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We study the effects of thermal fluctuations and pinned boundaries in graphene membranes using
a phase-field crystal model with out-of-plane deformations. For sufficiently long times, the linear
diffusive behavior of height fluctuations in systems with free boundaries becomes a saturation regime,
while at intermediate times the behavior is still sub-diffusive as observed experimentally. Under
compression, we find mirror buckling fluctuations where the average height changes from above to
below the pinned boundaries, with the average time between fluctuations diverging below a critical
temperature corresponding to a thermally induced buckling transition. Near the transition, we
find a nonlinear height response in agreement with recent renormalization-group calculations and
observed in experiments on graphene membranes under an external transverse force with clamped
boundaries.

I. INTRODUCTION

Thermally induced fluctuations in atomically thin
crystals, such as graphene, lead to striking effects on
its mechanical properties that can be eventually ma-
nipulated for technological applications [1–5]. Out-of-
plane deformations, for example, allow for a thermally
rippled, but flat phase, observed experimentally in free-
standing graphene [6–8], where the bending rigidity and
elastic modulus are strongly dependent on the length
scale [9, 10]. They also influence the dynamics in a re-
markable way, as shown in experiments on free-standing
graphene with scanning tunneling microscopy [11], giv-
ing rise to an anomalous diffusive behavior of the height
fluctuations and a non-Gaussian velocity distribution.

Very recently, the dynamical behavior of out-of-plane
fluctuations of freestanding graphene [12] was studied us-
ing a phase-field-crystal (PFC) model, which allows for
out-of-plane deformations in addition to the in-plane de-
formations included in standard PFC models [13–15].
The model describes the system by two coupled con-
tinuous fields, representing the particle density and the
out-of-plane fluctuations with a small amplitude. It was
found that the dynamic scaling behavior [16] depends
only on the equilibrium roughening exponent ξ and the
height displacement fluctuations at intermediate times
behaves as 〈∆h(t)2〉 ∝ tα with α = ξ/(1 + ξ). This
is in good agreement with the anomalous diffusion ex-
ponent observed experimentally [11]. At sufficient long
times, however, the behavior is the usual linear diffu-
sion for systems with free boundaries. On the other
hand, in many experimental conditions the boundaries
may be clamped or pinned. Molecular-dynamics simula-
tions of atomistic models of graphene under compression
and fixed boundaries [11, 17] have revealed large fluctu-
ations corresponding to local curvature inversion of the

height at the central region, or mirror-buckling fluctua-
tions, at sufficient high temperatures and argued to be
responsible for the anomalous diffusive behavior. How-
ever, the origin and the effects of such mirror-buckling
fluctuations on the anomalous diffusive behavior are still
not fully understood. The boundary confinement could
also affect the anomalous diffusive behavior even in un-
strained membranes by constraining the center-of-mass
diffusion in the long-time limit. Under compression, it
can induce elastic instabilities in the form of a buckling
transition with the spatially averaged height h̄ acting as
an order parameter, which is strongly affected by thermal
fluctuations [18, 19]. The proximity to the buckling tran-
sition should also have important influences on the height
response to an external force applied perpendicularly to
the membrane [18], which can be accessed experimentally
in graphene membranes with clamped boundaries under
an applied electric field [5]. It is thus of interest to investi-
gate the effects of pinned boundaries on the out-of-plane
and mirror-buckling fluctuations.

In this work, we study the effects of thermal fluctua-
tions in graphene membranes using the PFC model with
out-of-plane deformations [12, 20], extended to include
the effects of pinned boundaries. It is found that at
sufficiently long times, the linear diffusive behavior of
height fluctuations in systems with free boundaries be-
comes a saturation regime, while at intermediate times
the behavior is still sub-diffusive as found experimen-
tally [11]. Under compression, we find mirror buckling
fluctuations with the average time between fluctuations
diverging below a thermally induced buckling transition.
We also determine the height response to an external
transverse force near this transition and find a nonlinear
force-displacement relation f ∝< h̄ >δeff for small forces.
Above the transition, the exponent δeff is consistent with
3−1/β, where β is the order-parameter critical exponent,
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as predicted by a recent renormalization-group calcula-
tions [18] and also observed in experiments on graphene
membranes with clamped boundaries [5].

