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The Su, Schrieffer and Heeger (SSH) model, describing the soliton excitations in polyacetylene due
to the formation of antiphase domain walls (DW) from the alternating bond pattern, has served as
a paradigmatic example of one-dimensional (1D) chiral topological insulators. While the SSH model
has been realized in photonic and plasmonic systems, there have been limited analogues in three-
dimensional (3D) electronic systems, especially regarding the formation of antiphase DWs. Here, we
propose that pristine bulk Bi, in which the dimerization of (111) atomic layers renders alternating
covalent and van der Waals bonding within and between successive (111) bilayers, respectively, serves
as a 3D analogue of the SSH model. First, we confirm that the two dimerized Bi structures belong
to different Zak phases of 0 and π by considering the parity eigenvalues and Wannier charge centers,
while the previously reported bulk topological phases of Bi remain invariant under the dimerization
reversal. Next, we demonstrate the existence of topologically non-trivial (111) and trivial (112̄) DWs
in which the number of in-gap DW states (ignoring spin) is odd and even respectively, and show
how this controls the interlinking of the Zak phases of the two adjacent domains. Finally, we derive
general criteria specifying when a DW of arbitrary orientation exhibits a π Zak phase based on the
flip of parity eigenvalues. An experimental realization of dimerization in Bi and the formation of
DWs may be achieved via intense femtosecond laser excitations that can alter the interatomic forces
and bond lengths.

I. INTRODUCTION

Polyacetylene,1 (CH)x, is an infinite one-dimensional
(1D) carbon chain whose trans configuration has two
degenerate dimerized structures consisting of alternat-
ing double and single bonds which can be interchanged
by symmetry. Interestingly, polyacetylene exhibits finite
electric conductivity even though its intrinsic band struc-
ture is insulating. This can be understood in terms of
the migration of electrically-charged antiphase domain
walls (DWs) between two structures (domains) with op-
posite dimerization as illustrated in Fig. 1 (a-c). The
Su-Schrieffer-Heeger (SSH) model,2,3 introduced to de-
scribe polyacetylene, yields a transition from a trivial to
topological non-trivial phase depending on the relative
hopping amplitudes between the two distinct types of
bondings, where the so-called “winding number” under-
goes a discontinuous change from 0 → 1. The “winding
number” is closely related to the Zak phase4 which is
quantized to be 0 or π for systems with space inversion
symmetry. Moreover, the DW in the SSH model leads to
the emergence of a boundary localized zero-energy mode
in the middle of the energy gap with charge accumulation
of ±e/2, analogous to the fractionally charged excitations
in quantum field theory. This midgap state is understood
as a topologically protected boundary mode and the SSH
model serves as a paradigmatic example of topological in-
sulator protected by a chiral (i.e., sublattice) symmetry.

The SSH model is the simplest and one of the most
important models in describing band topology in con-
densed matter physics, and has been the subject of in-

tense investigations such as Majorana zero mode in a fi-
nite atomic chain5,6 and an extension to two-dimensional
(2D) systems, including graphene7 and four-basis-8,9 and
two-basis-10 square-lattice models. The latter study10

explicitly characterized several topological phases with
distinct winding numbers upon uniaxial strain and sub-
lattice dimerization where zero-energy flat bands were
predicted to emerge on 1D antiphase DW if the winding
numbers (equivalently the Zak phases) of the two facing
domains are different. This is the 2D analogue of the
SSH model.

In three-dimensional (3D) systems, non-trivial π Zak
phases have drawn less attention and only a few systems
have been found to exhibit them.11,12 Sc2C, a designed
inorganic electride,13 was predicted to exhibit a π Zak
phase with consequent surface states inside its insulat-
ing band gap.11 Surface drum-head states of topological
nodal-line semimetals are also known to originate from
the π Zak phase,14–16 where the drum-head states are
bounded by surface-projected bulk nodal lines, in con-
trast to the π Zak phase insulator. For example, Sc2C
(Y2C) is a π Zak phase insulator (topological nodal-line
semimetal) where the surface states cover 100% (90.4%)
of the surface BZ.11 The {111} surfaces of silicon and
diamond host surface bands from the π Zak phase,12

where each surface unit cell accumulates one half of an
electron17 leading to half-filled metallic surface bands.
An insulating surface can be achieved only by even-
number (such as 2×2) surface reconstructions that allow
an integer number of surface electrons and hence fully
filled bands.12,18 The 3D π Zak phase systems that have
been reported so far involve no atomic displacement that
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FIG. 1. Schematic view of the SSH model and comparison with the 3D analogue. (a) Antiphase DW of the SSH model where
two atomic chains with alternating weak and strong bonding are connected out of phase. (b) and (c) Two dimerized phases
(δ = ±1) and corresponding parity eigenvalues at the two time-reversal invariant momenta (TRIM), Γ and X, whose product
determines the Zak phase (φZ = 0, π). Dashed box denotes the repeating unit cell where weak (strong) bonds are trimmed at
the cell boundary for δ = +1 (δ = −1). Red crosses indicate the (net) Wannier charge center r̄. (d) and (e) Parity eigenvalues
at the eight TRIM points of the 3D SSH model for the two dimerized δ = ±1 phases shown on the right, with strong (weak)
intra- (inter-) bilayer bonding. The shaded vertical lines in momentum space correspond to four individual 1D SSH models in
the presence of inversion and time-reversal symmetries whose Zak phase is quantized and flipped by the dimerization reversal
in analogy to the SSH model. Vertical dashed line in (d) illustrates the closed 1D path, kz ∈ [0, 2π] along which the Zak phase
is defined. (f) Antiphase DW as the 3D analogue of the SSH model where the Zak-phase-induced in-gap states emerge at the
four interface TRIM points, spatially localized at the central (yellow) layer.

can be described as a dimerization. In this work, we show
that each (111) atomic layer of Bi corresponds to a sin-
gle site of the 1D SSH model, and dimerization of the
atomic layers in the ground state results in 0 or π Zak
phases depending on the dimerization sign, δ = ±1, as
illustrated in Fig. 1(d-e).

