphene systems. The top row
(a,e) depicts qualitatively distinct kinematically-allowed scattering manifolds for different Bloch states at the same energy. In
these figures, the black curve depicts a Fermi surfaced (near the hole-doped VHS), the pink dot denotes a reference Bloch
state, and the colored points denote the points in k-space that the reference state can scatter too while conserving conservation
of energy and momentum. These are the “scattering manifolds” [Sec. III B], which depend on the geometry of the system.
The coloring of the scattering manifolds encodes the transitions rates from the reference state. These plots demonstrate the
nontrivial kinematics and geometry at play in scattering in these systems. The middle layers (b,c,f,g) shows the density of
states of the two systems, with labels showing how the Fermi surface geometry changes as the sample is doped. The bottom
layer (d,h) gives the central results of this work, the scaling of the resistivity with temperature in various regions of n−T space.
This is captured by a heat map of d log[ρ(n, T )]/d log T. We emphasize the clear connection between the scaling behavior and
the geometric features in the density of states. The doted line gives the naive T ∗

BG calculated with Eq. (1.1) for an isotropic

system. We see that at sufficiently large dopings, the color contours begin to follow the
√
|n| profile traced out by the black

dotted T ∗
BG line, reflecting the fact that at large dopings, the Fermi surface becomes roughly circular. However, our system

exhibits a surprising suppression of T ∗
BG as doping is decreased and the Fermi surface qualitatively changes. These results are

calculated with an inter-layer potential of ∆ = 0.07 eV , and should be compared with Fig. 3, which treats the zero-field case.
The analogous results for a simple Dirac cone (gapped and ungapped) are given in Fig. 4 for further comparison.

Bernal bilayer graphene (BBG) (Fig. 1) have discov-
ered superconductivity (SC) proximate to several corre-
lated, iso-spin polarized phases [18–20, 30] in the vicin-
ity of Van Hove singularities and Lifshitz transitions
in the band structures. Additionally, there is evidence
that some of the superconducting phases host unconven-
tional, non-spin-singlet pairing. Theories of SC in RTG
and BBG based on Cooper pairing mediated by inter-
action with acoustic phonons have been put forth that
propose likely explanations for the SC, explaining the
presence of both spin-triplet and spin-singlet phases and
providing roughly accurate transition temperatures [43–
45]. Additionally, the proximity of SC phases to vari-
ous interaction-driven phases has spurred comparison to

strong correlation physics, and several other explanations
centering e− e interactions have been proposed [46–54].

A time-tested method for ascertaining the relative im-
portance of various scattering mechanisms in a material is
to look for clues in the temperature dependence of the re-
sistivity. This is because different mechanisms generally
produce various characteristic contributions and finite-T
crossovers between these. For example, this debate is
currently unfolding for twisted bilayer graphene, where
it is still unclear whether observed linear-in-T resistivity
dependence is caused by phonons or an interaction-driven
strange metal state, analogous to that famously seen in
several highly-correlated systems [26–29].

The recent experiments in BBG and RTG show that
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FIG. 3: Resistivity scaling with T due to phonon scattering in ungapped BBG and RTG, as in the absence of the inter-layer
potential, to be compared with Fig. 2. As in Fig. 2, the top layers (a,b,d,e) plot the density of states of the system for various
doping levels, labelled with Fermi surface geometries. The bottom row (c,f) provides a heat map of d log[ρ]/d log T over n− T
space, mapping out the various regimes of resistivity scaling. As in the case of the gapped systems (Fig. 2), we see that the
BG transition is strongly affected by the band geometry. Though this is more subtle without the applied field, we still see
the effects clearly in the RTG case, which still exhibits an annular Fermi surface over a small doping window. As before, the
dotted line gives the expected BG crossover for an isotropic system; for the ungapped systems plotted here, this estimate is
quite accurate as long as the sample is sufficiently doped.

moiré-induced correlation effects are not a necessary in-
gredient for SC in layered graphene systems, leaving
phonon-induced pairing as the de-facto leading candi-
date for a universal SC mechanism in these systems. Es-
pecially since acoustic phonons give a consistent theory
of SC in both BBG and RTG, it is important to un-
derstand and isolate the contribution to the resistivity
that should be expected due to acoustic phonons in the
absence of e − e effects. In conventional superconduc-
tors, electron-phonon couplings extracted from SC tend
to agree well with those extracted from transport mea-
surements. Thus, an extensive quantitative comparision
of the SC data and the transport data is an important
step in elucidating the nature of the SC pairing. Further,
since these systems demonstrate that superconductivity
in 2D layered systems can be intertwined with the non-
trivial Fermi surface geometry, they offer an arena to
understand the extent to which these geometric features
effect transport generally.

The general paradigm of acoustic-phonon-limited re-
sistivity in isotropic (semi)metals is as follows [55–61].
In the low-T regime, where the quantum statistics of the
phonon are important, we expect ρ ≈ T d+2, where d
is the dimension of the sample. This characterizes the
“Bloch-Grüneisen” (BG) regime, which corresponds to

kBT � kBT
∗
BG = CBG · (2~vpkF ), (1.1)

FIG. 4: Resistivity scaling with T due to phonon scattering
in simple gapped (right) and ungapped (left) Dirac cones, to
be compared with Figs. 2 and 3. As in those figures, the
bottom row provides a heat map of d log[ρ]/d log T over n−T
space. The top row plots the density of states of the system for
various doping levels. The dotted line gives T ∗

BG [Eq. (1.1)].
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FIG. 5: We plot a heat map of log[ρ] over doping den-
sity and temperature for the BBG (left), RTG (middle), and
Dirac (right) systems for both the gapless (top) and gapped
(bottom) cases. For BBG and RTG, the gapped systems cor-
respond to a displacement field ∆ = 0.07 eV , and the gapped
Dirac system has M = 0.05 eV . Several features are promi-
nent. The dark blue in the lower corners shows the universal
features of the BG-transition. All systems but the ungapped
Dirac cone display density dependence throughout the high-T
regime, with a significant increase in resistivity near charge
neutrality. This is especially prominent for the gapped RTG
and BBG systems, where the resistivity spikes to ρ ≈ 3000Ω.

where vp is the phonon velocity, kF is the Fermi momen-
tum, and CBG ≈ O(1) is a material-specific constant.
(Further, kBTBG ≡ 2~vpkF is usually defined.) In the
high-T “equipartition” (EP) regime, T >> T ∗BG, we in-
stead expect linear-in-T resistivity. We note that single-
layer graphene displays these properties elegantly, with
CBG ≈ 1/6 [55, 62].

