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The pillars of quantum theory include entanglement and operators’ failure to commute. The Page
curve quantifies the bipartite entanglement of a many-body system in a random pure state. This
entanglement is known to decrease if one constrains extensive observables that commute with each
other (Abelian “charges”). Non-Abelian charges, which fail to commute with each other, are of
current interest in quantum thermodynamics. For example, noncommuting charges were shown to
reduce entropy-production rates and may enhance finite-size deviations from eigenstate thermaliza-
tion. Bridging quantum thermodynamics to many-body physics, we quantify the effects of charges’
noncommutation—of a symmetry’s non-Abelian nature—on Page curves. First, we construct two
models that are closely analogous but differ in whether their charges commute. We show analyti-
cally and numerically that the noncommuting-charge case has more entanglement. Hence charges’
noncommutation can promote entanglement.

I. INTRODUCTION

Entanglement has illuminated quantum many-
body phenomena from space-time’s structure [1–3] to
phases [4–12] and thermalization [13]. A large, isolated
many-body system thermalizes internally when evolved
under a nonintegrable, chaotic Hamiltonian. Such
dynamics tend to imbue an initial pure state, after
long times, with properties closely approximated in
pure states drawn randomly from the available Hilbert
space. The random state’s average bipartite entangle-
ment is quantified with a Page curve [14]: Consider
partitioning the system into two subsystems, calculating
a subsystem’s entanglement entropy, and averaging
the entropy over states drawn randomly from the full
system’s Hilbert space. The average, plotted against the
subsystem’s size, forms a Page curve.

Page curves have been studied in the context of
Abelian symmetries [15–34]. Consider a many-body sys-
tem whose evolution conserves an extensive observable,
or charge; examples include the total particle number.
Studying thermalization properties via a Page curve, one
draws random pure states from a chosen particle-number
sector—an eigenspace of the charge. We call such an
eigenspace a microcanonical subspace S. More generally,
the system may have multiple charges that commute with
each other, so that the symmetry remains Abelian. S
can be chosen to be an eigenspace shared by the charges
(apart from the Hamiltonian).

However, noncommutation lies at the heart of quantum
theory, underlying uncertainty relations, measurement
disturbance, and notions of locality [35, 36]. Conserved
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charges can fail to commute with each other, though
charges’ commutation was assumed implicitly across
thermodynamics for decades [37–43]. The assumption
was lifted in quantum thermodynamics recently [39–70].
Charges’ noncommutation has been shown to invalidate
derivations of the thermal state’s form [39, 41]; reduce
entropy-production rates [56] and the eigenstate thermal-
ization hypothesis, a framework for explaining quantum
systems’ internal thermalization [40]. The experimental
testing of these results [48] has begun with a trapped-
ion simulator [49] whose dynamics were chaotic [57], yet
conserved all three components of the global spin. In-
spired by quantum thermodynamics, we aim to quantify
a particularly quantum feature of many-body physics in
this Letter: how charges’ noncommutation—a symme-
try’s non-Abelian nature—affects Page curves.

This comparison calls for two models that parallel each
other closely, yet differ in whether their charges com-
mute. Whether such models exist, what “parallel closely”
should mean, and how to construct such models is un-
clear. We therefore posit criteria to encapsulate models’
analogousness. Furthermore, we construct two models
that meet these criteria. Each model consists of two-
qubit sites. Every local charge is a product of two-qubit
Pauli operators and/or identity operators.

We compare these models’ Page curves in two set-
tings. Conventional thermodynamics suggests one: a
microcanonical subspace, a simultaneous eigenspace of
the charges. The noncommuting-charge model has only
one microcanonical subspace, because noncommutation
tends to block observables from having well-defined val-
ues simultaneously. Also, the notion of a microcanon-
ical subspace has been generalized to an approximate
microcanonical (AMC) subspace, to accommodate non-
commuting charges [41, 49, 57]. Here, every charge
has a fairly well-defined value: Measuring any charge
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has a high probability of yielding an outcome close
to the expected value. We identify AMC subspaces
in the noncommuting-charge model and analogs in the
commuting-charge model. Each pair of such subspaces
yields another pair of Page curves.

We estimate the Page curves numerically and, in the
microcanonical comparison, analytically. In every set-
ting where we can do so, the nonconcommuting-charge
Page curve lies above the commuting-charge curve. On
average, therefore, charges’ noncommutation appears to
promote entanglement. For systems of N � 1 sites, the
Page curves’ separation decreases, but only polynomi-
ally in the system size, as 1/N . We posit that the gap
arises solely from whether the charges commute, due to
the close parallel between our two models. This con-
jecture calls for testing with more parallel models and
for more-general explanations, which we partially leave
as a challenge for future research. Yet we find that,
in the microcanonical comparison, the gap arises from
state-counting effects—noncommuting charges’ allowing
the subspace to be larger than commuting charges do.
Furthermore, we posit an explanation based on each sub-
space’s minimally entangled basis. Our findings are sug-
gestive of how charges’ noncommutation affect quantum
many-body phenoma such as thermalization.

The rest of this Letter is organized as follows. In
Sec. II, we overview Page curves; in Sec. III, we present
the analogous models. We compare the models’ Page
curves using microcanonical subspaces (Sec. IV), then us-
ing AMC subspaces (Sec. V). Section VI concludes with
opportunities established by this work.

II. PAGE-CURVE BACKGROUND

To introduce Page curves, we must introduce entan-
glement entropy. Consider an isolated (“global”) system,
associated with a Hilbert space H, in a pure state |Φ〉.
Denote by A a subsystem associated with a dimension-
DA Hilbert space. Denote by B the rest of the system.
The full system’s Hilbert space is the outer product of the
subsystems’ Hilbert spaces. The entanglement entropy is
the von Neumann entropy of ρA := TrB(|Φ〉〈Φ|) [71]:

SE := S(ρA) := −Tr(ρA log ρA) ≤ logDA. (1)

The logarithms are base-e, giving entropies in units of
nats. A is entangled with B if SE > 0.

The Page curve quantifies the average entanglement
in a subspace S of interest. Let A consist of NA iden-
tical sites, and let B consist of NB more, such that
NA + NB = N . Consider selecting a global pure state
from S uniformly randomly—according to the Haar mea-
sure [72]. Calculating SE, then averaging over Haar-
random states, yields

〈SE〉S := −〈Tr(ρA log ρA)〉S . (2)

Plotted against NA, 〈SE〉S forms the Page curve for sub-
space S [14].

We estimate the curve numerically as follows. De-
note by {|ψ`〉} any basis for the subspace. We weight
the `th element with a random number c` drawn from
a complex normal distribution. Summing the weighted
elements, and renormalizing with a constant Cnorm, we
form a Haar-random state: 1

Cnorm

∑
` c` |ψ`〉. We sample

103–104 states, calculate each state’s SE, and average to
estimate the Page curve.