The Zak phase4 is a special form of the Berry
phase19 and is equivalent to the electronic part of the
polarization,17,20,21

φZ = φB =
2πp

ec
, (1)

where −e is the electron charge, c is the lattice constant
of the unit cell, and p is the dipole moment of the bulk
unit cell that can be in turn expressed in terms of the
Wannier functions of the occupied bands,

p = −
occ.∑
i

eri. (2)

Here, ri is the center of i-th Wannier function. In the
presence of inversion symmetry, the dipole moment is
quantized such that the Zak phase can only take on val-
ues φZ = 0 or π, corresponding to whether the net Wan-
nier center r̄ =

∑
i ri is located at the center (r̄ = 0) or

the boundary (r̄ = c/2) of the bulk unit cell, respectively

(see Fig. 1(b,c)). This definition depends on the choice
of inversion center for the placement of the origin, which
we assume to have been decided once and for all. The
origin-dependent Zak phase has been discussed in detail
by introducing the “intercellular Zak phase”.22 The Zak
phase can be easily computed from the product of the
parity eigenvalues of the occupied bands at time-reversal
invariant momenta (TRIM)23,24 in the 1D momentum
space, where φZ = 0 (π) corresponds to positive (nega-
tive) product as shown in Fig. 1 (b) (Fig. 1 (c)).

In 2D and 3D systems, the Zak phase can be defined on
a closed 1D path such as a periodic kz string with a fixed
in-plane momentum (kx, ky) as shown in Fig. 1(d). Under
inversion and time-reversal symmetry and in the absence
of SOC, an insulating bulk has a constant and quantized
Zak phase on such strings normal to a given surface re-
gardless of the specific in-plane momentum (kx, ky). This
implies that a single pair of surface-projected TRIM is
enough to determine the Zak phase of the entire surface,
φZ(kx, ky) = φZ(0, 0) = {0, π}. Turning on the SOC,
however, allows modulation of the Zak phase which is no
longer quantized at generic surface momenta except at
the surface TRIM. Because of the strong SOC of Bi, we
focus on the four surface TRIM where the Zak phase is
quantized to be 0 or π (see shaded lines in Fig. 1(d,e)
connecting the four pairs of TRIM).
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FIG. 2. Schematic view of the Zak phase, φZ(kx = 0, ky) and relevant boundary states in several topological systems. Lower
(upper) panels illustrate the parity eigenvalues at TRIM points (boundary band structure). (a) 1D SSH model. Open (closed)
circles denote empty (filled) states of the zero-dimensional boundary. Non-trivial π Zak phase on the right side induces a
half-filled zero mode at the Fermi level. (b-e) kx = 0 plane of the 3D momentum space and its surface (normal to z) band
structure without and with SOC. Orange solid lines (shaded areas) denote surface (surface-projected bulk) states. (b) Nodal-
line semimetal whose quantized Zak phase is π and 0 for |ky| < |kc| and |ky| > |kc|, respectively. The continuous zero mode
at |ky| < |kc| forms drum-head states, connecting boundary-projected bulk nodal lines. (c) Strong topological insulator with a
surface Dirac cone which emerges at a surface TRIM with π Zak phase. Dashed orange lines illustrate surface band connectivity
between surface TRIM, referred to as “switch partners”. (d) and (e) 3D π Zak phase without and with SOC, respectively. In
the presence of SOC, the Zak phase is no longer quantized except at the surface TRIM and the in-gap state splits at generic
momentum k.

Figure 2 illustrates schematically the boundary states
of various topological phases and the corresponding Zak
phase configurations at the surface TRIM points. Hi-
rayama et al.11 demonstrated that the surface states
of the 3D π Zak phase (Fig. 2(d)) is a full-BZ exten-
sion of the drum-head states of a nodal-line semimetal
(Fig. 2(b)). This can be understood as a continuous shift
of kc → π that accompanies a band inversion at ky = π
and switching of the Zak phase φZ(0, π) from 0 to π. In
the presence of SOC, the degeneracy of the bulk nodal
lines is lifted and the system becomes a strong topologi-
cal insulator (STI) as shown in Fig. 2(c). Note that the
Zak phases φZ(0, 0) = π and φZ(0, π) = 0 do not change.
In contrast to the STI phase where a robust surface state
is guaranteed by the “switch partners” band connectiv-
ity between TRIM,23,24 the surface state induced by the
π Zak phase is rather isolated in energy from the va-
lence and conduction bands (Fig. 2(e)). The surface band
can be pushed into the valence or conduction bands via
surface modifications unless it is protected by a chiral
(or particle-hole) symmetry which in turn pins the non-
trivial surface state at the Fermi level. Since the Bi p
bands are well separated from the lower energy s bands
and the inter-sublattice hopping matrix elements (σw,v

in Appendix A) are dominant there is an effective chiral
symmetry which retains the non-trivial state within the

bandgap of the Bi antiphase DW.

In this work we propose that the α-phase of bulk Bi in
the rhombohedral structure is a 3D analogue of the 1D
SSH system. In Sec. II using DFT-parameterized tight-
binding model calculations we investigate the topological
properties of the two dimerized states of bulk Bi. We find
that the dimerization reversal induces parity sign flip at
four TRIM (without changing the bulk topology) which
in turn induce a transition of the Zak phase from π →
0, consistent with the emergence of odd or even number
of Wannier charge centers (WCCs) at the cell bound-
ary. In Sec. III A we consider two types of (111) DWs
sandwiched between two oppositely dimerized states and
show the emergence of topologically-protected DW local-
ized states, in contrast to the trivial DW states for the
(112̄) DWs discussed in Sec. III B. In Sec. III C we de-
rive criteria for the emergence of π and 0 Zak phases for
a DW of arbitrary orientation and identify those DW ori-
entations that host non-trivial DW states. Sec. III D dis-
cusses a plausible experimental realization of the dimer-
ization reversal in pristine Bi and the formation of DW
using intense femtosecond laser excitations that can al-
ter the interatomic forces and energy barriers between
the two dimerized states.25 Conclusions are summarized
in Sec. IV and Sec. V describes the methodology used.
Our findings suggest a novel band engineering concept
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FIG. 3. (a) The primitive cell of Bi with two sublattice sites
at fractional height 1/2 ± (1/4 + ∆) along the [111] direc-
tion, where ∆ is the Bi displacement δ = ∆/∆0 = ±1 is the
dimerization sign, and ∆0 is the equilibrium displacement.
Top panel denotes the unstable undimerized state (δ = 0)
and the two lower panels denote the stable dimerized states
(δ = ±1). Dimerized Bi atomic layers, stacked along [111],
are illustrated in the conventional hexagonal cell on the right.
The inversion center O located at the center of the primitive
cell is marked with the red dot. (b) The calculated bulk band
structure using tight-binding parameters obtained from first-
principles calculations (see Appendix A). Red (blue) lines
denote the stable dimerized (unstable undimerized) structure.
Inset: Zoom-in band structure near the T and L points show-
ing the narrow gap and gap-closing (marked by arrows) for
the dimerized and undimerized structures, respectively. (c)
First Brillouin zone (BZ) of bulk Bi and its projection on the
(111) and (112̄) interface BZs.