The goal of this paper is to give a precise theoreti-
cal calculation of the resistance due to acoustic phonon
scattering in BBG and RTG systems in the presence of
an inter-layer potential (∆). We give concrete predic-
tions for the doping (n) and temperature (T ) depen-
dence of the resistivity of these systems in the limit of
phonon-dominated transport. The inter-layer potential
(produced by a displacement field) is required to induce
SC in BBG, and tuning this potential can significantly
alter the band structure and control the location of the
Van Hove singularities, affecting both the SC and the
interaction-driven phases [18, 19].

We carry out our calculation in the framework of Boltz-
mann kinetic theory, treating the acoustic phonons via
the Debye approximation but retaining the full electronic

FIG. 6: Accurate approximate calculations of resistivity in
the equipartition regime can be made efficiently with the pro-
tocol discussed in Sec. III C. Here we plot these approximate
results over a large range of T , extending the scope of Fig. 5.
We see that the large spike in resistivity near charge neu-
trality is a relatively low-T behavior and that the resistivity
decreases at higher temperatures, as T get high enough to
excite carriers in the conduction band. We emphasize that
even at high-T , the resistivity does not return to simple lin-
ear scaling, but instead asymptotes to a constant value. [See
also Figs. 7 and 16.]

band structure obtained by the diagonalization of k · p
Hamiltonians [63, 64]. We are able to numerically solve
the linearized Boltzmann equation in the anisotropic
band geometry and give quantitative predictions for the
resistance and thus for the BG crossover temperature,
T ∗BG. We emphasize that accurately treating the non-
isotropic band structure is a significant technical compli-
cation, beyond the techniques of prominent earlier treat-
ments of resistivity in 2D layered graphene structures
[55–59]. Further, these earlier treatments of multi-layer
graphene do not include the effects of the inter-layer po-
tential.

We find that the electronic structure of the layered sys-
tems significantly distorts the BG paradigm explained
above. In particular, while the high-T behavior of the
scattering rate of an individual Bloch state is linear,
1/τk ∝ kBT , band curvature effects can lead to a compli-
cated non-linear T-dependence of the resistivity curves.
In the cases of gapped systems, (the displacement field
generating ∆ > 0 opens a gap), there is a large spike in
resistivity near charge neutrality. These band-curvature
effects interfere with the BG crossover, and we find that
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FIG. 7: Resistivity data for hole-doped Bernal bilayer (top) and rhombohedral trilayer (bottom) graphene stacks, evaluated
with the displacement field at ∆ = 0.07 eV . Resistivity is given in ohms on a linear scale. The leftmost two columns give the
results of our full numerical calculation for the resistivity of the two systems at various doping levels up to 30K and 120K,
respectively. The third column gives the same resistivity curves extended to 800K, making use of the equipartition assumption
discussed in Sec. III D. The far right columns indicate the doping levels of the curves shown in each row. From the full low-T
results (left) we may extract the effective BG crossover. We see that for large dopings, ρ(T ) exhibits a BG-EP crossover
temperature T ∗

BG as high as 40−60K; however, there is a sharp drop in T ∗
BG to around 20K upon the Lifshitz transition to the

annular Fermi surface. The T ∗
BG continues to drop as we approach charge neutrality, dropping as low as 5−10K. We note that

there is no sharp or discontinuous behavior at the Van Hove singularities. The high-T equipartition results (center) show how
band curvature effects lead to nonlinearity in ρ(n, T ) and how the effects can complicate the BG crossover. We see also that
for dopings close to charge neutrality, we should expect a large spike in resistivity at moderate temperatures (100− 300K).
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the approximate power law for resistivity scaling is
strongly influenced by the band structure geometry. This
is demonstrated in Figs. 2 and 3 (and most others in
this paper). Further, we note that the anisotropy (i.e.,
trigonal warping in graphene systems) in the band struc-
ture alters the low-T BG relaxation rate T 4 power law
to a non-universal, k-dependent T -dependence. While
this nonlinear-in-T equipartition-regime phonon-limited
resistivity is unexpected in the context of Boltzmann the-
ory, we note that it has been detected experimentally
in both bilayer and trilayer twisted graphene systems
[65, 66].

Our paper is organized as follows. In Sec. II, we present
an overview of the main results of the work, emphasizing
the most important quantitative aspects for comparison
with experiment and qualitative results that run counter
to common expectations. We then provide a concise re-
view of acoustic phonon scattering in kinetic theory and
present an overview of the calculation of relaxation times
in the BBG and RTG systems in Sec. III. We empha-
size the roles of anisotropy and band curvature, which
requires more care than the case of an isotropic band.
The non-linear T -dependence we report in the equipar-
tition regime is unexpected ; Section IV provides more
intuition for these effects. Our concluding discussion is
presented in Sec. V.

Some supporting details are relegated to appendices.
Appendix A presents the k · p Hamiltonians used to cal-
culate the band structure of BBG and RTG. Appendix B
discusses the numerical solution for the relaxation rates
in the solution of the linearized Boltzmann equation. Ap-
pendix C discusses the role of the relaxation time approx-
imation in resistivity calculations. Finally, Appendix D
presents additional ρ(n, T ) data for the systems of inter-
est, supplementing the results presented in Sec. II.

II. SUMMARY OF MAIN RESULTS

Our central results are the calculations of the dop-
ing (n) and temperature (T ) dependence of the resis-
tivity [ρ(n, T )] for Bernal bilayer and rhombohedral tri-
layer graphene in the presence of a displacement field,
under the assumption that scattering is limited to acous-
tic phonons (which we treat in the Debye approxima-
tion.) In particular, we give quantitative predictions for
the crossover from the Bloch-Grüneisen regime to the
equipartition regime.