In the best-known example, no charges constrain the
system [14]. Denote by H the full Hilbert space and by
d the local dimension (of a site’s Hilbert space). The
unconstrained Page curve is, for NA ≤ NB ,

〈SE〉H ≈ NA log d− 1

2
dNA−NB . (3)

The terms in Eq. (3) stem from different physics, as do
the analogous terms in constrained Page curves. Con-
sider averaging the Haar-random states over S before
calculating any entropy. The averaged state, 〈ρ〉S , is
the maximally mixed state within S. Tracing out B
yields 〈ρA〉S := TrB(〈ρ〉S), whose entropy follows from
state-counting arguments (App. A). We therefore call
S (〈ρA〉S) the subspace-S Page curve’s state-counting
term. In terms of it, the curve decomposes as

〈SE〉S = S (〈ρA〉S) + [〈SE〉S − S (〈ρA〉S)] . (4)

Since 〈ρ〉S is maximally mixed, S (〈ρA〉S) equals the
greatest possible entropy: 〈SE〉S ≤ S (〈ρA〉S). Hence
the bracketed term in Eq. (4) is ≤ 0. That term encodes
the interference between different states’ contributions
to the Page curve’s Haar average. This interference term
is exponentially small in NB − NA [14]. In the uncon-
strained curve (3), NA log d is the state-counting term,
and − 1

2d
NA−NB is the interference term.

III. ANALOGOUS
NONCOMMUTING-CHARGE AND
COMMUTING-CHARGE MODELS

We aim to identify how charges’ noncommutation af-
fects the Page curve. Therefore, we need two models
that differ in whether their charges commute and other-
wise differ minimally. Whether such models exist, what
“differ minimally” should mean, and how to construct
such models is unclear. For instance, the most commonly
studied non-Abelian symmetry group is SU(2); the asso-
ciated charges are the Pauli operators, X, Y , and Z. How
to construct an analogous model with three commuting
charges is not obvious. For example, the group U(1)×3

is generated by three charges that commute but are not
multiplicatively interrelated. In contrast, XY = iZ.

We address this challenge by positing five criteria
that capture what renders noncommuting-charge and
commuting-charge models analogous. Then, we con-
struct two models that meet these criteria. We denote by
Qtot
α the global noncommuting charges and by Ctot

α the
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Figure 1: Analogous noncommuting-charge and
commuting-charge models. Each model consists of N
sites. A site consists of two qubits, a and b. The local
noncommuting observables of interest include Q1; and the
local commuting observables, C1.

global commuting charges. The criteria concern also the
subspaces used to calculate the Page curves. Denote by
|ψ〉 any state from the noncommuting-charge subspace
N . Measuring Qtot

α yields outcome γ with some proba-
bility. This probability, averaged over the |ψ〉, we denote
by pNα (γ). Define pCα(γ) analogously for the commuting-
charge subspace C.

We define as analogous any commuting-charge and
noncommuting-charge models that satisfy five criteria:

1. In each model, the system consists of N sites, each
formed from a d-level qudit. Each model has c con-
strained global charges.

2. Each global charge (i) is a sum of single-site ob-
servables and (ii) acts nontrivially and identically
on all sites.

3. Each charge Qtot
α has the same spectrum as its ana-

log Ctot
α .

4. Any two commuting charges form a product anal-
ogous to the analogous noncommuting charges’
product.

5. The constrained subspaces, N and C, are such that
pNα (γ) = pCα(γ).

We now construct two models that satisfy the criteria
(Fig. 1). Each global charge (Qtot

α or Ctot
α ) follows from

summing single-site observables Qα or Cα. Denote by

Q
(j)
α an observable defined on site j’s Hilbert space, and

define C
(j)
α analogously. The global charges are extensive:

If 1 denotes the single-site identity operator,

Qtot
α :=

N∑
j=1

1
⊗(j−1) ⊗Q(j)

α ⊗ 1⊗(N−j) ≡
N∑
j=1

Q(j)
α , (5)

and Ctot
α :=

∑N
j=1 C

(j)
α .

The noncommuting charges can generate su(2) if each
site contains one qubit (d = 2). By criterion 2, three
charges impose three restrictions on each site. A fourth
restriction follows from the normalization of the site’s
state. These restrictions suggest that, to support a model

with three commuting charges, d should be ≥ 4. Choos-
ing d = 4 for simplicity, we form each site’s qudit from
two qubits, a and b. The noncommuting local observables
are

Q1 = Xa ⊗ 1b, Q2 = Ya ⊗ 1b, and Q3 = Za ⊗ 1b; (6)

and the commuting local observables are

C1 = Xa ⊗Xb, C2 = Ya ⊗ Yb, and C3 = Za ⊗ Zb. (7)

These models satisfy criteria 1–3 overtly and by simple
calculation. Criterion 4 concerns products of charges.
For unequal indices α, β, γ ∈ {1, 2, 3},

QαQβ = iεαβγQγ , and CαCβ = −Cγ . (8)

These equations parallel each other because multiplying
two distinct charges yields the third charge times a con-
stant. Furthermore, QαQα = CαCα = 1 ∀α.

Criterion 5 is satisfied if we choose subspaces adroitly.
In the microcanonical subspaces identified below, the
pNα (γ)’s and pCα(γ)’s equal Kronecker delta functions and
so each other. As detailed below, we can also construct
AMC subspaces such that pNα (γ) = pCα(γ) for all α and
γ.

IV. MICROCANONICAL-SUBSPACE
COMPARISON

The noncommuting-charge model has exactly one mi-
crocanonical subspace, N0: the eigenvalue-0 eigenspace
shared by Qtot

1,2,3. This subspace exists only if N is even.
The analogous commuting-charge subspace, C0, is the
eigenvalue-0 eigenspace shared by Ctot

1,2,3. This subspace
exists only if N equals a multiple of four (App. A 2).

We estimate Page curves numerically using the proce-
dure outlined in Sec. II and using [73]. Here, 〈SE〉S de-
notes the Page curve for a subspace S, and 〈SE〉H denotes
the unrestricted Page curve (3). To highlight the gap be-
tween the noncommuting-charge and commuting-charge
curves, we plot 〈SE〉S − 〈SE〉H for S = N 0, C0 in Fig. 2.
At all partition locations NA, the noncommuting-charge
Page curve lies above the commuting-charge Page curve.
For example, at the midpoint (NA = N/2), the gap is
0.124 nats (17.8% of the average of the two Page curves
at NA = N/2) when N = 4 and 0.0797 nats (10.5%)
when N = 8. In this microcanonical case, therefore, the
subspace constrained by noncommuting charges has more
entanglement, on average.