for topologically protected states using antiphase DWs
where the parity sign flip can occur without the assis-
tance of strong spin-orbit coupling of heavy ions.

II. BULK BI: DIMERIZATION AND
TOPOLOGY

Atomic structure – The α-phase of bulk Bi in the rhom-
bohedral structure (space group R3̄m, No. 166) is shown
in Fig. 3(a), where the conventional unit cell has a bilayer
(BL) structure with an ABC stacking sequence along the
[111] direction consisting of three BLs. There is strong
covalent bond within each BL (intra-BL bonding), with a
Bi atom forming three σ bonds with its nearest neighbors,

and weak van der Waals bonding between two nearest-
neighbor BLs (inter-BL bonding). The intra- and inter-
BL sequence of bonds alternate along the [111] stacking
direction, which is exactly analogous to the alternating
double and single bonds in polyacetylene shown schemat-
ically in Fig. 1(b-e).

Furthermore, as shown in Fig. 3(a), the intra- and
inter-BL bonds can be interchanged, resulting in two de-
generate dimerized ground states with opposite dimer-
ization parameters δ ≡ ∆/∆0 = ±1. Here, ∆ is
the displacement of the two Bi atoms in the primitive
cell along [111] [Fig. 3(a)] in units of the lattice vec-
tor c = | ~a1 + ~a2 + ~a3| (~ai, i =1-3 are primitive lattice
vectors), and ∆0 is the equilibrium displacement. The
positively dimerized state can be obtained from the neg-
atively dimerized state via a translation by a half lattice
vector, or vice versa. In sharp contrast to 2D and 3D
topological orders, the Zak phase is not invariant under
such a translation.

Electronic Structure– Fig. 3(b) shows the tight-binding
(see Appendix A) band structure with (δ = ±1, red lines)
and without (δ = 0, blue lines) dimerization. The direct
band gaps at the TRIM points L and T close at δ = 0
where the parity eigenvalues of the states near the Fermi
level reverse sign by the dimerization sign reversal, indi-
cating band inversions at these TRIM points.
Parity– The number of negative-parity eigenstates at

the TRIM points is listed in Table I for the two different
dimerization states, δ = ±1. The change of parity states
upon dimerization reversal is also related to the multi-
ple choices of inversion center. For instance, if one takes
(0, 0, 0) (the diagonal corner of the primitive cell) to be the
inversion center instead of (1/2, 1/2, 1/2) (the center of the
primitive cell), the parity of the state changes as if the dimer-
ization is reversed. This is because a structure with reversed
dimerization is equivalent to one that is translated by half the
cell diagonal.

Topological phases protected by time-reversal or crystalline
symmetries should be independent of the choice of inversion

TABLE I. Number of negative parity states n−λ of the six
occupied bands at the TRIM points for two dimerizations
δ = ±1, classified under the eigenvalues of the symmetry op-

erations σ(11̄0), Ĉ
[111]
3 , and Ĉ

[11̄0]
2 . The origin of the parity

operation is (1/2, 1/2, 1/2) and the two-fold Ĉ2 rotation axis,
[11̄0] is normal to the σ mirror plane, (11̄0). Only those TRIM
points which are invariant under these symmetry operations
are listed.

λ n−λ σ(11̄0) Ĉ
(111)
3 Ĉ

(11̄0)
2

δ TRIM total −i +i −π/3 π +π/3 −π/2 +π/2

+1

Γ 0 0 0 0 0 0 0 0
T 2 1 1 1 0 1 1 1
F 4 2 2 - - - 2 2
L 2 1 1 - - - 1 1

−1

Γ 0 0 0 0 0 0 0 0
T 4 2 2 1 2 1 2 2
F 4 2 2 - - - 2 2
L 4 2 2 - - - 2 2



5

center as well as the sign of dimerization. Even though there
is a parity sign flip at the L and T points, we show below
that the well-known topological phases of bulk Bi are indeed
intact under dimerization reversal by calculating the various
topological indices: (i) ν0 for STI under time-reversal sym-

metry, (ii) {ν(π), ν(±π/3)} for higher order topological insu-

lator (HOTI) under the three-fold rotational symmetry Ĉ3,

and (iii) {ν(π/2), ν(−π/2)} for crystalline topological insulator

(CTI) under the two-fold rotational symmetry Ĉ2.
First, the STI Z2 phase, protected by time-reversal sym-

metry, is expressed in terms of the parity eigenvalues of the
occupied states at the TRIM points as,

ν0 =
1

2

TRIM∑
λ

n−λ mod 2, (3)

=
1

2

(
n−Γ + n−T + 3n−F + 3n−L

)
mod 2, (4)

where n−λ is the number of occupied states with negative par-
ity at the TRIM point λ. For both dimerized phases, we find
ν0 = 0 corresponding to the trivial phase that is consistent
with previous reports.26,27

Next, the HOTI phase of Bi is verified by grouping occupied
states at TRIM points into Ĉ3 symmetry subspace according
to the rotation eigenvalues of exp(iπ) and exp(±iπ/3).26 The
fact that each subspace is closed under time-reversal symme-
try allows the Z2 classification for each subspace. Among
the TRIM points, only Γ and T points are invariant un-
der the Ĉ3 rotation. On the other hand, for the remaining
(F1,2,3 and L1,2,3) TRIM which are not invariant under Ĉ3,
one can construct linear combination of these three states
(which transform into each other under three-fold rotation;