II. PFC MODEL WITH OUT-OF-PLANE
DEFORMATIONS AND BOUNDARY

POTENTIAL

We use the PFC model with out-of-plane deformations
introduced previously [12, 20], here extended to include
the effects of pinned boundaries. The model is described
by the effective Hamiltonian
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where n(~r) is density field and h(~r) is the height dis-
placement measured from a base plane with ~r = (x, y),
and cg is an energy-scale parameter. In Fourier space,
C(k) = k4 for k < kmax and C(k) = Cmax for k > kmax.
Values of Cmax and kmax are chosen to eliminate small
scale fluctuations of h(~r). The surface Laplacian is ap-
proximated by

∇2
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xy − (h2
x∂

2
x + h2
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2
y + 2hxhy∂x∂y), (2)

where hx = ∂h/∂x and hy = ∂h/∂y. The first four terms
in Eq. (1) correspond to the standard PFC model, lead-
ing to periodic patterns of n(~r), while the next term rep-
resents the bending energy of the membrane, controlled
by the bending stiffness κ. The new last two terms favor
n(~r) = ngs(~r) and h(~r) = 0 near the boundaries of the
system, when the boundary potentials Vn(~r) and Vh(~r)
are chosen appropriately, where ngs is the ground-state
configuration in absence of these potentials. The intro-
duction of a boundary potential is particularly convenient
for the numerical simulations since it still allows the use
of periodic boundary conditions. The values of the bulk
parameters entering the model were chosen to represent
graphene [20], with a honeycomb pattern of maxima in
the density field n(~r), corresponding to ∆B = −0.15,
Bx = 1, τ = 0.874818, v = 1, κ = 0.209726 and cg = 6.58
eV.

The time evolution is obtained from dissipative dy-
namics, driving the system to the free energy minimum.
Non-conserved dynamics is used for the height field h,

∂h

∂t
= −δH

δh
+ ηh(r, t), (3)

while, for the density field n, we employ both conserva-
tive,

∂nh
∂t

= ∇2 δH

δnh
+ ηn(r, t), (4)

and non-conservative dynamics (in which “∇2” is re-
placed with “−1” in Eq. 4), as in Eq. (3), where ηn
and ηh are white noise terms describing the effects of
thermal fluctuations [21, 22] at temperature T , with zero
mean and

〈ηn(~r, t)ηn(~r′, t′)〉 = 2T∇2δ(~r − ~r′)δ(t− t′), (5)

for conservative dynamics and

〈ηh(~r, t)ηh(~r′, t′)〉 = 2Tδ(~r − ~r′)δ(t− t′), (6)

for non-conservative dynamics.
For the numerical simulations, the coupled Eqs. (3)

and (4) are solved numerically in Fourier space [20] with

wave vector ~k, as a function of time t with time step ∆t.
A square lattice is used of dimensions L∆x and L∆y with
periodic boundary conditions and mesh sizes ∆y ≈ ∆x.
To eliminate small-scale fluctuations of n(~r), ηn(k, t) is
set to zero for k > kmax. Typically, the mesh size ∆x ≈
0.5 − 0.72, time step ∆t = 0.2 − 0.5, and kmax = 0.5.
Dimensionless units are used in the Hamiltonian with
conversion factors for temperature and length cg/kB and

0.353 Å, respectively. In these units, room temperature
corresponds to T ≈ 0.004. In units of the lattice spacing
ax ∼ 4π/

√
3 of the periodic ground state configuration

[20], the system size corresponds to L∆x/ax.
In order to reach thermal equilibrium, the numerical

results described in the following sections were restricted
to small system sizes up to L = 250 and higher temper-
atures.

III. DYNAMICS OF HEIGHT FLUCTUATIONS

Height fluctuations in graphene and solid membranes
in absence of topological defects can be described by an
elasticity theory where the in-plane and out-of-plane de-
formations are coupled by a nonlinear term [7, 8, 10].
The combined effect of thermal fluctuations and the non-
linear coupling leads to a flat phase with scale-invariant
critical fluctuations, where the mean-square out-of-the
plane fluctuations, 〈h2

p〉, increase with system size L as

a power law 〈h2
p〉 ∝ L2ξ, characterized by the roughen-

ing critical exponent ξ. For such membranes, the effec-
tive bending stiffness κ(k) is renormalized by the thermal
fluctuations [9, 23], increasing with decreasing wavector
k as κ(k) ∼ k−η, and leading to a roughening exponent
ξ = 1 − η/2. Simulations and analytical results for such
models give values in the range [24] ξ = 0.575− 0.66.