We plot log[ρ(n, T )] for low T (0−120K) in Fig. 5 and
an approximate extension of these results to higher-T (0−
800K) in Fig. 6. Individual curves of ρ(n, T ) for fixed n
are given in Figs. 7. The most obvious feature in this data
is a strong spike in resistivity (ρ ≈ 3000Ω) near to charge
neutrality at low T . From Figs. 6 and 7, we see that this
is a low-T phenomenon and that resistivity drops and
levels out at higher T . However, we note that the high-
T resistivity is definitely not given by a simple T -linear
power law above the BG regime. In Figs. 2, 3, and 4,

we plot d log[ρ(n, T )]/d log(T ) as an approximate scaling
exponent for the resistivity. These plots act as a sort of
“phase diagram” for the various regimes of T -dependence
in the resistivity profile. In particular, we find there is
a region where the resistivity curve flattens out to be
essentially constant with T , sometimes after a downturn.
While this is counter to high-T phonon expectations, this
behavior has been measured in twisted bilayer [65] and
trilayer [66] graphene systems. We stress that this is an
effect entirely due to band curvature, which we discuss
further in Sec. IV.

Figures 2, 7, 5, 3, and 4 all demonstrate the BG
crossover mentioned in the introduction. At high dop-
ings, where the Fermi surface is roughly circular, we find
a T ∗BG ≈ 40− 60K, in line with expectations for a circu-
lar Fermi surface [55–59]. However, we see a sharp drop
to around 20K at the Lifshitz transition to an annular
Fermi surface, and T ∗BG continues to drop as we approach
charge neutrality. From Figs. 2, 3, and 4, it is clear that
the band geometry created by applying a displacement
field (∆) to the graphene layers causes significant alter-
ations to the standard BG transition profile. Addition-
ally, the curve-flattening discussed in the last paragraph
can come into effect at T comparable to the crossover
temperature T ∗BG, making the T 4 → T transition diffi-
cult to observe.

Nevertheless, we predict that the phonon contribution
to resistivity should become important at temperatures
that vary between 10K and 60K, depending on the dop-
ing, as shown in Fig. 7. This should be compared with
what is currently known from experiment: linear-in-T
resistivity dependence has not been observed under 20K
in RTG or under 1.5K in BBG. It is important to note
that the zero-T contribution to resistivity from disorder
ranges from about 30Ω to 70Ω in these systems [18–
20, 30].

We also report results for phonon scattering in BBG
and RTG in the absence of the displacement field. The
data is all given in Fig. 6, and the effective resistivity
power law is extracted in Fig. 3, which should be com-
pared with Fig. 2. We note that in the absence of the
applied field, the high-resistivity spike near charge neu-
trality is significantly diminished. However, we still find
high-T nonlinearity in the resistivity curves. Resistivity
curves for the ungapped cases analogous to Fig. 7 can be
found in Appendix D.

III. RESISTIVITY VIA BOLTZMANN KINETIC
THEORY

The use of Boltzmann kinetic theory to calculate lin-
ear response resistivities due to phonon collisions with
Bloch state electrons is well-established [55, 56, 60, 61].
In this section, we outline the structure of the theory
and explain our calculation, appealing to the Dirac cone
of single-layer graphene to display concepts and high-
light departures of our theory from previous work. We
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first introduce the model in Sec. III A, then we state the
main results of the kinetic theory in Sec. III B and use
these results to give intuition into the Bloch-Grüneisen
crossover in Sec. III C. Finally, Sec. III D discusses the
actual computation of the resistivity.

A. Model

We use the electronic single-particle Hamiltonian

He =
1

L2

∑
k

c†kH
e
kck, (3.1)

where c† ≡ c†s,ξ,σ,l,k creates an electron with crystal

momentum k (relative to Dirac point), spin s, valley
ξ, sublattice σ, and layer l. In our models, He

k ≡
δs,s′δξ,ξ′H

e
σ,l,σ′,l′,k is a k-dependent matrix coupling to-

gether layer and sublattice degrees of freedom, which are
given in Appendix A. This is a k · p continuum Hamil-
tonian from [63, 64], which is very accurate within 1eV
of the charge neutrality point. The four degenerate spin-
valley flavors remain decoupled in our calculation and
contribute equally to the conductivity (inverse resistiv-
ity).

We are interested in the effects of the electron bands,
so we restrict our model to in-plane longitudinal acoustic
phonons and adopt a simple Debye description. We thus
take the phonon Hamiltonian to be

Hp =
∑
l,q

~ωqa
†
l,qal,q, (3.2)

where ωq is the phonon dispersion and we use the De-
bye approximation ωq ≈ vp|q|, where vp is the phonon
velocity. This treatment neglects optical phonons, which
should give a quantitative correction above some tem-
perature. Since optical phonons have a large excitation
gap in graphene, ranging from about 0.15 to 0.20eV [67],
they will become relevant at higher temperatures than
we are concerned about here (approximately 1500K) [67–
69]. Our neglect of optical phonons is further justified by
the fact that the electron-optical-phonon couplings are
weak in graphene multilayers due to sublattice polariza-
tion [22].

We couple the electrons to phonons via the well-known
deformation potential coupling Hamiltonian [55, 60, 70]:

Hepc =

√
D2~

2ρML2

∑
l,q

n̂q,l√
ωq

(−iq · êq)(aq,l + a†−q,l).

(3.3)

Above, D is the deformation potential, ρM is the mass
density of monolayer graphene, and êq is the desplace-
ment unit vector of the phonon. Throughout this work,
we set D = 25 eV, ρM = 7.6 · 10−8g/cm2, and vp =
2.6 · 106cm/s [55–57, 62]. Finally, the electron density

FIG. 8: We plot the kinematically-allowed scattering
manifolds for phonon-scattering on a Dirac cone, given by
Eq. (3.9). The Fermi surface at µ = −0.25eV is plotted in
black and a reference point on the Fermi surface is identi-
fied with a pink dot. The colored points mark the set of
k-space points that the reference point can scatter too while
conserving energy and momentum. The color coding on the
scattering manifold are proportional to the scattering rate
between the two points. The figure is shown for descending
temperatures: 300K, 100K, 30K, 10K. The Bloch-Grüneisen
transition is demonstrated by the fact that the 300K and
100K figures (top) only differ quantitatively by the scale of
the color bar, while they are qualitatively distinct from the
lower-temperature versions (bottom).

operator is

n̂q,l ≡
∑
k

c†(k+q),lck,l. (3.4)

In Eqs. (3.1) and (3.4), sums over unwritten s, σ, ξ, l in-
dices are implicit.