F1 → F2 → F3 → F1 as well as Li) to render them Ĉ3

eigenstates (see Ref.26 for more details). The number of lin-
early combined states with negative parity for the two sub-
spaces are n−α,π = n−α and n−α,±π/3 = 2n−α = 0 (mod 2), where

α ∈ {F,L}. Thus, the topological invariant for the two sub-
spaces are given by

ν(π) =
1

2

(
n−Γ,π + n−T,π + n−F + n−L

)
mod 2, (5)

ν(±π/3) =
1

2

(
n−

Γ,
π
3

+ n−
T,
π
3

+ n−
Γ,−π

3
+ n−

T,−π
3

)
mod 2.(6)

The dimerization sign reversal changes n−T,π and n−L by two,

while ν(π) and ν(±π/3) do not change under modulo 2. Hence,
we confirm that the HOTI phase, ν(π) = ν(±π/3) = 1 is intact
under the dimerization reversal.

Finally it was predicted that bismuth is also a first-order
CTI protected by a two-fold rotational symmetry Ĉ2 around
the [11̄0] axis or its symmetric copies [011̄] and [1̄01].27 Simi-
larly, with the classification above, the parity states can be di-
vided into the Ĉ2 subspace according to the symmetry eigen-
values of exp(iπ/2) and exp(−iπ/2). In contrast to the HOTI

classification, the Ĉ2 subspaces are mapped to each other by
time-reversal symmetry, indicating ν(π/2) = ν(−π/2). The
four TRIM points {Γ, T, F1, L1} are invariant under Ĉ2. The
remaining states at the F2,3 and L2,3 points, which are not

invariant under Ĉ2, can be linearly combined so that they
become Ĉ2 eigenstates. The number of negative parity eigen-
values n−F,L contributes equally to ν(π/2) and ν(−π/2) with
a weighting factor of one. Thus, the topological indices are

given by

ν(π/2) =
1

2
(n−

Γ,
π
2

+ n−
T,
π
2

+ n−
F,
π
2

+

n−
L,
π
2

+ n−F + n−L ) mod 2, (7)

ν(−π/2) =
1

2
(n−

Γ,−π
2

+ n−
T,−π

2
+ n−

F,−π
2

+

n−
L,−π

2
+ n−F + n−L )mod 2. (8)

Each subspace is found to have a strong topology since
ν(π/2) = ν(−π/2) = 5 (mod 2) and 7 (mod 2) for positive
(δ = +1) and negative (δ = −1) dimerizations, respectively.
Therefore, the rotational-symmetry-protected CTI phase is
well reproduced and is confirmed to be intact under the dimer-
ization reversal.

It is important to note that in contrast to the topological
phases that are invariant under dimerization sign reversal, the
Zak phase depends on the sign of dimerization (i.e., choice of
the unit cell). For example, the Γ and T points are projected

at the Γ̃ point of the (111) surface BZ [Fig. 3(c)] where the

Zak phase at Γ̃ is determined by the parity eigenvalues,

1

π
φZ(Γ̃) =

1

2
(n−Γ + n−T ) mod 2. (9)

Here, φZ(Γ̃) = π and 0 for positive (δ = +1) and negative
(δ = −1) dimerization, respectively. Furthermore, the F and

L points are projected on the other surface TRIM point M̃ ,

and the Zak phase at M̃ ,

1

π
φZ(M̃) =

1

2
(n−F + n−L ) mod 2, (10)

is calculated to be identical to φZ(Γ̃) for each dimerized
state. Note that systems with a strong topological order ex-
hibit different Zak phases at the two surface TRIM points,

exp[iφZ(Γ̃) + iφZ(M̃)] = −1, or equivalently ν0 = 1 from Eq.
(4).23,24 The right panels in Fig. 3(a) show the (111) surface
terminations of the two dimerized states where the surface
with low cleavage energy corresponds to the positive dimer-
ization with π Zak phase. Surprisingly, the non-trivial phase
emerges on the surface that cuts the weak bonds (δ = +1)
rather than the strong bonds (δ = −1). This is counter-
intuitive, especially when compared to the original 1D SSH
model.

To corroborate the parity analysis, the hybrid Wannier
charge centers (WCCs) are computed for the two dimerized
states in the hexagonal structure having six Bi atoms (18
valence electrons) as shown in Fig. 4. Because of the inver-
sion and time-reversal symmetries, the WCCs are mapped to
symmetric copies as ri(k) → −ri(k) and ri(k) → ri(−k),
respectively. For δ = +1, there are two WCCs crossing the

cell boundary z/c = ±0.5 at Γ̃ (M̃) which is equal to the
negative parity difference, |n−Γ − n

−
T | = 2 (|n−F − n

−
L | = 2).

Similarly, for δ = −1, four (zero) WCCs cross the cell bound-

ary at Γ̃ (M̃), which also agrees well with the difference of
negative parity states. The factor 2 from the spin degen-
eracy can be decomposed by grouping the WCCs based on

the mirror eigenvalues ±i on the Γ̃-M̃ plane (see Fig.4). The
WCCs with mirror eigenvalues −i and +i are denoted by blue
and red lines, respectively. It is clearly seen that the number
of boundary-crossing WCCs in each subspace is reduced by
half. For example, a single blue line passes the boundary in
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Fig. 4(a). It agrees well with the mirror-symmetry-classified
parity states in Table I where the negative parity states are
divided in half (n−λ,±i = (1/2)n−λ ) as well as their difference.
Note that the number of negative parity states only provides
an upper limit on the number of WCCs crossing the boundary,
with the exact number of crossings being determined by the
symmetry protection.28 The net Wannier center r̄ =

∑
i ri is

shown in Fig. 4(d), where the half polarization of the π Zak
phase (δ = +1) is clearly seen at the two TRIM, consistent
with the parity results.