The behavior of the mean-squared height displace-
ment, 〈∆h2〉 = 〈(h(r, t0+t)−h(r, t0))2〉, for free-standing
graphene in absence of a boundary potential and in-plane
strain has been studied recently [12] with the PFC model.
The behavior was found to be well described by the dy-
namic finite-size scaling form [16]

〈∆h(t)2〉 = L2ξΦ(t/Lz), (7)
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with a roughening exponent ξ = 0.62(9). The dynamic
exponent z is constrained to z = 2(1+ξ) from the require-
ment that the contribution from the center-of-mass diffu-
sion in the long-time limit scale as 〈∆h(t)2〉 ∼ t/L2. This
scaling form implies a power-law behavior for the time
dependence of height fluctuations, 〈∆h(t)2〉 ∼ tα, with a
crossover from an intermediate to long-time regimes with
α = ξ/(1 + ξ) and α = 1, respectively. The subdiffusive
behavior at intermediate times, α < 1, is consistent with
measurements of the vertical motion of atoms in free-
standing graphene [11] while the long-time behavior, due
to the center-of-mass diffusion, has not been observed.

Here, we investigate height fluctuations in graphene
membranes in the presence of a boundary potential but
still unstrained, where the effects of the potential pre-
vents the center-of-mass diffusion in the long-time limit
by favoring h(~r) = 0 while n(~r) is still unconstrained.
In the experiments, this could be due the interaction of
the graphene membrane with the support substrate act-
ing only at the boundaries. Figure 1 shows the finite-size
behavior of the mean-square height displacement at the
center of the lattice as a function of time for Vh0 = 10
at a pair of opposite boundaries. For the smallest sys-
tems, a crossover from an intermediate to a saturation
regime is clear seen. For the largest system L = 250, the
behavior at intermediate times is still sub-diffusive with
α ≈ 0.4. Nevertheless, as shown in Fig. 1, data collapse
on a single curve is not observed adjusting the value of
ξ. This indicates that the simple scaling form of Eq. (7)
in terms of a scaling function of a single variable t/Lz

is not satisfied for all times. It suggests that another
length scale besides the system size L should be taken
into account. In fact, in the presence of the boundary
potential Vh(~r) in Eq. (1), an additional length scale Lb
is set by the corresponding energy contribution of the
order of kT . As a result, the scaling function in Eq.
(7) should also depend on an additional variable L/Lb,
which is size dependent. Surprisingly, however, α is com-
parable to the value obtained without the boundary po-
tential, α = ξ/(1 + ξ) ≈ 0.38. This result can still be
understood from the scaling behavior of Eq. (7) when
restricted to times below the crossover to the saturation
regime for large systems. In this case, the contribution
to 〈∆h(t)2〉 from the center-of-mass diffusion, ∼ t/L2,
is limited by the out-of-plane fluctuations at saturation
L2ξ, corresponding to a relaxation time [16] τ ∝ Lz with
dynamic exponent z = 2(ξ + 1) and consequently the
same diffusion exponent α = 2ξ/z = ξ/(ξ + 1).

Therefore, even in the presence of pinned bound-
aries, the height displacement fluctuations of unstrained
graphene display sub-diffusive behavior at intermedi-
ate times, as observed in the experiments [11] in free-
standing graphene. However, in the long-time limit a
saturation regime appears, which could in principle be
verified in experiments with controlled boundary poten-
tials.

FIG. 1. (a) Mean-square height displacement 〈∆h(t)2〉 as a
function of time t for different systems sizes L at T = 0.04, in
presence of a boundary potential with Vh0 = 10. Dotted line
is a power-law fit for L = 250. (b) Attempt of a scaling plot
of the data from Fig. 1 with ξ = 0.7. Lack of data collapse
indicates that the scaling form of Eq. (7) is not satisfied.