We posit the following explanations for this phe-
nomenon in our setting. First, the subspace’s dimen-
sionality upper-bounds the entanglement entropy: SE ≤
logDA [Eq. (1)]. The bound tends to approximate ran-
dom states’ entropies. Hence one might expect a higher
Page curve of whichever model has the larger subspace.
Indeed, the noncommuting-charge subspace is of dimen-
sionality 32, when N = 4, exceeding the commuting-
charge dimensionality of 24. When N = 8, the
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(a) Global-system size N = 4

(b) Global-system size N = 8

Figure 2: Page curves constructed from
microcanonical subspaces. 〈SE〉S denotes any Page
curve restricted by charges; and 〈SE〉H, the unrestricted
Page curve. The red x’s form the noncommuting-charge
model’s Page curve, and the circular blue markers form the
commuting-charge model’s Page curve. The connecting lines
guide the eye. We calculated the top panel’s (N = 4) Page
curves from 104 samples each and the bottom panel’s
(N = 8) Page curves from 103 samples each. The x-axis
ends at NA = N/2 for conciseness; the Page curves are
symmetric according to numerics.

noncommuting-charge dimensionality is 3584, again ex-
ceeding its commuting-charge analog, 2520. Our analyt-
ical results below agree at large N : The noncommuting-
charge curve lies above the commuting-charge curve if
approximated with the state-counting term, which de-
pends essentially on subspace dimensionality.

We expect this dimensionality argument to explain
our results only partially, the Page curves do not satu-
rate the upper bound (1). Hence we posit that, when
the compared subspaces have similar dimensionalities,
their minimally entangled bases may help determine
the Page curves’ relative locations. The commuting-
charge model’s microcanonical subspace, C0, has a tensor-
product basis. The reason is, every global charge Ctot

α

commutes with all the subsystem charges C
(A)
α′ and C

(B)
α′′ .

In contrast, in the noncommuting-charge model, each
global charge Qtot

α fails to commute with some subsys-

tem charges Q
(A)
α′ and Q

(B)
α′′ . Hence the microcanonical

subspace N0 has no tensor-product basis. Therefore, the
minimally entangled basis has more entanglement in the
noncommuting-charge model. Hence one might expect
a higher Page curve there. Additionally, in App. C, we

show that sequentially introducing charges restricts the
Page curve subadditively if the charges fail to commute,
and superadditively if the charges commute, at finite N .

We now analytically calculate the difference between
the noncommuting-charge and commuting-charge Page
curves in these microcanonical subspaces at large N . Re-
call that the interference term [Eq. (4)] is exponentially
small in NB −NA [14]. Consequently, the state-counting
term approximates the Page curve when NB − NA �
1 [74]. We calculate state-counting terms in App. A,
using large-N expansions. We assume that NA, NB =
O(N); the subsystems’ sizes are near their average values.
Both subspaces’ Page curves have the leading, O(N0)
term

L := NA log d− 3

2
log

N

NB
+

3NA
2N

. (9)

The noncommuting-charge Page curve is

L+
3NA
4N2

+
N2
A

2N2NB
+O

(
N−

3
2

)
, (10)

and the commuting-charge Page curve is [75]

L+
3NA
4N2

− N2
A

2N2NB
+O

(
N−

3
2

)
. (11)

The noncommuting-charge Page curve is greater by an

amount
N2

A

N2NB
, at leading order. The difference de-

creases as N grows. This decline is consistent with
the correspondence principle [76]—as systems grow large,
they grow classical. Noncommutation is nonclassical, so
its effects on observable phenomena should diminish as
N →∞ [41]. More precisely, the charge densities Qtot

α /N
have commutators that vanish in the thermodynamic
limit [41, 77]: [Qtot

α /N, Qtot
α′ /N ] → 0, for all α and α′,

as N → ∞. However, the Page-curve difference shrinks
relatively slowly—as 1/N , rather than exponentially—as
N grows.

V. APPROXIMATE-MICROCANONICAL-
SUBSPACE COMPARISON

Having compared our two models using microcanoni-
cal subspaces, we progress to AMC subspaces, general-
izations that accommodate charge noncommutation [41,
49, 57]. Instead of having well-defined values in an
AMC subspace, the charges have fairly well-defined val-
ues: Measuring any Qtot

α has a high probability of yield-
ing an outcome close to the expected value. This section
outlines how to construct analogous AMC subspaces in
the noncommuting-charge and commuting-charge mod-
els. We then compare the models’ Page curves numer-
ically. The noncommuting-charge Page curve is always
higher, as in the microcanonical-subspace comparison.

One can construct as follows AMC subspaces in the
noncommuting-charge model. Define the a-qubit mag-

netization Ztot
a :=

∑N
j=1 Za, which has eigenvalues
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2m. Define the a-type spin-squared operator (~Stot
a )2 :=∑3

a=1(Qtot
a )2, which has eigenvalues s(s+ 1) (we set ~ =

1). (~Stot
a )2 shares with Ztot

a —and so (~Stot
a )2⊗1tot

b shares
with Qtot

3 —eigenspaces N labeled by the quantum num-
bers (s,m). Some such eigenspaces are AMC subspaces,
we find by direct calculation. For each (s,m) value, we
calculate the probability distributions pNα (γ). Each dis-
tribution exhibits one peak, as required by the definition
of “AMC subspace,” for certain (s,m) (App. D). Hav-
ing identified AMC subspaces defined by noncommuting
charges, we construct analogs C defined by commuting
charges. Appendix D details the process. We identify six
pairs of parallel (commuting-charge and noncommuting-
charge) AMC subspaces, labeled by s = m = 1, N/2, for
N = 4, 8, as well as by s = m = N/2, for N = 2, 6.

We estimate each AMC subspace’s Page curve numer-
ically. In every comparison, the noncommuting-charge
(N ) Page curve lies above its commuting-charge (C)
partner. An illustrative example is parameterized by
N = 8 and s = m = 1. We compare the two curves
at the midpoint NA = N/2. Recall that 〈SE〉S de-
notes a Page curve for the subspace S. When NA = 4,
〈SE〉N − 〈SE〉C = 0.027 nats, which is 7.11% of the two
Page curves’ average. The percent difference varies across
the AMC-subspace pairs from 0.272% to 7.11%. Hence
charges’ noncommutation increases the average entangle-
ment entropy in AMC subspaces as in the microcanonical
comparison.