III. ANTIPHASE DOMAIN WALLS IN BI

The corresponding boundary states of the π Zak phase
can be realized on the (111) surface by appropriate choice
of the surface termination that is usually hard to control.
Fortunately, Bi is found to exhibit the π Zak phase on the
low-cleavage-energy surface. In general, however, the sur-
face with π Zak phase is susceptible to reconstruction and
contamination.12 Thus, instead of the bare surface, we con-
sider antiphase DWs across which the sign of dimerization is
reversed, δ = ±1 → ∓1, as shown in Fig. 5 and Fig. 7. The
Bi (111) DWs, hosting the π Zak phase, is indeed the 3D ana-
logue of the 1D SSH model. The DW is tolerant to chemical
contamination and can easily be found in a system exhibiting
charge density wave.

In order to study the DW state without the interference
from the neighbor DW, we use the interface Green’s function
method29,30 where the central DW structure is sandwiched
between two semi-infinite pristine Bi with opposite dimer-
izations, as is shown in Fig. 5(b,c) for the (111) DW and

FIG. 5. (a) Schematic illustration of Su-Schrieffer-Heeger
(SSH) model with two types of domain-wall (DW) interfaces.
Blue rectangles denotes unit cells and the orange and green
spheres indicate two sublattice sites. (b,c) Two types of Bi
(111) DWs: (b) DW1

(111) and (c) DW2
(111), as the 3D ana-

logues of the two DWs of the SSH model shown in (a). Hexag-
onal blocks with δ = ±1 are the conventional cells with either
of the dimerizations. The central hexagonal block denotes
the interface where the sign of dimerization flips. Inversion
symmetry is preserved in both DWs; the ion at the inversion
center is marked with arrows.

Fig. 7(c,d) for the (112̄) DW. The construction of the Hamil-
tonian matrices is described in Appendix B. Throughout the
remaining manuscript, the tilde (∼) and bar (−) symbols over
the k-point labels denote TRIM points on the (111) and (112̄)
DW BZ, respectively.

A. Non-trivial (111) Domain Wall

DW localized states – We have considered two types of (111)
DWs shown in Fig. 5(b,c). In type-I DW (DW1

(111)) the semi-
infinite regions below (above) the DW has δ = −1 (δ = +1)
dimerization. The central DW region has an inversion center,
denoted by the horizontal black arrow, located on an atomic
layer which is weakly bonded with its neighboring atomic lay-
ers along the stacking direction. In type-II DW (DW2

(111)),
the sign of dimerization is opposite and the central layer has
strong bondings in both directions. The DW1

(111) and DW2
(111)

correspond to the two types of DWs of the SSH model shown
in Fig. 5(a),

The calculated DW spectral function is shown in Fig. 6(a,b)
where the DW localized states (yellow lines) emerge inside
the DW-projected bulk states (blue shade). Since inversion
symmetry is preserved at the DW, all bands including the
DW-localized yellow bands are doubly degenerate. Note that,
regarding the interface band degeneracy, the DW localized
states resemble Fig. 2(d) instead of Fig. 2(e) even with strong
SOC. This is due to the inversion symmetry at the DW in a
sharp contrast to the bare surface where the inversion sym-
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(a)

(b)

(c)

*

*

*

FIG. 6. (111) DW band structure calculated using the inter-
face Green’s function method for (a) DW1

(111), (b) DW2
(111),

and (c) DW3
(111). DW-localized states (yellow lines) emerge

inside DW-projected bulk states (blue shade). The DW lo-
calized band labeled with an asterisk is half-filled.

metry is always broken. The π Zak phase at Γ̃ and M̃ points
induces an odd number of bands inside the bandgap that guar-
antees at least one band to be pinned at the Fermi level as
long as the chiral symmetry persists. We find three DW lo-

calized states which are buried in the bulk bands at Γ̃. At M̃ ,
however, the second band in the middle among them appears
inside the bandgap indicating adequate chiral symmetry at

the M̃ point compared to Γ̃.31 As discussed in Sec. I, the π
Zak phase corresponds to half polarization resulting in e/2
modulo e surface charge per surface unit cell and half-filled
in-gap state12 (i.e., one electron per Kramers’ pair32). In-

tegration of the spectral function at M̃ indeed confirms the
half-filling of the in-gap state in both types of DWs. The DW
localized band, marked with asterisk in Fig. 6, which emerges

from the non-trivial state at M̃ is half-filled and hence metal-
lic.

The number of DW-localized states can also be interpreted
as the number of bonds truncated at the DW. On the (111)
surface, a single Bi ion per unit cell is exposed with three
bonds, consistent with the number of in-gap states. The num-
ber of bonds truncated at the DW is then determined by con-
sidering the Wannier function center, which is related to the
Zak phase (see Eqs. 1 and 2). It is noteworthy that, for general
systems with complicated terminations and reduced symme-
tries, a Green’s function approach can rigorously predict the
number of surface or interface in-gap states33 without suffer-
ing from the ion-truncating termination11 or lack of inversion
symmetry. The metallic origin of the DW1

(111) can be simply
understood from its construction involving the intercalation
of a monolayer in pristine bulk Bi, which in turn introduces
three doubly degenerate bands near the Fermi level, where
the second band is half filled since the number of available
electrons is three.

The emergence of 2D Dirac cones at K̃ points in both DWs
is unexpected and the crossing point is found to be lifted upon
breaking the DW inversion symmetry. One way to break the
inversion symmetry is to vertically translate the monolayer
of DW1

(111). The translation eventually leads to a structure,

equivalent to the DW2
(111), having a Bi tri-layer that recovers

the inversion symmetry. Therefore, although the two DW
structures [Fig. 5(b,c)] represent the 3D analogue of the SSH
model, there is a general (111) DW structure without the
DW inversion symmetry that will be referred to as type-III
DW, DW3

(111) (see Appendix B for the DW Hamiltonian).

Figure 6(c) shows the calculated band structure of DW3
(111)

where the breakdown of inversion symmetry lifts the two-fold
degeneracy of DW localized bands at generic k points except
at the surface TRIM. One significant difference of DW3

(111)

compared to the type-I and type-II DWs, is the splitting of
the Dirac crossing at K̃, which in turn forms three separate
bands, indicating that the Dirac cone is related to the DW
inversion symmetry rather than the π Zak phase.