B. Kinetic theory

In the so-called “relaxation time approximation” [61]
[also see Appendix C] to Boltzmann kinetic theory, the
resistivity tensor (ρ) is given by

[ρij(n, T )]−1 =
4e2

TL2

∑
k∈BZ

τkv
i
kv
j
kf(εk)[1− f(εk)],

(3.5)

where T is temperature, L is system length, e is the elec-
tron charge, vjk are components of the velocity of the
Bloch state k, f(ε) is the Fermi distribution function,
and the τk are the relaxation times of the various Bloch
states. If the band structure and Bloch states are known,
the main challenge in the computation of the resistivity
is the computation of the relaxation times. The leading
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factor of 4 follows from the spin and valley degeneracies
of the problem.

In Eq. (3.5), we have suppressed the band index (b)
and taken the sum over k to mean a sum over all Bloch
states: k→ (k, b). We will continue to use this notation
and will explicitly mention when interband excitations or
transitions are important.

Enforcing self-consistency of the relaxation time ap-
proximation on the Boltzmann equation [Appendix (C)],
we find that

1

|vk|L2

∑
k′∈BZ

Wk→k′
1− f(εk′)

1− f(εk)
[lk − lk′ cos θv] = 1,

(3.6)

where lk ≡ |vk|τk are the “relaxation lengths” (mean
free paths), θv is the angle between the Bloch velocities
vk and vk′ , and Wk→k′ is the transition rate from state
k to k′. In the thermodynamic limit, Eq. (3.6) becomes
an integral equation. For a finite-size system, it is a ma-
trix equation that can be inverted to find the relaxation
lengths. Again, band indices have been suppressed, but
k and k′ should be taken to stand for the Bloch states
(k, b) and (k′, b′).

In the case of the standard deformation potential
phonon coupling Hamiltonian, a standard Fermi’s golden
rule calculation gives the transition rates

Wk→k′ =
πD2

ρMvp
|k′ − k|∆(εk, εk′)

∑
l

∣∣∣∣〈ψk′,l|ψk,l〉
∣∣∣∣2

≡ ~vp|q|∆(εk, εk′)Ck,k′ . (3.7)

with

q ≡ k′ − k, (3.8)

∆(εk, εk′) ≡
Nqδ(ε

′ − ε− ~vp|q|)
+(Nq + 1)δ(ε′ − ε+ ~vp|q|)

, (3.9)

Nq ≡
1

exp(~vp|q|/kBT )− 1
. (3.10)

The Dirac δ-functions in Eq. (3.9) enforce conservation
of energy and momentum and Nq gives the occupation
numbers of phonons available for scattering. The first
line in Eq. (3.9) refers to phonon absorption processes
while the second refers to phonon emission.

For a given energy band geometry, the conservation
laws in Eq. (3.9) determine a set of scattering manifolds
for each Bloch state, corresponding to absorption and
emission of phonons. The summand in Eq. (3.6) then
determines the rate of transition to each point on the
scattering manifold. Written as a sum over the scattering
manifold (SM), Eq. (3.6) takes the form

~vp
|vk|L2

∑
k′∈SM

|q|Ck,k′Fµ,T
k,k′ [lk − lk′ cos θv] = 1, (3.11)

with

Fµ,T
k,k′ ≡

1− f(εk′)

1− f(εk)
×
{

Nq εk′ > εk

Nq + 1 εk′ < εk

}
, (3.12)

where k ∈ SM indicates a summation over the scattering
manifold of states picked out by the delta functions in
Eq. (3.9). We emphasize that all implicit dependence of
the relaxation lengths on the temperature or chemical

potential are due to Fµ,T
k,k′ .

From Eqs. (3.5-3.7) we see that resistance scales lin-
early with D2/ρM , so our results are easy to adjust for
different values of these parameters. The dependence on
vp is more involved, since it also affects the geometry of
the scattering manifolds.

Fig. 8 shows how scattering rates can vary across the
scattering manifold, using a Dirac cone as a simple exam-
ple. It also visually demonstrates the transition between
the BG and EP regimes, which we discuss next.

FIG. 9: We plot the log of the relaxation lengths {lk} for
a Dirac cone band structure for various temperatures. We
fix the chemical potential at µ = −0.25 eV and perform the
calculation at T = 10 K (top), T = 30 K (middle), and
T = 100 K (bottom). The far left column shows the re-
laxation lengths plotted over energy, while the central and
rightmost columns give a heat map of the relaxation lengths
in momentum space for the bottom (center) and top (right)
bands, respectively. We emphasize that at low T, states near
the Fermi level become long-lived. Further, states near the
Dirac point are always long-lived due to a vanishing scattering
manifold.
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C. Bloch-Grüneisen and Equipartition regimes

The low-T BG regime is best understood in the case
of an isotropic (lk → lεk and vk ‖ k) and quasi-elastic
(ε′ ≈ ε) system, such as graphene [55]. In this case, we
can replace the velocity angle with the momentum angle
(θv = θk) and Eq. (3.6) simplifies to a direct formula for
the relaxation time:

1

τk
=

~vp
L2

∑
k′∈FS

|q|Ck,k′Fµ,T
k,k′ [1− cos θk] , (3.13)

where k ∈ FS indicates a summation over the Fermi
surface, which is taken to be indistinguishable from the
scattering manifold in the quasi-elastic approximation.

For small q, 1 − cos θk ≈ |q|2 and Ck,k′ ≈ 1, and the

summand of Eq. (3.13) scales with q roughly as |q|3. For
low T , the Fermi functions 1 − f(εk′) and the phonon
occupation function Nq effectively restrict the sum in
Eq. (3.13) to k′ with ~vp|q| ≤ kBT . Summing |q|3 over
the portion of the [(d − 1)-dimensional] scattering man-
ifold within a radius proportional to T gives the famous
power-law defining the BG regime:

1

τk
∝ T d+2. (3.14)

However, if we do not assume isotropy, then we must
restore

1− cos θk → 1− lk′

lk
cos θv (3.15)

in Eq. (3.13). The small-|q| limit of the right hand side of
Eq. (3.15) is not necessarily proportional to |q|2, since it
depends on the way lk′ → lk and vk′ → vk as k′ → k.We
therefore expect anisotropy to introduce non-universal,
k-dependent modifications of the BG power law in the
T -dependence of each relaxation time τk.

In the high-T limit, expanding in small ∆ε/T , we find

Fµ,T
k,k′ =

kBT

~vp|q|
+O(∆ε/T ), (3.16)

and inserting into Eq. (3.6) gives

kBT

|vk|L2

∑
k′∈SM

Ck,k′ [lk − lk′ cos θv] = 1 +O(∆ε/T )2.