VI. OUTLOOK

We have demonstrated that constrained charges’ non-
commutation promotes average entanglement. Numer-
ical and analytical calculations support this conclusion
in microcanonical and AMC subspaces. In the micro-
canonical comparison, the Page-curve gap stems from
the discrepancy between the subspaces’ dimensionali-
ties. This work reveals how one hallmark of quan-
tum theory—operators’ failure to commute—influences
another—entanglement. Due to entanglement’s role in
thermalization, our results are suggestive of how charges’
noncommutation affects quantum many-body thermal-
ization (as discussed more below).

Our conclusions rest on two models that resemble each
other closely but differ in whether their charges com-
mute. Our models can now be used to explore effects

of charges’ noncommutation on other quantum phenom-
ena. Possibilities include chaos [78, 79], as analyzed with
out-of-time-ordered correlators [80–83] and random uni-
tary circuits [84, 85]; bounds on quantum-simulation er-
rors [86]; and quantum-machine-learning algorithms’ per-
formances [87].

Additionally, our results raise a puzzle. We find that
charges’ noncommutation promotes entanglement, which
accompanies thermalization. Another result links non-
commuting charges to enhanced thermalization: Non-
Abelian symmetries destabilize many-body localization,
a phase of matter in which entanglement spreads very
slowly [88]. In contrast, charges’ noncommutation was
found to restrict thermalizing behaviors in two ways.
First, local operators’ time-averaged expectation values
may deviate from thermal predictions by anomalously
large corrections if charges fail to commute [40]. Sec-
ond, charges’ noncommutation can decrease the rate
of entropy production, which accompanies thermaliza-
tion [47]. These two results technically do not conflict
with ours or with Ref. [88], concerning different setups.
However, they invite a more general understanding of
when non-Abelian symmetries enhance or suppress en-
tanglement and thermalization.

Apart from the foregoing theoretical opportuni-
ties, the difference between commuting-charge and
noncommuting-charge entanglement entropies may be
observed experimentally. For example, at the Page
curves’ midpoints (NA = N/2), the difference is 0.124
nats in the microcanonical setting for N = 4. A precision
of ≈ 0.05 nats should therefore suffice to observe the dif-
ference. Such a precision has been achieved with trapped
ions [89–91] and ultracold atoms [92–94]. Further-
more, noncommuting-charge thermodynamics has been
argued and demonstrated to be observable on these plat-
forms [48, 49, 57].
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Appendix A ANALYTIC EXPRESSIONS FOR STATE-COUNTING TERMS IN
MICROCANONICAL SUBSPACES’ PAGE CURVES

The Page curve (2) naturally splits into two terms, the state-counting term [S(〈ρA〉S) from Eq. (4)] and the
interference term. The interference term is exponentially small in NB − NA. Thus, if NA � NB , the Page curve
approximately equals the state-counting term. As explained in Sec. II, the state-counting term is easier to calculate
than the Page curve is. We calculate the term in this appendix.

To recall the term’s definition, consider a system restricted to a subspace S (e.g., a microcanonical or an AMC
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subspace) of dimensionality D. Denote by {|ψ`〉} any orthonormal basis for the subspace. Taking any pure state from

that subspace and Haar-averaging it yields the maximally mixed state, 〈ρ〉S = 1
D

∑D
` |ψ`〉〈ψ`|. Tracing out B yields

〈ρA〉S := TrB(〈ρ〉S), whose entropy is the state-counting term:

S(〈ρA〉S) = −Tr(〈ρA〉S log 〈ρA〉S). (A1)

We calculate this term for microcanonical subspaces below. First, we introduce notation, a technical tool, and
assumptions (App. A 1). We address the commuting-charge model in App. A 2 and the noncommuting-charge model
in App. A 3.

A 1 Preliminaries

We use the following notation throughout this appendix. Denote by Xtot
a :=

∑N
j=1Xa the sum of the a qubits’ X

operators, and define Y tot
a and Ztot

a analogously. The a qubits’ total-spin-squared operator, ~S2
a = [(Xtot

a )2 + (Y tot
a )2 +

(Ztot
a )2]/4, has eigenvalues s(s + 1) (we set ~ = 1). Denote by m the Ztot

a /2 eigenvalue. Denote by sA subsystem
A’s spin quantum number, and denote by mA subsystem A’s magnetic spin quantum number. Define sB and mB

analogously.
We will use Catalan’s triangle, a triangular array of numbers related to the dimensionalities of qubit systems’

Hilbert spaces [95, 96]. The element in row a and column b is

Ca,b =
a− b+ 1

a+ 1

(
a+ b

b

)
, for a ≥ b. (A2)

The bound a ≥ b lends the array its triangular shape. Temporarily consider an N -qubit system that has quantum
numbers s and m. For arbitrary m, CN

2 +s,N2 −s
equals the s eigenspace’s dimensionality.

Throughout our approximations, we assume that parameters approximately equal their typical values:
m, s,mA, sA,mB , sB = O

(
N−1/2

)
; and NA, NB = O (N). We assume also that the global system is large: N � 1.

A 2 Commuting-charge model’s state-counting term

Appendix A 2 i describes how the commuting-charge model is constrained in a microcanonical subspace. In App. A
2 ii, we calculate the commuting-charge state-counting term exactly. How the exact formula scales with N is unclear.
Therefore, we approximate the term to O(N−1) in App. A 2 iii, to identify differences from the noncommuting-charge
model.

A 2 i Constraints on commuting-charge model in microcanonical subspace

The microcanonical subspace C0 parallels the noncommuting-charge model’s s = m = 0 subspace. Let us specify
quantitatively how the commuting-charge model is constrained. First, we introduce notation.

The local charges C1,2,3 share four eigenstates, the maximally entangled Bell states [97]. They are, if |↑〉 and |↓〉
denote the Z eigenstates,

|B1〉 :=
1√
2

(|↓〉a |↑〉b − |↑〉a |↓〉b) , |B2〉 :=
1√
2

(|↓〉a |↓〉b − |↑〉a |↑〉b) , (A3)

|B3〉 :=
1√
2

(|↓〉a |↓〉b + |↑〉a |↑〉b) , and |B4〉 :=
1√
2

(|↓〉a |↑〉b + |↑〉a |↓〉b) . (A4)

The Bell states correspond to the (C1, C2, C3) eigenvalues (−1,−1,−1), (−1, 1, 1), (1,−1, 1), and (1, 1,−1), respec-
tively. We will use a C0 basis formed from tensor products of single-site Bell states. For a given basis state, let Pk
denote the number of sites in Bell state k.

Having specified notation, we use it to derive constraints on the system. The microcanonical subspace C0 is the
eigenvalue-0 eigenspace of Ctot

1,2,3, by analogy with the noncommuting-charge s = 0 subspace. If the global system is

in an eigenvalue-0 eigenstate of Ctot
1 , then P1 + P2 = P3 + P4 = N

2 . If the system is in an eigenvalue-0 eigenstate of
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Ctot
2 , then P1 +P3 = P2 +P4 = N

2 . If the system is in an eigenvalue-0 eigenstate of Ctot
3 , then P1 +P4 = P2 +P3 = N

2 .
Together, these constraints imply

P1 = P2 = P3 = P4 = N/4 . (A5)

Since N is an integer, these constraints can be met if N is a multiple of 4, which we assume.