B. Trivial (112̄) Domain Wall

DW structure – In this section we consider two types of
(112̄) DWs as shown in Fig. 7(c,d) where the dimerization
[111] direction lies on the DW plane. Thus, the (112̄) DWs
can not be directly compared with the SSH model, in con-
trast to the (111) DW where its dimerization direction is nor-
mal to the DW plane that is a natural extension of the 1D
SSH model (Fig. 1). Nevertheless, this raises the question of
the emergence of (112̄) DW localized states and their topo-
logical nature. In both DW types, the central DW region
is sandwiched between two semi-infinite pristine regions with
opposite dimerization, involving a rigid shift of the right semi-
infinite region relative to the left along the [111] direction by
(c/2)ẑ, or vice versa. Detailed symmetries of the two DWs
and consequent degeneracies of the band structure are further
discussed in Appendix C.

DW Parity – Figure 3(c) shows the bulk and (112̄) inter-
face BZs, where the bulk TRIM points are projected on the
following interface TRIM points,

Γ, F → Γ̄; F, F → Ȳ ; T,L→ Z̄; L,L→ T̄ . (11)

The parity flip induced by the dimerization reversal occurs at
both the T and L points which are projected on the Z̄ and
T̄ points of the (112̄) interface BZ. Since the difference in the
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FIG. 7. Bi (112̄) domain wall (DW) structure: (a) Calculated
Wannier charge center (WCC) of the slab structure (δ = +1)
shown in (c). Blue and red lines denote mirror irreps of −i
and +i, respectively. (b) Top-down and side views of the
orthogonal unit cell, where σ denotes the mirror plane. Two
types of (112̄) DWs: (c) DW1

(112̄) and (d) DW2
(112̄), where

the red plane denotes the DW and the blue axes with disks
at the end denote the rotation or screw axes. The central
DW region is sandwiched between two semi-infinite pristine
regions with opposite dimerization. Type-I DW, DW1

(112̄),
passes through the ions and has inversion, mirror, and two-
fold rotation symmetries. Type-II DW, DW2

(112̄) has the same
symmetries but with the two-fold rotation replaced with the
screw operation, denoted by the dashed curve.

number of parity flips (Table I) between the two dimerized
domains is zero at Γ̄ and Ȳ and four at Z̄ and T̄ , the DW-
projected Zak phases of both domains are the same, indicating
the trivial topology of the DW states for both types of (112̄)
DWs, unless certain crystal symmetry separates each band
inversion. Since the mirror plane σ in Fig. 7(b) is common in
both domains and the DWs one can group the parity states
according to the mirror eigenvalues. Fig. 7(a) displays the
hybrid WCCs labeled by the mirror-symmetry eigenvalues on

(a)

(b)

FIG. 8. (112̄) DW band structures calculated using the in-
terface Green’s function method for (a) DW1

(112̄) and (b)

DW2
(112̄), where the spin-degenerate DW-localized bands (yel-

low lines) emerge in the DW-projected bulk bands (blue
shade).

Γ̄− Z̄ and Ȳ − T̄ , which shows no evidence for non-trivial DW
state.

DW localized states and symmetry – The band structures of
the DW1

(112̄) and DW2
(112̄) are shown in Fig. 8, where eight of

spin-degenerate DW-localized bands (yellow lines) appear in-
side the DW-projected bulk states (blue shade). The number
of DW localized bands is related to the number of truncated
bonds on the (112̄) plane which are eight in both DWs (see
red planes in Fig. 7(c,d)). The fact that the number of in-gap
states is even is consistent with the trivial Zak phase deter-
mined from the product of parity eigenvalues. Because of the
complicated band dispersion and crossings of the DW local-
ized states, we focus only on the high symmetry line Ȳ − T̄
on which the DW localized states are approximately four-fold
degenerate. We find no specific crystal symmetry protecting
such degeneracy. Nevertheless, an effective symmetry can be
defined which can give rise to such degeneracy in the thick
DW limit (Appendix C).

C. Arbitrary DW orientation

So far, we have considered Bi antiphase DW as a 3D analog
of the SSH model with DW orientation either perpendicular
or parallel to the dimerization direction. For the (111) DW,
the projected parity flips across the DW inducing the π Zak
phase while the Zak phase is 0 for the (112̄) DW. In order to
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TABLE II. List of projection of the eight bulk TRIM points
λ{ni}, each labeled by the set of integers (n1, n2, n3), [Eq.
(13)] on a general surface or interface plane with Miller indices
(m1,m2,m3), labeled as odd (o) or even (e) [see Eq. (15)].
Also we list the four pairs of TRIM points which overlap on
the projected 2D BZ.

TRIM
λ{ni} (n1, n2, n3)
k1 (0,0,0)
k2 (1,0,0)
k3 (0,1,0)
k4 (0,0,1)
k5 (0,1,1)
k6 (1,0,1)
k7 (1,1,0)
k8 (1,1,1)

Miller indices
Pair of TRIM

(m1,m2,m3)
(e,e,e) -
(o,e,e) {k1k2, k3k7, k4k6, k5k8}
(e,o,e) {k1k3, k2k7, k4k5, k6k8}
(e,e,o) {k1k4, k2k6, k3k5, k7k8}
(e,o,o) {k1k5, k6k7, k2k8, k3k4}
(o,e,o) {k1k6, k5k7, k2k4, k3k8}
(o,o,e) {k1k7, k5k6, k2k3, k4k8}
(o,o,o) {k1k8, k2k5, k3k6, k4k7}

predict the general behavior of the Zak phase for different DW
orientations, we consider the possible ways of projecting the
bulk TRIM points on various DW planes. For a surface or DW
plane with Miller indices (m1,m2,m3), the surface/interface
normal vector is given by,

G{mi} = m1b1 +m2b2 +m3b3, (12)

where the bi’s are reciprocal lattice vectors and the {mi} ∈
Z have no common factor. A pair of bulk TRIM points
{λ{ni},λ{n0

i }
} projected at the same point of the sur-

face/interface BZ are always separated by G{mi}/2, that is
given by,

λ{ni} =
1

2
(n1b1 + n2b2 + n3b3), (13)

λ{ni} − λ{n0
i }

+G =
1

2
G{mi} (14)

where ni = {0, 1} selects one TRIM point out of the eight
and G is an appropriate reciprocal lattice translation. The
pair of TRIM points {λn,λn0} satisfy the following relation,

ni = n0
i +mi − 2|Gi| = (n0

i +mi) mod 2. (15)