IV. MIRROR-BUCKLING FLUCTUATIONS
AND PHASE TRANSITION

In the presence of an externally applied in-plane com-
pression, thermally-induced fluctuations of large ampli-
tude have been observed in molecular-dynamics simula-
tions of graphene membranes [11, 17], where the height
configurations spontaneously invert their curvature as a
function of time with sharp and well-separated bounces.
Since the origin and the effects of such mirror-buckling
fluctuations on the subdiffusive behavior of the height
displacement found in experiments [11] by scanning tun-
neling microscopy are still not fully understood [12, 25],
investigating their temperature dependence may provide
useful information. Here we first demonstrate that this
behavior can also be reproduced with the PFC model of
Eq. (1) under external compression and then determine
the effects of varying the temperature in equilibrium.

To study the system under compression and pinned
boundaries we allow for nonzero boundary potentials for
both n(~r) and h(~r) in the Hamiltonian. To pin the
boundaries Vh(~r) was initially set to zero in the central
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region of the simulation cell and Vh(~r) = Vh0 = 1 in
the region 10 lattice sites from the edges. To avoid nu-
merical anomalies Vh(~r) was then smoothed in Fourier

space by e−k
2/2. A similar process was used for Vn(~r)

except that near the edges Vn(~r) was set to a one mode

approximation for n, i.e., Vn = Vh0

∑
j e
iε~qj ·~R, where

~q1 = (−
√

3,−1)/2, ~q2 = (0, 1) and ~q3 = (
√

3,−1)/2.
The parameter ε is used to control the average strain,
which is given approximately by (1 − ε)/ε. Vn and
Vh were fixed throughout the simulation. To mimic
prior studies [11, 17, 20], the density was initially set

to n = −φ
(∑

j e
iε~qj ·~r + c.c.

)
, where φ is the amplitude

that minimizes the ground state energy and c.c. is the
complex conjugate.

Figure 2 shows the behavior of the spatially averaged
height

h̄(t) =
∑
~r

h(~r, t)/L2, (8)

as a function of time, for different temperatures with
ε = 1.01803158. In addition to fluctuations of small am-
plitude at short time scales, there are sharp and large
fluctuations with height inversion from values above to
below the pinned boundaries with h = 0. Such spon-
taneous height inversions at the intermediate tempera-
tures, T = 0.025 and 0.0275, are very similar to those
observed previously in molecular-dynamics simulations
of atomistic models of graphene [11, 17] as a local curva-
ture inversion of the height at the central region. Here we
find that the average time τB between height inversions
increases quickly with decreasing temperature as shown
in Fig. 3a, becoming larger than the available simulation
time below Tc ≈ 0.025. One expects that τB is deter-
mined by the free-energy barrier ∆F between buckled
configurations with opposite heights. We can obtain ∆F
as

∆F = −T log(pm/pM), (9)

for each temperature from the probability distribution
p(h̄), which displays a double peak structure like the one
in Fig. 3b with minimum pm and maximum pM. As for
τB, the free-energy barrier also increases quickly with de-
creasing temperature as shown in Fig. 3c, but below Tc

it is too large to lead to a double-peak structure in the
height probability distribution. As a result, the increase
in τB is not just the effect of decreasing temperature, as
would be expected if τB is given by the Kramers’ equa-
tion τB ∝ eU/kBT , where U is an approximately constant
energy barrier. Thus, using such an equation to estimate
the energy barrier for mirror buckling as employed in the
molecular-dynamics study [17], can lead to inconsistent
results.

To further characterize the temperature dependence of
the buckling fluctuations, we show in Fig. 4b the behav-
ior of the time-averaged height 〈h̄〉 and corresponding
susceptibility

χ = L2(〈h̄2〉 − 〈h̄〉2)/T. (10)

FIG. 2. Time dependence of the average height h̄ for different
temperatures for the graphene membrane under compressive
strain of 1.8% and system size L = 160. The two figures for
T = 0.025 correspond to different starting configurations.