(3.17)

Solving Eq. (3.17) order-by-order in 1/T , we see that the
high-T form of the relaxation length is

lk =
ck
kBT

+O(∆ε/T )3. (3.18)

We note that the O(1) term in the ∆ε/T expansion of

Fµ,T
k,k′ in Eq. (3.16) rather remarkably vanishes, prevent-

ing a O(∆ε/T )2 term in Eq. (3.18). This implies that

the high-T scattering rate (due to phonons) of a given
Bloch state should be purely linear, going to zero in the
T → 0 extrapolation.

The equipartition regime is the range of temperature
for which Eq. (3.18) holds for all Block states k. Unlike
the case in the BG regime, the linear-in-T power law for
the relaxation rate of the EP regime is not affected by
anisotropy - all band structure information is encoded in
the “length constants” ck.

D. Resistivity computation

Equations (3.5-3.10) combined with knowledge of the
Bloch states give all the tools necessary to make a re-
sistivity prediction. We solve Eqs. (3.6) for scattering
lengths for each Bloch state [see Appendix B for dis-
cussion.] We emphasize that in general, the relaxation
lengths {lk} implicitly depend on temperature and chem-
ical potential through the Fermi functions and phonon
occupation number (Nq) in Eq. (3.6). Once the {lk} are
known for a given pair (n, T ), the resistivity can be com-
puted through Eq. (3.5). We plot the relaxation lengths
for a Dirac cone band structure in Fig. 9, keeping µ fixed
as we vary T . These results illustrate that states near
the Fermi surface become long-lived at low T .

In Secs. III B-III C, we have suppressed the band index
in summations over Bloch states. The Bernal bilayer and
rhombohedral trilayer k · p Hamiltonians have four and
six bands, respectively, while the Dirac cone model has
two. In each case, we have two “low energy” bands near
charge neutrality: a “valence” (hole) band and a “con-
duction” (particle) band. The higher energy bands, when
present, are over 3.5eV from charge neutrality. We note
that the Fermi distributions in Eq. (3.5) suppress excita-
tions in these higher energy bands for the temperatures
and dopings we are interested in. However, it is impor-
tant to keep both the conduction and valence bands as
charge carriers may be excited in both bands, especially
in the gapless systems. In all the models we study, in-
terband transitions between the conduction and valence
bands are forbidden by kinematics (i.e. the phonon ve-
locity is too low). Interband transitions into higher en-
ergy bands are kinematically allowed, but thermally ir-
relevant.

It is important to note that as we scan T for fixed
n, µ(n, T ) can change, and this can be quite drastic
near a gap. We must therefore calculate µ(n, T ) self-
consistently via

n =
4

L2

∑
k∈BZ

f(εk). (3.19)

The prefactor 4 above follows from the spin and valley
degeneracies. We stress that accurately computing the T -
dependence of µ(n, T ) near the band edge requires keep-
ing both the valence and conduction bands, even if T is
far too low to excite carriers across the gap.
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FIG. 10: We plot heat maps of the relaxation length in
k-space for the Bernal bilayer band structure. We set µ =
−0.066 eV (left) and µ = −0.058 eV (right). For each µ, we
do the calculation for T = 10 K (top), T = 30 K (middle),
and T = 100 K (bottom). and We see that at low T , the
specific geometry of the Fermi surface is very important to
relaxation, but that this information tends to get washed out
at higher T .

The main result of this work is the application of the
above analysis to Bernal bilayer and rhombohedral tri-
layer graphene stacks. These results are presented and
discussed in Sec. II. We use k · p Hamiltonians for these
systems [63, 64], which we provide in Appendix A. The
band structure further gives the density of states and
Fermi surface geometries depicted in Figs. 2,3.

The nontrivial band geometry of these systems gives
scattering manifolds that depend qualitatively on not
only the Fermi level, but also the specific Bloch state in
question, as depicted in Fig. 2. Since the bands are not
isotropic and the phonon scattering cannot be considered
“quasi-elastic” [55], we need to find the full solution of
Eq. (3.6). Solving Eq. (3.6) for the {lk} repeatedly for
many values of n and T , we calculate the resistivity data
given in Figs. 5,7. Data showing how scattering lengths
vary throughout the band structure are given in Fig. 10.

The equipartition regime scaling coefficients, ck, are
given for all the models of interest in Fig. 11. In the
case of Dirac cone graphene, we see that there is a diver-
gence of ck at the Dirac point, arising from a vanishing
set of scattering states. However, in all the other models
under consideration, band curvature effects near charge
neutrality more than compensate for the vanishing scat-

FIG. 11: We plot the equipartition “length constants” over a
wide range of energy for the various systems under study. The
top row gives Bernal bilayer graphene, the middle row gives
rhombohedral trilayer graphene, and the bottom row gives
standard Dirac cone graphene. Gapless systems are on the left
and gapped systems are on the right. With these values stored
we can efficiently compute the resistivity of these systems up
to very high temperatures using Eq. 3.18, though our results
will miss the low-T BG physics, as discussed in Sec. III C.
This is how we generate the high-T results in Figs. 7, 6. We
emphasize that the ungapped Dirac cone graphene, which has
diverging ck near charge neutrality due to a vanishing scatter-
ing manifold, is the outlier here. All other systems we consider
have band curvature effects near charge neutrality that more
than compensate for the vanishing scattering manifolds and
suppress the divergence of ck.

tering manifolds and suppress ck.

IV. NONLINEAR T -DEPENDENCE OF
RESISTIVITY

The “common knowledge” of high-T phonon scatter-
ing is that the resistivity scales linearly with T above the
BG crossover regime [55, 59–61]. While it is true that
each individual relaxation length has the high-T scaling
of Eq. (3.18), the T -dependence of the resistivity itself
can be quite nonlinear. Indeed, our calculations for BBG
and RTG predict a nonlinear T -dependence of the resis-
tivity, especially in the vicinity of the gap. [See Figs. 7,6.]