A 2 ii Exact expression for the commuting-charge state-counting term

We first calculate 〈ρA〉C0 , the reduced state of system A when the global system is maximally mixed. In addition

to the definitions above, we invoke the “quadnomial” coefficient
(

n
k1,k2,k3,k4

)
:= n!

k1!k2!k3!k4!
. Under the population

restriction (A5), the global system’s Hilbert space is of dimensionality

D =

(
N

N
4 ,

N
4 ,

N
4 ,

N
4

)
. (A6)

Denote by Ak the number of A sites in the Bell state |Bk〉, and denote by Bk the number of B sites in |Bk〉. The
global system is restricted to a subspace of dimensionality

DA =

(
NA

A1, A2, A3, A4

)(
NB

B1, B2, B3, B4

)
(A7)

=

(
NA

NA

4 +m1,
NA

4 +m2,
NA

4 +m3,
NA

4 +m4

)(
NB

NB

4 −m1,
NB

4 −m2,
NB

4 −m3,
NB

4 −m4

)
. (A8)

In accordance with Eq. (A5), Ak +Bk = N/4. Furthermore, A is restricted to a subspace of dimensionality

dA =

(
NA

A1, A2, A3, A4

)
=

(
NA

NA

4 +m1,
NA

4 +m2,
NA

4 +m3,
NA

4 +m4

)
. (A9)

The global maximally mixed state is 〈ρ〉C0 = 1
D

∑D
`=1 |ψ`〉〈ψ`|; the sum runs over all the states in our basis for C0.

Denote by {|A1, A2, A3, A4, i〉} a basis for subsystem A’s Hilbert space. The index i distinguishes basis states that
share the same A1, A2, A3, and A4. Tracing out subsystem B yields

〈ρA〉C0 =
1

D

∑
A1,A2,A3,A4,i

DA

dA
|A1, A2, A3, A4, i〉〈A1, A2, A3, A4, i| . (A10)

The DA

dA
equals the dimensionality of the subsystem-B subspace that is consistent with the subsystem-A populations

A1, A2, A3, and A4. Taking the spectral decomposition, we calculate 〈ρA〉C0 ’s entropy and so the state-counting term:

S(〈ρA〉C0) = −
∑

A1,A2,A3,A4

DA

D
log

(
DA

dAD

)
(A11)

= −
∑

A1,A2,A3,A4

(
NA

A1, A2, A3, A4

)( NB

B1,B2,B3,B4

)(
N

N
4 ,

N
4 ,

N
4 ,

N
4

) log

((
NB

B1,B2,B3,B4

)(
N

N
4 ,

N
4 ,

N
4 ,

N
4

) ) . (A12)

A 2 iii Closed-form approximation to the commuting-charge state-counting term

Let us approximate the DA

D in Eq. (A11) as a Gaussian function. Via differentiation, we determine that log
(
DA

D

)
maximizes at mk = 0 for all k. We Taylor-expand log

(
DA

D

)
around this maximum, keeping only terms larger than

O
(
N−3/2

)
. For conciseness, we define c := 2N

NANB
= O

(
1
N

)
, d := 1

3

(
8
N2

B
− 8

N2
A

)
= O

(
1
N2

)
, f := 1

2

(
8
N2

A
+ 8

N2
B

)
=

O
(

1
N2

)
, and g := 1

2

(
32

3N3
A

+ 32
3N3

B

)
= O

(
1
N3

)
. We substitute these definitions into the expansion of log

(
DA

D

)
:

log

(
DA

D

)
= log

(
2c3/2

π3/2

)
− c

(
4∑
i=1

m2
i

)
− d

(
4∑
i=1

m3
i

)
+ f

(
4∑
i=1

m2
i

)
− g

(
4∑
i=1

m4
i

)
+

5

4N
− 5

4NA
− 5

4NB
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+O
(
N−3/2

)
. (A13)

Exponentiating each side yields

DA

D
= 2

( c
π

) 3
2

exp

(
−c

4∑
i=1

m2
i

)[
1− d

(
4∑
i=1

m3
i

)
+
d2

2

(
4∑
i=1

m3
i

)2

+ f

(
4∑
i=1

m2
i

)
− g

(
4∑
i=1

m4
i

)
+

5

4N
− 5

4NA

− 5

4NB
+O

(
N−3/2

)]
. (A14)

We check that this function is normalized to O(N−3/2) (as DA

D should be normalized), but omit the check from this
appendix.

Having approximated the first factor in the state-counting term (A11), we address the second, log
(
DA

dAD

)
. By

Stirling’s approximation (A15),

log(n) = n log(n)− n+
1

2
log(2πn) +

1

12n
+O

(
n−2

)
, (A15)

the logarithm is

log

(
DA

dAD

)
= −N log(4) +

NB
4

log

(
N4
B(

NB

4 −m1

) (
NB

4 −m2

) (
NB

4 −m3

) (
NB

4 −m4

))

+m1 log

(
NB
4
−m1

)
+m2 log

(
NB
4
−m2

)
+m3 log

(
NB
4
−m3

)
+m4 log

(
NB
4
−m4

)
+

1

2
log

(
NB(N4 )4

N
(
NB

4 −m1

) (
NB

4 −m2

) (
NB

4 −m3

) (
NB

4 −m4

))+
5

4N
+

1

12NB
− 1

12
(
NB

4 −m1

)
− 1

12
(
NB

4 −m2

) − 1

12
(
NB

4 −m3

) − 1

12
(
NB

4 −m4

) +O
(
N−3/2

)
. (A16)

We Taylor-approximate about N =∞ and reorganize:

log

(
DA

dAD

)
= −NA log(4) +

3

2
log

(
N

NB

)
+
∑
i

(
−2m2

i

NB
− 8m3

i

3N2
B

+
4m2

i

N2
B

− 16m4
i

3N3
B

)
+

5

4N
− 5

4NB
+O

(
N−3/2

)
.