This demonstrates that the ni and n0
i are identical if the

Miller index mi is even, otherwise they differ by one if mi

is odd. Using this relation, one can enumerate all possible
pairs of TRIM points which overlap on the projected 2D BZ
of an arbitrary surface or DW, which are listed in Table II.
The (111) and (112̄) DWs correspond to (o,o,o) and (o,o,e)
indices, respectively. The parity sign flip of Bi induced by
dimerization reversal occurs at k2, k3, k4, and k8 points in
this notation. The antiphase DWs with Miller indices (e,e,o),
(e,o,e), and (o,e,e) are expected to have parity sign flip across
the DW giving rise to DW-localized states similar to the (111)
DW or the SSH model. The remaining (e,o,o) and (o,e,o)
DWs are expected to be trivial similar to the (112̄) DW. It
is important to emphasize that since Table II is valid for ar-
bitrary reciprocal lattice vectors, bi (i = 1 − 3), it can be
applied to a general centrosymmetric system. The only infor-
mation required to predict a non-trivial DW orientation is to
determine which TRIM point flips its parity product across
the DW. It is even easier for bare surfaces, where the par-
ity eigenvalues of the ground state are enough to predict a
non-trivial surface orientation.

D. Experimental Realization of Dimerization
Reversal via Optical Pumping

There are two plausible experimental approaches to realize
Bi antiphase DWs. The first approach is to search for disloca-
tion defects in a Bi single crystal. For example, the (112̄) DW
would appear on the (111) surface as a half step edge (step
height of Bi monolayer, c/6) in scanning tunneling microscopy
measurements. The second approach is to induce local dimer-
ization reversal in pristine Bi using intense femtosecond laser-
pump excitations, which have shown the reduction of the equi-
librium displacement (∆0) of Bi, referred to as “ultrafast bond
softening”.25 More specifically, the laser-pump promotes va-
lence electron into the conduction band and softens the Bi
bond that agrees well with complementary density functional
theory calculations.25 The calculations also predict a tran-
sient structural transition to undimerized state (∆0 → 0)
upon excitation of ∼2.5% of valence electrons. The energy
barrier between the two dimerized ground states was found
to decrease with increasing charge excitations, thus support-
ing the plausibility of dimerization reversal by excitations.
Indeed, experiments confirmed that excitations higher than
2% lead to an irreversible “damage” to the samples suggest-
ing that a permanent dimerization reversal may be achieved
via the laser-pump excitations.25

IV. CONCLUSION

We propose that the α-phase of bulk Bi is a 3D manifesta-
tion of the SSH model. We demonstrate that while the HOTI
and CTI phases of bulk Bi remain invariant under dimeriza-
tion sign reversal, the Zak phase undergoes a transition from
π to 0. The (111) antiphase DW is found to host metallic
DW bands, which are topologically protected due to the dif-
ference in polarization between the two oppositely dimerized
domains (i.e., π Zak phase), which is the 3D analogue of the
SSH model. Although the (112̄) DW has no such polariza-
tion difference, the DW localized states exhibit interesting
behavior related to an effective symmetry that reveals itself
in thicker DWs.

To the best of our knowledge, this result is the first demon-
stration of the non-trivial Zak phase in 3D antiphase DWs.
Unlike the bare surface being vulnerable to doping, contam-
ination, or reconstruction, antiphase DWs offer a relatively
stable platform for the manifestation of a non-trivial Zak
phase. Furthermore, the common presence of DWs in charge-
density-wave states offers a novel venue for investigating the
potential of the non-trivial Zak phase.

V. METHODOLOGY

The tight-binding parameters are extracted from the
Wannier Hamiltonian obtained by using VASP-Wannier90
interface.34–36 The pseudopotentials are of the projector-
augmented-wave type as implemented in VASP,37,38 with va-
lence configurations 6s26p3 for Bi. The exchange-correlation
functional is described by the Perdew-Burke-Ernzerhof gener-
alized gradient approximation (PBE).39 The plane-wave cut-
off energy is set to 300 eV and the Brillouin zone sampling grid
is 12× 12×12. The structure is relaxed with a constraint of
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being FCC for an insulating band gap. The twelve strongest
hopping terms are then used in the calculation together with
atomic spin-orbit coupling for the p orbitals. The spectral
density of DW-localized states is calculated using the interface
Green’s function method29,30 where two semi-infinite surface
Green’s functions are first calculated for the two dimerized
phases and then combined with the central DW Hamiltonian.
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Appendix A: Tight-binding parameters

Although Bi has finite direct band gap in the whole BZ,
its indirect gap between T and L points is negative caus-
ing metallic band structure and difficulties in the analysis of
topological properties. For instance, the projected bulk states
(blue shade in Fig. 8) at the Z̄ point on the (112̄) BZ, should
be gapless due to the negative indirect gap. In order to sup-
press the complexity, we have constructed the tight-binding
parameters in the fcc instead of the rhombohedral cell, which
in turn opens up a gap, shown in Fig. 3(b), without affect-
ing the topological properties such as parities at the TRIM
points.

Figure 9 shows the selected twelve hopping terms in a
dimerized cubic lattice and the amplitudes are listed in the in-
set table together with that of the atomic spin-orbit coupling.

- tij (eV)
σw 2.101755
σv 1.692856
σ2 0.211062
πw -0.577899
πv -0.369039
ρw -0.145850
ρv 0.094550
µw 0.054422
µv -0.063276
µ0 0.007612
ν1 -0.030479
ν2 -0.014119
soc 1.354266

FIG. 9. Selected tight-binding parameters for Bi. The back-
ground square lattice illustrates the Bi plane normal to one
of the Cartesian coordinate vectors. Thick (thin) black line
denotes strong (weak) bonding after the atomic displacement
(i.e. dimerization). The hopping terms with subscripts, w
and v, are lifted by the dimerization and they are swapped
by the dimerization reversal. Terms with numerical subscripts
are not affected by the dimerization reversal.