Our calculations predict that the phonon scattering
will crossover from the BG regime to the EP regime at
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FIG. 12: We plot the “g-function”, [g(ε)], defined in
Eqs. (4.1-4.2) for Bernal bilayer (top), rhombohedral trilayer
(center), and Dirac cone graphene (bottom). We plot g(ε)
for both ungapped (left) and gapped (right) cases. These
graphs demonstrate clearly why single ungapped Dirac cone
graphene has such a robust high-T linear resistivity and why
all the other systems display nonlinear resistivity effects at
high-T .

an effective BG crossover temperature that varies from
as high as 40 K at high doping to as low as < 10 K
near charge neutrality. However, in the EP regime, we
start to see sharp reductions in slope of the resistivity at
temperatures as low as 40 K [See Fig. 7]. For dopings
closer to charge neutrality, we see the resistivity peak
and drop precipitously at T ≈ 300 K. This behavior
has already been observed in twisted bilayer graphene,
[65], at temperatures and resistivity values qualitatively
consistent with our results here.

We note that the non-linear T -dependence resembles
the same sort of resistivity profiles that have been charac-
terized as “resistivity saturation” [71–74] and are some-
times associated with a breakdown of kinetic theory at
the Mott-Ioffe-Regel limit [74–77]. However, we stress
that our results are fully in the Boltzmann framework.
The possibility that the apparent resistivity saturation
type effect could arise purely from the electron-phonon
coupling effects was pointed out in the literature before
[76], but the physics of this apparent saturation in the
current work is qualitatively different, arising not from
non-Boltzmann strong coupling physics, but from subtle
band structure effects as discussed in our paper.

In the rest of this section, we provide some intuition
for the non-linear T -dependence of the resistivity. As

FIG. 13: We plot heat maps of d log[ρ(n, T )]/d log T for the
various systems using the resistivities calculated in the high-T
equipartition calculation (the data from Fig. 6). This should
be compared with Figs. 2,3, and 4. Since this is based on resis-
tivity data from the equipartition regime, it does not contain
any BG physics, and any deviations from linear scaling are
due to band curvature effects. We emphasize that these fig-
ures show linear-in-T scaling for dopings away from charge
neutrality, but then demonstrate a flattening of the ρ(T ). We
further emphasize that the flattening seen near the van-Hove
singularities is present here as well, indicating it is an effect of
band geometry in the thermal averaging and not a transition
in the nature of the scattering.

discussed above, the high-T relaxation lengths are given
in terms of the n, T -independent constants {ck}. We can
gain an understanding of the non-linearity of ρ(T ) by
considering the function

δijg(ε) ≡ 1

L2

∑
k

vikv
j
k

|vk|
ckδ[ε− εk]. (4.1)

In the EP regime, we can write the high-T conductivity
in terms of g(ε):

σ =
1

(kBT )2

∫
dεg(ε)f(ε)[1− f(ε)] (4.2)

We see that even in the equipartition regime, we only
have linear scaling of the resistivity if the integral over ε
in Eq. (4.2) scales linearly with T , which will be true as
long as g(ε) has a good linear approximation in a window
of width kBT about µ(n, T ). The functions g(ε) are plot-
ted in Fig. 12. We see that gapless Dirac cone graphene
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has a perfectly flat g(ε), (though our figure shows finite-
size effects near the Dirac point), giving the familiar, per-
fectly linear resistivity in the equipartition regime. On
the other hand, we see that gapless Dirac cone graphene
is the exception - all of the other systems studied exhibit
band curvature that manifests nonlinearity in g(ε). The
gapless bilayer and trilayer systems exhibit g(ε) that can
be roughly approximated as linear over small ε-windows
when sufficiently doped. However, we expect a quali-
tative change when T ≈ |µ(n, T )|, and the integral in
Eq. (4.2) crosses the zero-energy point, where we ex-
pect the scaling of the integral in Eq. (4.2) to crossover
from linear-in-T to quadratic-in-T . This would result in
a crossover to a roughly T -independent resistivity when
T ≈ µ(n, T ), which is indeed what we see in Fig. (3).
All three gapped systems exhibit more curvature in g(ε),
even when far from charge neutrality, but may still be
linearly approximated in a small T -window. However,
sharp qualitative changes in g(ε) occur at a band edge,
so we expect sharp qualitative changes in the resistiv-
ity scaling when T ≈ |µ(n, T )| −Egap/2 and again when
T ≈ |µ(n, T )| + Egap/2. For a system without a band
gap, we would only expect a single kink. Figures 7 and
16 - 15 demonstrate this intuition. Two distinct kinks
are visible in many resistivity curves in Figs. 7 and 16,
which plot the data for gapped systems, while curves in
Figs. 14 and 15 tend to have a single kink.

We emphasize that the nonlinear T -dependence of the
resistivity is in general due to the curvature of the bands
and not necessarily related to interband excitations [65].
For instance, in the hole-doped systems in Fig. 7, with the
potential difference at ∆ = 0.07 eV , the gap is approx-
imately 0.1 eV wide. However, nonlinear T -dependence
is seen at temperatures as low as 40 K, which is far to
cold to excite appreciable states in the conduction band.

V. DISCUSSION AND CONCLUSIONS

We have calculated the electrical DC resistivity of
Bernal bilayer and rhombohedral trilayer graphene sys-
tems, due to scattering off of acoustic phonons. We ex-
tend previous study by using a detailed k ·p band struc-
ture and focusing our attention on the roles of geometric
features of the band structure of these systems, including
those affected by a displacement field.

We develop a thoroughly nontrivial transport theory
for carrier resistivity due to electron-acoustic phonon in-
teraction in experimentally relevant RTG and BBG mul-
tilayer graphene systems. The theory, while using the
standard graphene acoustic phonons and the conven-
tional electron-phonon deformation potential coupling,
includes the full effects of RTG and BBG band structures
(even including an applied electric displacement field)
non-perturbatively by employing a full k · p description.
The qualitative importance of the van Hove singularities
and the anisotropies in the graphene band structures are
exactly incorporated in the theory by iteratively solving

the integral Boltzmann transport equation. This leads to
several qualitatively new features in the resistivity (e.g.
inapplicability of the simple Bloch-Grüneisen criteria for
linear versus non-linear resistivity in temperature, ap-
parent resistivity saturation behavior at higher temper-
atures, and other features as discussed in this paper),
which have not been discussed in the transport literature
of electronic materials before in any context. We pro-
vide concrete predictions for the doping and temperature
dependence of resistivity in RTG and BBG multilayers,
finding that simple considerations for a Bloch-Grüneisen
temperature separating the linear-in-T high-temperature
resistivity from the non-linear low-temperature resistiv-
ity does not apply because of the band geometry intro-
ducing strong modifications of the resistivity behavior.