(A17)

The logarithm approximation (A14) and the ratio approximation (A17) can now be substituted into the state-
counting term (A11). The summand varies slowly where its value is large, so we approximate the sum as an integral.
Also, the integrand falls off quickly enough at large |Ak| that we approximate the limits as ±∞. Evaluating the
resulting Gaussian integrals, we obtain the commuting-charge state-counting term:

S(〈ρA〉C0) = NA log(4)− 3

2
log

(
N

NB

)
+

3NA
N

+
3NA
4N2

− N2
A

2N2NB
+O

(
N−3/2

)
. (A18)

A 3 Noncommuting-charge model’s state-counting term

The noncommuting charges share exactly one eigenspace, N0, specified as follows. Recall that the a qubits’ total-

spin-squared operator, ~S2
a, has eigenvalues s(s + 1). Consider tensoring the a qubits’ s = 0 eigenspace onto the b

qubits’ full Hilbert space. The product is the eigenvalue-0 eigenspace shared by Qtot
1,2,3.

We calculate first the a qubits’ contribution to the state-counting term, then the b qubits’ contribution (App. A 3
i). In App. A 3 ii, we approximate the state-counting term to order O(N−1), as is necessary for identifying differences
from the commuting-charge model.
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A 3 i Exact expression for the noncommuting-charge model’s state-counting term

First, we calculate the a qubits’ contribution to the state-counting term. By the rules for angular-momentum
addition, s = |sA − sB |, |sA − sB |+ 1, . . . , sA + sB . Therefore, s = m = 0 only if |sA − sB | = 0—equivalently, only if
sA = sB and mA = −mB . This restriction constrains the global system to a subspace N0 of dimensionality

D = CN
2 ,

N
2

=
1

N
2 + 1

(
N
N
2

)
. (A19)

We now choose a basis for this subspace. A natural choice consists of states with quantum numbers sA = sB . If
sA = sB = 0, these basis states are tensor products. However, almost all the basis states correspond to sA = sB > 0
and encode entanglement between A and B, unlike the basis states chosen for the commuting-charge model. The
noncommuting-charge basis states Schmidt-decompose as

|sA, i, j〉 =

sA∑
mA=−sA

(−1)mA

√
2sA + 1

|sA,mA, i〉A |sB=sA,mB=−mA, j〉B . (A20)

The i indexes the elements of an arbitrary orthonormal basis for the subsystem-A subspace associated with the
quantum numbers sA and mA. This subspace is of dimensionality

dA = CNA
2 +sA,

NA
2 −sA

=
2sA + 1

NA

2 + sA + 1

(
NA

NA

2 − sA

)
. (A21)

The j in (A20) indexes the elements of an arbitrary orthonormal basis for the subsystem-B subspace associated with
the quantum numbers sB and mB . This subspace is of dimensionality

dB = CNB
2 +sB ,

NB
2 −sB

=
2sB + 1

NB

2 + sB + 1

(
NB

NB

2 − sB

)
. (A22)

The global system’s maximally mixed state is

〈ρ〉N0
=

1

D

∑
sA,i,j

|sA, i, j〉〈sA, i, j| . (A23)

Tracing out subsystem B yields

〈ρA〉N0
=

1

D

∑
sA,mA,i

dB
2sA + 1

|sA,mA, i〉〈sA,mA, i| . (A24)

Taking the spectral decomposition, we calculate the state’s entropy and so the a qubits’ contribution to the state-
counting term:

S(〈ρA〉N0
) = −

NA
2∑

sA=0

dAdB
D

log

(
dB

D(2sA + 1)

)
(A25)

= −

NA
2∑

sA=0

(
N

2
+ 1

) (N
2

)
!
(
N
2

)
!

N !

(
2sA + 1

NA

2 + sA + 1

)(
2sA + 1

NB

2 + sA + 1

)(
NA

NA

2 − sA

)(
NB

NB

2 − sA

)

× log

((
N
2

)
!
(
N
2

)
!

N !

(N2 + 1)

(NB

2 + sA + 1)

(
NB

NB

2 − sA

))
. (A26)

We now calculate the b qubits’ contribution. NA unconstrained qubits have a state-counting term of NA log(2).
Adding NA log(2) to Eq. (A26) yields the noncommuting-charge state-counting term:

S(〈ρA〉N0
) = NA log(2)−

NA
2∑

sA=0

(
N

2
+ 1

) (N
2

)
!
(
N
2

)
!

N !

(
2sA + 1

NA

2 + sA + 1

)(
2sA + 1

NB

2 + sA + 1

)(
NA

NA

2 − sA

)(
NB

NB

2 − sA

)

× log

((
N
2

)
!
(
N
2

)
!

N !

(N2 + 1)

(NB

2 + sA + 1)

(
NB

NB

2 − sA

))
. (A27)
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A 3 ii Closed-form approximation to the noncommuting-charge model’s state-counting term

First, we approximate the dAdB
D in Eq. (A25) as a Gaussian function. We break dAdB

D into two factors, one consisting

of factorials and the other of everything else: dAdB
D = f(sA)g(sA), wherein

f(sA) :=

(
N
2

)
!
(
N
2

)
!

(N)!

(NA)!(
NA

2 + sA
)
!
(
NA

2 − sA
)
!

(NB)!(
NB

2 + sB
)
!
(
NB

2 − sB
)
!

and (A28)

g(sA) :=

(
2sA + 1

NA

2 + sA + 1

)(
2sA + 1

NB

2 + sA + 1

)(
N

2
+ 1

)
. (A29)

We Taylor-expand log(f(sA)) around its maximum, sA = 0, to O
(
N−1

)
, assuming s2A ∼ N . Then, we exponentiate

the result:

f(sA) =

√
2N

NANBπ
exp

(
−2Ns2A
NANB

)[
1 +

1

4N
− 1

4NA
− 1

4NB
+

2s2A
N2
A

+
2s2A
N2
B

− 4s4A
3N3

A

− 4s4A
3N3

B

+O
(
N−2

)]
. (A30)

Next, we expand g(sA) [Eq. (A29)]:

g(sA) =
8Ns2A
NANB

[
1 +

1

sA
− 2sA
NA
− 2sA
NB

+
2

N
− 4

NA
− 4

NB
+

1

4s2A
+

4s2A
N2
A

+
4s2A
N2
B

+
4s2A

NANB
+O

(
N−3/2

)]
. (A31)

The right-hand sides of (A30) and (A31) multiply to

dAdB
D

=
4(2N)

3
2

(NANB)
3
2
√
π
s2A exp

(
−2Ns2A
NANB

)[
1 +

1

sA
− 2NsA
NANB

+
9

4N
− 17N

4NANB
+

6s2A
N2
A

+
6s2A
N2
B

+
4s2A

NANB

+
1

4s2A
− 4s4A

3N3
A

− 4s4A
3N3

B

+O
(
N−3/2

)]
. (A32)

We check that this function is normalized to O(N−3/2) (as dAdB
D must be normalized), but omit the details of the

check.
Having approximated the first factor in the state-counting term (A25), we proceed to the second. According to the

Stirling approximation (A15), the logarithm is

log

(
dB

D(2sA + 1)