The susceptibility displays a maximum at approxi-
mately the same temperature Tc where the average height
becomes significantly different from zero and τB is larger.
The behavior described above for h̄ and χ signals a buck-
ling phase transition at Tc, below which the inversion
height symmetry of the model of Eq. (1) is sponta-
neously broken and the graphene membrane is buckled
with 〈h̄〉 6= 0, while above Tc it is flat with 〈h̄〉 = 0. In the
thermodynamic limit, χ should diverge if the transition is
continuous. As shown in Fig. 5, the transition tempera-
ture depends on the compression. It vanishes at the crit-
ical compression corresponding to the zero-temperature
long-wavelength elastic instability of the graphene mem-
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FIG. 3. (a) Average time period between buckling fluctua-
tions from Fig. 2 as a function of temperature. (b) Proba-
bility distribution of the average height h̄ at T = 0.03. (c)
Temperature dependence of the free-energy barrier ∆F for
buckling fluctuations.

brane [18], which depends on the system size. For the
PFC model, it can be estimated approximately as [20]
Q2κ/9Bxφ

2, where φ is the amplitude of phase field n(~r)
and Q = 2π/L is the smallest wavector. At finite tem-
peratures, the buckling threshold increases due to an en-
hancement of the effective bending stiffness κ(k) by long-
wavelength thermal fluctuations [9]. Figure 6 illustrates
two typical height configurations just above and below
the transition while Fig. 6 shows the same data combin-
ing height and density field configurations.

Recently, the buckling transition in thermalized

FIG. 4. (a) Time-averaged height 〈h̄〉 as a function of tem-
perature. (b) Temperature dependence of the height suscep-
tibility χ.

FIG. 5. Critical temperature of the buckling transition as a
function of compressive strain parametrized by ε.

membranes with clamped boundaries and driven by
compressive strain has been studied analytically by
renormalization-group methods [18], revealing universal
critical scaling exponents and nonlinear height response
that should be independent of the microscopic details of
the model. Our results from the PFC model of Eq. (1)
with pinned boundaries and fixed compression provide
evidence of such transition driven by thermal fluctua-
tions. It also indicates that the well time separated and
sharp mirror-buckling fluctuations in Fig. 2 are a signa-
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FIG. 6. Sample height configurations for just below (a) T =
0.02 and above (b) T = 0.03 the buckling transition

ture of the nearby thermal buckling transition.

V. NONLINEAR HEIGHT RESPONSE NEAR
THE BUCKLING TRANSITION

The proximity to the buckling transition presented in
the previous section has also important effects on the
height response to an external force applied perpendic-
ularly to the membrane [18]. Such force-displacement
relations have recently been measured in experiments on
graphene membranes with clamped boundaries [5] under
an applied electric field.

To study the height response to an external transverse
force f , an additional term is included in the effective
Hamiltonian of Eq. (1) describing the linear coupling
of the height to the force, −f

∫
d2~r h(~r). The relation

between the external force and the average height has re-
cently been obtained from a renormalization-group study
of compressed membranes [18]. In our case, where the

FIG. 7. Same as Fig. 6 but combining height and density
field configurations. (a) T = 0.02 and (b) T = 0.03. Filled
circles represent the density field maxima.

compression is fixed and the temperature is the tuning
parameter, this relation can be rewritten as [18]

f = c1∆T 〈h̄〉3−1/β + c2〈h̄〉3, (11)

where β is the critical exponent describing the vanishing
of the average height near the transition, 〈h̄〉 ∝ ∆T β , in
absence of the force, with ∆T = T − Tc. The critical
temperature Tc and the constants c1 and c2 depend on
the system size in addition to the elastic constants, a pe-
culiar feature of the buckling transition. Here, we will
consider a fixed system size with L = 160. A notable
result from this renormalization-group study is the value
of critical exponent for membranes with clamped bound-
aries, β = 0.718, which leads to a significant difference
of the exponent 3− 1/β = 1.607 of the first term in this
equation from the expected linear term from mean-field



7

FIG. 8. Height response behavior under externally applied
force f for different temperatures T near the buckling transi-
tion of Fig.4. The dashed line corresponds to the power-law
behavior with exponent 3 expected at the transition.

theory, for which β = 1/2. At the transition, the height
response behaves as a power law, 〈h̄〉 ∝ f1/δ, with the
critical exponent δ = 3. Near the transition, the height
response should also satisfy the scaling form

〈h̄〉 = ∆T βΦ±(f/∆T 3β), (12)

where ± correspond to temperatures above and below
Tc.