Our results are important in two contexts. First, the
experiments in BBG and RTG have shown that the ex-
otic superconductivity and the various interaction-driven
correlated states are closely related to the nontrivial ge-
ometric features of the band structures, including Fermi-
surface reshapes and Van Hove singularities. This spot-
lights the enhanced effects of band geometry on scat-
tering processes in complex 2D systems. As 2D layered
heterostructures are currently ascendant in condensed
matter physics, it is important to study the relationship
between band geometry and transport directly and to
modify intuitions gained in three dimensions. Second,
it is crucial in the investigation of the origin of the su-
perconductivity in moiréless layered graphene systems to
understand the relative importance of various scattering
mechanisms. Our work provides a clear and concrete
picture of how the resistivity should behave in a phonon-
dominated system. If strong deviations from these results
are seen in experiment, that could serve as evidence that
the scattering mechanisms other than phonons play dom-
inant roles in transport. This would point to directions
for non-phonon pairing in the observed superconductiv-
ity.

The doping and temperature dependence of the resis-
tivity of these systems behave similarly and with many
interesting features. We find that the BG crossover in the
qualitative T -dependence of the scattering rates varies
as a function of doping from as low as 5K to as high
as 60K. However, we note that this crossover temper-
ature depends strongly on the geometric features of the
band structure, and is sharply reduced by the emergence
of the annular Fermi surface, which is related to the
observed SC. Further, we find that band curvature ef-
fects also give rise to a non-linear T -dependence of the
resistivity at temperatures in the intermediate range of
60K − 300K. While our results show an interesting sen-
sitivity to changes in Fermi surface geometry, they are
remarkably smooth at the Van Hove singularity.

Our results are qualitatively compatible with what is
currently known in experiment [18–20]. We have not yet
seen evidence of the high-T nonlinear equipartition resis-
tivity in BBG or RTG, but very similar effects have been
observed in twisted bilayer [65] and trilayer [66] graphene
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systems. While the BG crossover to linear scattering has
not yet been observed in these systems at low tempera-
tures, our results show that current experiment cannot
rule out the possibility that these systems are dominated
by phonon scattering. In particular, no linear-in-T region
has been observed below 20K in RTG and the zero tem-
perature resistivity varies from 20 − 70Ω (c.f. Fig.S6 in
[19]). Our predictions are compatible with these experi-
mental results. However, our results do make it clear that
extensive experimental resistivity data over wider ranges
of doping and temperature (from 0 to 300K) should be
sufficient to tell if there are strong deviations from the
phonon-dominated picture. Comparison of our results
with future additional experimental resistivity data could
be a crucial step in discovering the origin of SC in these
systems. Further, the low Fermi velocities and high den-
sity of states at the Van Hove singularity should enhance

the effects of electron-electron interactions. Since our cal-
culations do not predict sharp features to emerge at the
Van Hove singularities in a purely phonon picture, obser-
vations of such features in the resistivity could serve as
evidence for strong-coupling physics that could underlie
the systems’ superconductivity.
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Appendix A: Hamiltonians for stacked graphene systems

To calculate the band structure for the Bernal bilayer graphene stack, we use in Eq. (3.1) the Hamiltonian introduced
in [63], and used also in [18, 43, 45]:

He =


−∆ v0k̄ −v4k̄ −v3k
v0k ∆2 −∆ t1 −v4k̄
−v4k t1 ∆2 + ∆ v0k̄
−v3k̄ −v4k v0k ∆

 , (A1)

where we use the dimensionless, valley-dependent, (anti)holomorphic momenta k ≡ a0(ξkx+iky) and k̄ = a0(ξkx−iky)
for valley ξ ∈ {±}, where a0 is the lattice constant for graphene (a0 = 0.246 nm). The parameters take the following
values (all quantities in eV ): ∆2 = 0.015, t1 = 0.361, v0 = 2.261, v3 = 0.245, v4 = 0.12. The interlayer potential is ∆,
and in our calculations this is either set to 0.07 eV or 0 eV . The basis for this matrix is {1A, 1B, 2A, 2B}, where A,B
correspond to sublattice and 1, 2 correspond to layer.

For the rhombohedral trilayer stack, we use the Hamiltonian introduced in [64], and used also in [19, 20, 44, 45]:

He =


∆2 + ∆ + δ γ2/2 v0k̄ v4k̄ v3k 0

γ2/2 ∆2 −∆ + δ 0 v3k̄ v4k v0k
v0k 0 ∆2 + ∆ γ1 v4k̄ 0
v4k v3k γ1 −2∆2 v0k̄ v4k̄
v3k̄ v4k̄ v4k v0k −2∆2 γ1
0 v0k̄ 0 v4k γ1 ∆2 −∆

 , (A2)

where we use the same notation (k, k̄) as in Eq. (A1) and the following parameters (all quantities in eV ):

∆2 = −0.0023, δ = −0.0105, vj = γj
√

3/2, γ0 = 3.1, γ1 = 0.38, γ3 = −0.29, γ4 = −0.141. Again, the interlayer
potential is ∆, and in our calculations this is either set to 0.07 eV or 0 eV . The basis for the RTG Hamiltonian is
{1A, 3B, 1B, 2A, 2B, 3A}.

Appendix B: Numerical implementation of
resistivity calculation

In our numerical calculations for {lk}, we usually re-
tain approximately 106 Bloch states, and must solve a
rather large linear system [Eq. (3.6)] for each pair of val-
ues (n, T ). In our main results [Figs.7,5], we do this
on a 50-by-60 grid in n − T -space. This is necessary to

understand the low-T physics, but the EP regime can
be studied much more efficiently since the {ck} defined
in Eq. (3.18) are independent of both n, T . Once we
solve directly for the ck, calculating the EP approxima-
tion to the resistivity is as simple as computing µ(n, T )
via Eq. (3.19) and then using Eq. (3.18) in Eq. (3.5).
This is how we compute the EP resistivity in Figs.7 and
6.



14

We discuss the numerical solution of Eq. (3.6) in the
main text. In order to discuss the existence and unique-
ness of solutions to Eq. (3.6), as well as the convergence
of iterative methods, we will re-cast this in the traditional
notation of a linear operator problem. Letting k in the
Brillouin zone act as a vector index, we define the vector

b̂ and the matrices Â, D̂, indexed by k ∈ BZ.