)
= −N log(2) +

NB
2

log

(
N2
B(

NB

2 − sA
) (

NB

2 + sA
))+ sA log

(
NB

2 − sA
NB

2 + sA

)

+
1

2
log

(
NNB

4
(
NB

2 − sA
) (

NB

2 + sA
))+ log

(
N
2 + 1

NB

2 + sA + 1

)

+
1

4N
+

1

12NB
− 1

12
(
NB

2 − sA
) − 1

12
(
NB

2 + sA
) +O

(
N−2

)
. (A33)

Taylor-approximating about N =∞ yields

log

(
dB

D(2sA + 1)

)
= −NA log(2) +

3

2
log

(
N

NB

)
− 2s2A
NB
− 2sA
NB
− 4s4A

3N3
B

+
4s2A
N2
B

+
9

4N
− 9

4NB
+O

(
N−3/2

)
. (A34)

We can now substitute the logarithm (A34) and the dAdB/D factor (A32) into the state-counting term (A25). Since
the summand varies slowly where its value is large, we approximate the sum as an integral. Also, since the integrand
falls off rapidly at large sA, we approximate the integral’s upper limit with ∞. Evaluating the integral, we calculate
the a qubits’ contribution to the state-counting term. Adding the b qubits’ state-counting term, NA log(2), we obtain
the noncommuting-charge state-counting term:

〈SE〉S = NA log(4)− 3

2
log

(
N

NB

)
+

3NA
2N

+
3NA
4N2

+
N2
A

2N2NB
+O

(
N−3/2

)
. (A35)
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Appendix B HOW OUR MODELS’ CHARGES RESTRICT THE MICROCANONICAL SUBSPACES

The main text posits an explanation for why, in the microcanonical-subspace study, the noncommuting-charge Page
curve lies above the commuting-charge Page curve. We propose another explanation, using specifics of our models,
here. To what extent this reasoning generalizes beyond those models merits further study.

Consider beginning with an unconstrained system, then restricting the Hilbert space to the eigenvalue-0 eigenspace
of Qtot

1 , then restricting further to the eigenvalue-0 eigenspace of Qtot
2 , then restricting to the eigenvalue-0 eigenspace

of Qtot
3 . The first two restrictions already restrict the system to the s = 0 subspace; the third restriction is redundant.

Now, consider undertaking the same process but replacing the Qtot
α ’s with Ctot

α ’s. The first two restrictions only
partially imply the third, which therefore constrains the Hilbert space nontrivially. (Appendix B 1 contains a proof.)
One might therefore expect the microcanonical subspace to be larger when defined by our three noncommuting
charges than when defined by our three commuting charges. We have confirmed this expectation by direct calculation.
Furthermore, the available Hilbert space’s dimensionality upper-bounds the entanglement entropy [Eq. (1)]. Hence
the noncommuting charges should enable more entanglement—a higher Page curve—than the commuting charges do.

B 1 Constraining Ctot
1 and Ctot

2 constrains Ctot
3 only partially

Consider an unconstrained system of N 4-level qudits. Consider restricting the Hilbert space to the eigenvalue-
0 eigenspace of Ctot

1 , then restricting further to the eigenvalue-0 eigenspace of Ctot
2 , and then restricting to the

eigenvalue-0 eigenspace of Ctot
3 . The first two restrictions partially imply the third, which constrains the Hilbert

space nontrivially. We prove this claim here.
The local charges C1,2,3 share four eigenstates, the maximally entangled Bell states [97]. They are, if |↑〉 and |↓〉

denote the Z eigenstates,

|B1〉 :=
1√
2

(|↓〉a |↑〉b − |↑〉a |↓〉b) , |B2〉 :=
1√
2

(|↓〉a |↓〉b − |↑〉a |↑〉b) , (B1)

|B3〉 :=
1√
2

(|↓〉a |↓〉b + |↑〉a |↑〉b) , and |B4〉 :=
1√
2

(|↓〉a |↑〉b + |↑〉a |↓〉b) . (B2)

Denote by ρj the jth qubit’s reduced state, which has a weight 〈Bk| ρj |Bk〉 on the kth Bell state. Summing over qudits

yields the total population Pk :=
∑N
j=1 〈Bk| ρj |Bk〉.

If the system is in an eigenvalue-0 eigenstate of Ctot
1 , then P1 + P2 = P3 + P4. If the system is in an eigenvalue-0

eigenstate of Ctot
2 , then P1 + P3 = P2 + P4. Together, these constraints imply P1 = P4 and P2 = P3. Furthermore,

〈Ctot
3 〉 = P2 + P3 − P1 − P4. This expectation value, under the Ctot

1,2 constraints, is restricted to 2(P2 − P1), which

need not vanish. Thus, the first two charges do not restrict the Ctot
3 expectation value completely. Contrarily, if in

an eigenstate of Qtot
1,2, the system is in the eigenvalue-0 eigenstate of Qtot

3 . Hence Ctot
1,2 restrict the Hilbert space less

than Qtot
1,2 do.

Appendix C HOW SEQUENTIALLY INTRODUCED CHARGES CHANGE THE PAGE CURVE:
SUPERADDITIVELY, SUBADDITIVELY, OR ADDITIVELY

Figure 2 shows Page curves constructed from microcanonical subspaces. At finite N , the curves violate an expec-
tation that one might gather from earlier literature. We explain the expectation, discuss the violation, and provide
numerical evidence for the expectation in the thermodynamic limit (as N →∞).

Consider beginning with an unconstrained N -site system, restricting the Hilbert space to the eigenvalue-0 eigenspace
of Ctot

1 , then restricting further to the eigenvalue-0 eigenspace of Ctot
2 , and then restricting to the eigenvalue-0

eigenspace of Ctot
3 . One might expect that, as more charges were introduced, each successive charge would lower the

Page curve by the same amount as the last charge. Such lowering has been argued to happen in the thermodynamic
limit, with commuting charges [15]. We call an expectation of such lowering the additivity ansatz. One might
posit it, expanding on [15], (i) for noncommuting charges in the thermodynamic limit and (ii) for commuting and
noncommuting charges at finite N .

If the additivity ansatz were true, the Page curve (for three equivalent commuting or noncommuting charges)
could be constructed as follows. Consider restricting the global Hilbert space to one charge’s eigenvalue-0 eigenspace

(any Ctot
α or Qtot

α —which one does not affect the curve). The corresponding Page curve, we denote by 〈SE〉(1)S .
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Figure 3: Testing the additivity ansatz. 〈SE〉S denote any Page curve restricted by charges; and 〈SE〉H, the unrestricted
Page curve. The red x’s form the noncommuting-charge model’s Page curve, and the circular blue markers form the
commuting-charge model’s Page curve. Both curves were calculated using microcanonical subspaces. The gray triangles
illustrate the additivity ansatz.