Figure 8 shows behavior of the force as a function of
the height near the transition, for the PFC model under
compression and pinned boundaries presented in the pre-
vious section. The dashed line corresponds to the power-
law behavior f ∝ hδ with exponent δ = 3 expected at the
transition, which is consistent with a critical temperature
Tc ≈ 0.03. In Fig. 9, we show a scaling plot of the height
response according to Eq. (9), obtained by adjusting the
parameters Tc and β. The data collapse onto two differ-
ent curves, supporting the scaling theory and providing
an estimate of β. Although a reasonable data collapse is
obtained for β = 0.5(2), the large error bar and the ne-
glect of finite-size effects does not allow us to rule out the
mean-field behavior from this scaling plot. On the hand,
away from the transition, finite-size effects are expected
to be negligible as the correlation length becomes smaller
than the system size. Then, defining an effective critical
exponent δeff from a power-law fit f ∝ 〈h̄〉δeff for data at
different temperatures, we can follow the crossover from
its value equals 3 at the transition to a smaller value
at higher temperatures as ∆T increases, when the first
term in Eq. (11) dominates over the second one for small
forces. As shown in Fig. 10, it approaches an expo-
nent consistent with the value 3− 1/β = 1.607 predicted
by the renormalization-group calculations. As argued in
Ref. [18] this critical exponent describes the anomalous
nonlinear response observed in experiments on graphene
membranes with clamped boundaries [5].

FIG. 9. Scaling plot of the height response near the buckling
transition with ∆T = T − Tc for Tc = 0.029 and β = 0.5.

FIG. 10. Effective exponent δeff from a power-law fit, f ∝<
h̄ >δeff , as a function of temperature. The dashed line cor-
responds to the exponent 3 − 1/β = 1.607 predicted by the
renormalization-group calculations of Ref. [18].

VI. SUMMARY AND CONCLUSIONS

Using the PFC model with out-of-plane deformations
introduced previously [20] and extended to include the
effects of boundary potentials, we have investigated the
effects of thermal fluctuations in graphene membranes
with pinned boundaries. It is found that at sufficiently
long times, the linear diffusive behavior of height fluctu-
ations observed recently with the same model for sys-
tems with free boundaries [12], becomes a saturation
regime in presence of pinned boundaries, while at in-
termediate times the behavior remains subdiffusive as
observed experimentally [11]. Under compression with
pinned boundaries, we find mirror buckling fluctuations
similar to the behavior observed by molecular-dynamics
simulations of atomistic models [11, 17], which has been
argued to be also responsible for the non-Gaussian veloc-
ity distribution observed in the experiments [11]. Inter-
estingly, we find that the average time between fluctua-
tions diverges below a critical temperature correspond-
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ing to a thermal buckling transition. Below the tran-
sition, the graphene membrane is buckled while above
the transition it is flat but with small fluctuations. Re-
cently, this transition has been studied analytically by
renormalization-group methods [18], revealing critical ex-
ponents and nonlinear height response depending in a
nontrivial way on the boundary constraints at constant
strain or stress. In addition to providing numerical evi-
dence of such transition driven by thermal fluctuations,
our results also indicates that the well time separated
and sharp mirror-buckling fluctuations are a signature
of the nearby thermal buckling transition, thereby sug-
gesting a possible origin of the anomalous velocity dis-
tribution observed experimentally [11]. The proximity
to this buckling transition also has important effects on
the height response to an external force applied perpen-
dicularly to the membrane, as measured in experiments
on graphene membranes with clamped boundaries [5].
We find a nonlinear force-displacement relation with an
exponent consistent with the value 3 − 1/β = 1.607 as

predicted by renormalization-group calculations [18], and
observed in these experiments as an anomalous height
response. Our results demonstrate the importance of
boundary constraints in the effects of thermal fluctua-
tions on the long-wavelength behavior and buckling of
graphene membranes [18, 19] and show that the PFC
model with out-of-plane deformations can provide a use-
ful framework for further investigations.
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