The σw,v, πw,v, and ρw,v are the nearest-neighbor hoppings
distinguished by the relative direction of the p orbitals; the
σ2 is the third nearest-neighbor σ-bond like hopping term;
the ρw,v terms vanish without dimerization because of the
basis symmetry; the µw,v,0 and ν1,2 terms are the second
nearest-neighbor hoppings, and the ν1,2 terms do not change
under dimerization reversal unless the direction of dimeriza-
tion changes.

Appendix B: Hamiltonian of the DW

The hopping terms with subscripts w and v modulate in
the vicinity of the DW. The amplitude of the hopping terms is
determined via linear interpolation of the two hopping terms
by considering the distances of two basis from the DW plane.
Namely,

t
′w
ij = (1− rij)twij + rijt

v
ij , (B1)

t
′v
ij = (1− rij)tvij + rijt

w
ij , (B2)

rij = (wi + wj + 4)/8, (B3)

where tij is the original hopping terms of Bi (Fig. 9) and rij
is the mixing ratio depending on the weight factor wi repre-
senting the sign of dimerization as illustrated in Fig. 10 and
11. The DW1

(111) and DW2
(111) have 6 atomic layers along the

stacking direction with one ion per layer. The DW1
(112̄) has

14 ions and 7 vertical planes (w1, · · · , w7) in the cell while
DW2

(112̄) has 12 ions and 6 vertical planes. In this interpola-

tion scheme, the weighting factors for the thinnest (112̄) DW
are also listed with a subscript “thin” in the inset of Fig. 11.
The results for thin DW case shown in Fig.12(b,d) are cal-
culated using Hamiltonians generated with these weighting
factors.

w1 w2 w3 w4 w5 w6

DW1 −2 −2 −2 0 2 2
DW2 2 2 2 0 −2 −2
DW3 −2 −2 −1 1 2 2

FIG. 10. Modulation of hopping parameters across the (111)
DW. Two types of DWs are illustrated together with horizon-
tal planes, separated from the DW denoted as red solid line.
Weight factors used for the linear interpolation are presented
in the inset table together with the type-III DW.
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w1 w2 w3 w4 w5 w6 w7

DW1 −2 −2 −1 0 1 2 2
DW1

thin −2 −2 −2 0 2 2 2

DW2 −2 −2 −1 1 2 2 -
DW2

thin −2 −2 −2 2 2 2 -

FIG. 11. Modulation of hopping parameters across the (112̄)
DW. Two types of DWs are illustrated together with verti-
cal planes, separated from the DW denoted as red solid line.
Weight factors used for the linear interpolation are presented
in the inset table.

Appendix C: Symmetry of (112̄) DW

In type-I DW, DW1
(112̄), [Fig. 7(c)] where the Bi atoms lie

on the DW plane, has inversion, mirror, and two-fold rota-
tion symmetries. The two-fold rotation, Ĉ2 around the [11̄0]
direction is denoted by the horizontal blue axis. On the other
hand, type-II DW, DW2

(112̄), [Fig. 7(d)] intersects the bonds
between atoms across the DW and has similar symmetries as
DW1

(112̄) except that the Ĉ2 rotation is replaced by a screw

Ŝ2 symmetry involving a two-fold rotation around the [11̄0]
direction followed by a half a translation along the same axis.
Namely,

Ĉ2 : (x, y, z)→ (−x, y,−z)⊗ iσy, (C1)

Ŝ2 : (x, y, z)→ (−x, y + 1/2,−z)⊗ iσy. (C2)

Because of the DW inversion symmetry, all bands are two-fold
degenerate in the whole interface BZ. The high symmetry
lines along ky (Γ̄ − Ȳ and Z̄ − T̄ ) are invariant under the

Ĉ2 operation for the DW1
(112̄) and the Ŝ2 operation for the

DW2
(112̄). In addition, the nonsymmorphic Ŝ2 symmetry for

DW2
(112̄) guarantees a four-fold degeneracy at Ȳ and T̄ where

ky = ±π.40

In Fig. 12(a,c) we display the zoom-in band structure of
Fig. 8(a,b) on the high symmetry line Ȳ − T̄ for both types of
DWs along with the corresponding k-resolved spectral func-
tion (blue lines) at Ȳ . The calculations of the spectral func-
tion for DW2

(112̄) corroborate the emergence of single peaks at

Ȳ which are indeed four-fold degenerate. On the other hand,
such a four-fold degeneracy is not protected by Ĉ2 symme-
try for DW1

(112̄), which, however, exhibits similar band fold-

ing at Ȳ point, where the peaks in Fig. 12(a) have negligi-

(a) (b)

(c) (d)

Ȳ

k̄m

k̄m k̄m

FIG. 12. Zoom-in band structure (left panel) and k-resolved
spectral function (right panel) for (a,b) DW1

(112̄) and (c,d)

DW2
(112̄). The spectral functions at Ȳ (blue line) and k̄m (red

line) points are plotted in log scale. (b) and (d) are similar
plots for thinner DW width than (a) and (c), respectively,
showing the splitting of the peaks.

ble splitting. Furthermore, the high symmetry line Ȳ − T̄
appears to be four fold degenerate in both types of DWs,
which cannot not be explained by the crystal symmetries.
This apparent four-fold degeneracy of the high symmetry line
is found to be lifted as the DW thickness is reduced, as is
clearly shown by the splitting of the peaks (denoted by red)
in Fig. 12(b,d). This implies an effective symmetry which
appears to be present only for thicker DWs.

It is worth to emphasize that the two types of DWs are dis-
tinguished only by the position of DW plane and the Hamil-
tonian difference between the two DWs becomes subtle with
increasing DW thickness. Both Hamiltonians eventually ac-
quire Ĉ2 and Ŝ2 symmetries in the thick DW limit. The two
symmetries are combined to an effective symmetry of the DW
which can be expressed as

Ĉ2Ŝ2 : (x, y, z)→ (x, y + 1/2, z)⊗−1, (C3)

consisting of a half translation operation that allows the BZ-
unfolding, ky: [−π;+π]→ [−2π;+2π] and causes band degen-
eracy on the ky = ±π line. This emergent half translation
symmetry naturally explains the apparent four-fold degener-
acy (i) of the high symmetry line Ȳ − T̄ in both types of DWs,
and (ii) at Ȳ in DW1

(112̄).
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