Recall that 〈SE〉H denotes the unrestricted Page curve. The additivity ansatz predicts the Page curve 〈SE〉H −
3
(
〈SE〉H − 〈SE〉(1)S

)
for our models with three equivalent charges constrained in each.

Figure 3 tests this prediction at finite N . The gray triangles form the additivity-ansatz curve. It lies below the
noncommuting-charge Page curve (red x’s), which are therefore superadditive. The ansatz curve also lies above
the commuting-charge Page curve (blue circles), which are subadditive. Hence the additivity ansatz breaks in a
commutation-dependent manner at finite N . However, all three curves converge as N grows. We hence provide
numerical evidence for the additivity ansatz, supported analytically in [15] and in App. A above, in the thermodynamic
limit.

Appendix D ANALOGOUS APPROXIMATE MICROCANONICAL SUBSPACES

The main text specifies how to construct AMC subspaces in the noncommuting-charge model. We augment this
explanation with examples. Then, we explain how to construct analogous AMC subspaces in the commuting-charge
model. We also specify the six analogous-AMC-subspace pairs reported in the main text.

First, we review how to construct AMC subspaces in the noncommuting-charge model. Denote by 2m the Ztot
a

eigenvalue. Ztot
a shares eigenstates with ~S2

a. Shared eigenstates labeled by the same two quantum numbers form the
(s,m) eigenspace. Some such eigenspaces are AMC subspaces, we find by direct calculation. For each (s,m) value, we
calculate the probability distributions pNα (γ). Each distribution should exhibit one peak for the eigenspace to satisfy
the AMC subspace’s definition. pN3 (γ), being a Kronecker delta function in the (s,m) subspace, meets this criterion.
Also, according to direct calculation, pN1 (γ) = pN2 (γ) for all γ. Hence we need calculate only pN1 (γ) to check whether
an (s,m) eigenspace is an AMC subspace. Table I presents these distributions for s ≤ 4. Whenever s = m, each
distribution exhibits one peak. Therefore, each (s,m=s) subspace qualifies as an AMC subspace.

Having identified AMC subspaces defined by noncommuting charges, we construct analogs defined by commuting
charges. For each N , we identify the eigenspaces shared by Ctot

1,2,3. For consistency with the noncommuting-charge

model, we keep only the eigenvalue-m eigenspaces of Ctot
3 . For each shared eigenspace, we calculate the distributions

pCα(γ). If they equal their noncommuting-charge counterparts pNα (γ) (criterion 5), the eigenspace forms an analogous
AMC subspace.

An illustrative example is parameterized by N = 8 and (in the noncommuting-charge model) s = m = 1. We keep
only the eigenvalue-1 eigenspaces of Ctot

3 . Denote by cx the Ctot
1 eigenvalues and by cy the Ctot

2 eigenvalues. We label
by (cx, cy, 1) the eigenspaces shared by Ctot

1,2,3. For consistency with the noncommuting-charge model, we ignore any
eigenspaces in which cx > s or cy > s. Four eigenspaces remain: (0,−1, 1), (−1, 0, 1), (1, 0, 1), and (0, 1, 1). Each is
of dimensionality 1680. The candidate AMC subspace is the union of these four subspaces and is of dimensionality
6720. These dimensionalities fix the probabilities pC1 (γ). For example, pC1 (0) = (1680× 2)/6720 = 0.5. The remaining
probabilities are pC1 (−1) = 0.25 and pC1 (1) = 0.25. This distribution equals the corresponding pN1 (γ). Checking every
eigenvalue-m eigenspace of Ctot

3 , we find six eigenspaces for which pCα(γ) = pNα (γ) ∀α, γ, satisfying criterion 5.
We have identified six pairs of parallel (commuting-charge and noncommuting-charge) AMC subspaces. The pairs

are labeled by s = m = 1, N/2 and N = 4, 8, as well as by s = m = N/2 and N = 2, 6. (Computational limitations
restrict us to N ≤ 8.) Table II compares the two Page curves formed from each subspace pair. We compare the curves
at their midpoints, NA = N/2. The percent difference between the two curves varies from 0.199% to 3.06% across
the subspace pairs. Hence noncommuting charges increase the average entanglement entropy in AMC subspaces as
in microcanonical subspaces.
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(s,m)
Possible measurement outcomes

-4 -3 -2 -1 0 1 2 3 4

(1, 0) 0.500 0 0.500
(1, 1) 0.250 0.500 0.250
(2, 0) 0.375 0 0.250 0 0.375
(2, 1) 0.250 0.250 0 0.250 0.250
(2, 2) 0.063 0.250 0.375 0.250 0.063
(3, 0) 0.313 0 0.188 0 0.188 0 0.313
(3, 1) 0.234 0.156 0.016 0.188 0.016 0.156 0.234
(3, 2) 0.094 0.250 0.156 0 0.156 0.250 0.094
(3, 3) 0.016 0.094 0.234 0.313 0.234 0.094 0.016
(4, 0) 0.273 0 0.156 0 0.141 0 0.156 0 0.273
(4, 1) 0.219 0.109 0.031 0.141 0 0.141 0.031 0.109 0.219
(4, 2) 0.109 0.219 0.063 0.031 0.156 0.031 0.063 0.219 0.109
(4, 3) 0.031 0.141 0.219 0.109 0 0.109 0.219 0.141 0.031
(4, 4) 0.004 0.031 0.109 0.219 0.273 0.219 0.109 0.031 0.004

Table I: Probabilities pN1 (γ) that characterize (s,m) eigenspaces. Denote by |ψ〉 any state from an (s,m) eigenspace
of the noncommuting-charge model. Measuring Qtot

1 yields outcome γ with some probability. This probability, averaged over
the |ψ〉, we denote by pN1 (γ). The possible measurement outcomes range from −s to s. The probabilities pN1 (γ) are listed for
each (s,m) and are independent of the system size, N . pN1 (γ) has exactly one peak only if s = m.

N s = m NC C NC − C % diff.

4 1 −0.455 −0.479 0.024 5.112

8 1 −0.364 −0.390 0.027 7.106

2 N/2 −0.587 −0.589 0.002 0.362

4 N/2 −1.350 −1.354 0.004 0.272

6 N/2 −2.074 −2.086 0.012 0.600

8 N/2 −2.770 −2.788 0.017 0.625

Table II: Differences between Page curves, constructed from approximate microcanonical subspaces, at
NA = N/2. The Page curves’ values at NA = N/2 are listed for various N and s = m values. We abbreviate “difference” with
“diff.,” “noncommuting” with “NC,” and “commuting” with “C.”
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