Âk,k′ =Wk→k′ [1− f0(εk′)] cos θv (B1)

D̂k,k′′ = δk,k′′

∑
k′

Wk→k′ [1− f0(εk′)] (B2)

b̂k = |vk|L2[1− f0(εk)] (B3)

With this notation, Eq. (3.6) takes the form

(D̂ − Â)l̂ = b̂. (B4)

The solution for the relaxation lengths is then a matrix
inversion problem. A unique solution exists if det[D̂ −
Â] 6= 0, which is always true in this case due to the

diagonal dominance of D̂− Â. Since our problem is large
and we compute the matrix elements only as needed in
the computation, Eq. (B4) is most effectively solved via
an iterative method. We set

l̂i+1 ← D̂−1(Âl̂i + b̂) (B5)

repeatedly until convergence. This is simply a case of
Gauss-Seidel iteration, which is guaranteed to converge
to the unique solution. (This guarantee is again provided
by diagonal dominance.)

Explicitly, in the (i + 1)th iteration (i ≥ 0), we define

{l(i+1)
k } in terms of {l(i)k } via

l
(i+1)
k =

|vk|L2 − ~vp
∑

k′ |q|Ck,k′Fµ,T
k,k′ cos θvl

(i)

k′

~vp
∑

k′ |q|Ck,k′Fµ,T
k,k′

. (B6)

In order to optimize for quick convergence, we initialize
the procedure using the explicit formula for an isotropic
system with quasi-elastic scattering:

l
(0)
k =

[
~vp
|vk|L2

∑
k′

|q|Ck,k′Fµ,T
k,k′ (1− cos θv)

]−1
. (B7)

In practice, we find very quick convergence and only
use two Gauss-Seidel iterations. We emphasize that our
iterative algorithm is a numerical approach to solving the
full BTE, as given in Eqs. (3.6,3.11), which is different
from yet equivalent to another commonly-employed tech-
nique of “iterating the collision integral”.

Additionally, to numerically solve Eq. (3.11) on a dis-
crete momentum grid, we must broaden the delta func-
tions defining the scattering manifold [see Eq. (3.9)]. In
practice, we do this by broadening the delta function to a
finite-width step function of a certain small “tolerance”.
We then check that our results are independent of the

tolerance variable. We note that our results are very
insensitive to reasonable variation of the tolerance. We
also emphasize that this procedure reproduces the known
analytical results for a single Dirac cone with great ac-
curacy.

Appendix C: Relaxation time approximation in
non-isotropic systems

In the case of elastic scattering and an isotropic band
structure, it is well-known that the solution to the relax-
ation time approximation to the Boltzmann equation is
also a solution to the full (linearized) Boltzmann equation
[61]. In our case, we assume neither isotropy nor (quasi-
)elasticity, which are both present in earlier treatments
[55–59]. In this appendix, we discuss the extent to which
the relaxation time approach holds for our systems.

The canonical “relaxation time approximation” to the
Boltzmann equation is the replacement of the collision
integral for the scattering out of state k with the expres-
sion

Ic[Fk]→ IRTc [Fk] ≡ −1

τk
[f(εk)− Fk] , (C1)

where Fk is the full non-equilibrium distribution function
on the set of Bloch states and f(εk) is the Fermi distri-
bution function. This introduces the relaxation times as
timescales for the occupation of state k to reach equilib-
rium.

In the absence of temperature gradients or external
magnetic fields, the non-equilibrium distribution func-
tion may be written to linear order in E in terms of the
relaxation times as

Fk ≈ f(εk) +
1

T
f(εk)[1− f(εk)](eE · vk)τk ≡ F 1

k (C2)

The distribution function in Eq. (C2) is a solution of the
Boltzmann equation under the approximation Eq. (C1)
and calculating the current from the distribution function
in Eq. (C2) gives Eq. (3.5) in the main text.

The relaxation time approximation is generally uncon-
trolled, and the true collision integral in the Boltzmann
equation is

Ic[Fk] = −
∑
k′

Wk→k′Fk[1− Fk′ ]−Wk′→kFk′ [1− Fk].

(C3)

However, if there exist {τk} such that for F 1
k given by

Eq. (C2), we have Ic[F 1
k ] = IRTc [F 1

k ] to first order in E,
then Eq. (C2) is in fact a solution to the full linearized
Boltzmann equation.

Evaluating Eq. (C3) on the distribution function F 1
k

and using the principle of detailed balance, one may see
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that

Ic[F 1
k ] =

−eE
T
·
∑
k′

Wk→k′

[
f(εk)[1− f(εk′)]

×
(
τkvk − τk′vk′

)] . (C4)

Comparing with

IRT [F 1
k ] = −eE · vk

1

T
f(εk)[1− f(εk)], (C5)

we find that Eq. (3.6) is necessary and sufficient for
Eq. (C2) to be a solution to the linearized Boltzmann
equation.

Appendix D: Additional data

In this final appendix, we compile additional data for
the temperature and doping dependencies of the resistiv-
ity for BBG and RTG. We provide the zero displacement
field (∆ = 0) counterparts to Fig. 7, as well as particle-
doped data complementing Fig. 7.
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FIG. 14: We plot resistivity data over temperature for hole-doped and electron-doped Bernal bilayer systems in the absence
of a displacement field (∆ = 0). This should be compared with the Bernal bilayer data in Figs. 7 and 16. As with Fig. 7, the
leftmost two columns give the results of our full numerical calculation for the resistivity of the two systems at various doping
levels up to 30K and 120K, respectively. The third column gives the high-T results in the EP regime. The far-right column
denotes the doping values corresponding to the resistivity curves.
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FIG. 15: We plot resistivity data over temperature for hole-doped and electron-doped rhombohedral trilayer systems in the
absence of a displacement field (∆ = 0). This should be compared with the rhombohedral trilayer data in Figs. 7 and 16. As
with Fig. 7, the leftmost two columns give the results of our full numerical calculation for the resistivity of the two systems
at various doping levels up to 30K and 120K, respectively. The third column gives the high-T results in the EP regime. The
far-right column denotes the doping values corresponding to the resistivity curves.
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FIG. 16: We plot resistivity data over temperature for electron-doped samples, complementing the hole-doped data presented
in Fig. 7. We emphasize that the results are analogous to the hole-doped side. As with Fig. 7, the leftmost two columns give
the results of our full numerical calculation for the resistivity of the two systems at various doping levels up to 30K and 120K,
respectively. The third column gives the high-T results in the EP regime. The far-right column denotes the doping values
corresponding to the resistivity curves.
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