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Characteristics of topological semimetals such as a non-saturating magnetoresistance (MR), a
field-induced metal to semiconducting crossover and a robust resistivity plateau are observed under
a magnetic field in type-I RbBi2 bulk superconductor with Tc = 4.15 K. The MR exhibiting a notable
3500 % increase at 2 K and 9 T and the resistivity follows a power law temperature dependence,
while the MR ∝ H1.26, indicating weak carrier compensation. First principles calculations provided
insights into the dynamical stability of the cubic structure at 0 K. Both hole- and electron-pockets
are observed at the Fermi surface. The electron-phonon interaction constant indicates weak coupling
strength (<1), that leads to a maximum predicted Tc of 2.852 K. Just below the Fermi level, EF ,
the electronic band structure consists of linear band crossings at the X-points in the Brillouin zone
(BZ) corresponding to massless, symmetry-protected Dirac fermions.

I. INTRODUCTION

In topological materials, the quantum state is entan-
gled to an extent where its emergent quasiparticles ex-
hibit exotic behaviors that are unique, and cannot be re-
produced in conventional solids. These exotic properties
are topologically protected as they are robust against per-
turbations. Studies on numerous materials to date have
established that topological phases supporting topolog-
ically protected boundary states can exist in two and
three dimensional time-reversal symmetry (TRS) invari-
ant systems in the absence of an external magnetic field
[1]. Many candidate topological insulators containing
bismuth, Bi, have been explored for this purpose [2].
Bi metal exhibits strong spin-orbit coupling (SOC) that
has been linked to topologically non-trivial band struc-
tures in its compounds. Several binary Bi compounds
have been investigated for topological superconductivity.
Examples include Bi-alkali and alkaline-earth intermetal-
lic compounds such as LiBi, NaBi, KBi2 [3], CsBi2 [4],
Ca11Bi10-x [5], CaBi2 [6], CaBi3, SrBi3 [7], BaBi3 [7] and
Ba2Bi3 [8]. Among these, KBi2 [9] and CaBi2 are report-
edly type-I superconductors, although the topological na-
ture of their superconductivity has not been confirmed.

RbBi2 is isostructural to KBi2 with a higher super-
conducting transition temperature, Tc = 4.15 K. In this
work, we report on the Dirac (semi)metallic nature of
RbBi2 and its electronic properties. This is a novel super-
conducting system which exhibits extremely large non-
saturating MR and a Dirac dispersion. RbBi2 exhibits a
very large MR of about 3500 % under an applied mag-
netic field of 9 T. While metallic behavior is observed
at zero field above Tc, a metal-semiconductor crossover
appears at low temperatures when the magnetic field ex-
ceeds Hc. A robust resistivity plateau appears below 10
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K and persists up to 9 T. These characteristics are typi-
cal of topological semimetals with centrosymmetric crys-
tal structures [10]. At constant field, the resistivity fol-
lows a power law temperature dependence [11] while the
MR is fit following Kohler’s rule with an exponent, m ∼
1.26. An m ∼ 2 is indicative of perfect carrier compensa-
tion [12], thus the current value obtained for RbBi2 in-
dicates weak carrier compensation. Phonon calculations
based on first principles density functional theory (DFT)
predicted the cubic structure to be dynamically stable
at 0 K. The linear-response approach provided a weak
electron-phonon coupling strength of< 1, yielding a max-
imum superconducting Tc of 2.852 K using the McMil-
lan formula [13]. The electronic band structure near the
Fermi energy showed a linear band dispersion and cross-
ing indicative of a massless Dirac fermion at each of the
three X-points in the BZ below EF . The massless Dirac
spectrum is protected by the fourfold screw rotation sym-
metry S4.

II. RESULTS AND DISCUSSION

A. Magneto-transport characterization

RbBi2 is cubic with Fd3m space group symmetry [14].
The crystal structure is shown in Fig. 1(a). The Bi tetra-
hedra connect with each other by vertex-sharing to form
a three-dimensional network and the Rb atoms are ar-
ranged in a diamond sublattice which is intertwined with
the network of Bi tetrahedra. The Bi sublattice forms a
hyperkagome structure as shown in Fig. 1(b).

The results from the transport measurements under
magnetic field are summarized in Figs. 2. Shown in
Fig. 2(a) is the electrical resistivity as a function of tem-
perature under an applied magnetic field ranging from 0
to 9 T. At zero field, RbBi2 exhibits very good metallic
conductivity even at room temperature. The resistiv-
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Figure 1. (a) The unit cell showing the cubic crystal structure
of RbBi2. (b) The Bi sublattice forming a hyperkagome struc-
ture on a plane perpendicular to the threefold (111) axis. (c)
The fourfold screw S4 and twofold C2 rotations of the lattice.
Number indicates the fractional part of the vertical positions
of the atoms (in units of the lattice constant a). (d) Brillouin
zone and high symmetry points.

ity follows a linear temperature dependence until about
25 K, below which it follows a power-law temperature
dependence ρ = A + BT 2.91 as it approaches the super-
conducting transition. Under field, the resistivity follows
a complex power law dependence. Shown in Fig. 2(b)
is the resistivity as a function of temperature at 9 T.
At low temperatures, the resistivity is fit (solid red line)
with ρ = ρ0 +AT 2 +BT 3 +CT 5 where ρ0 =15, A = -0.1,
B = 7x10-3, C = -4.7x10-5.

Below 10 K, above the critical field, Hc, with the su-
perconducting transition suppressed, the resistivity ex-
hibits a plateau that extends down to 2 K, the lowest
measured temperature. The resistivity data below 10 K
measured on a liquid N2 quenched sample of RbBi2 is
shown in Fig. 2(c). The plateau is observed for fields up
to 9 T, with the residual resistivity rising linearly with
field (Fig. 2(d)). The magnetic field induces a crossover
in the temperature dependent behavior of the resistivity
from metallic to semiconducting and is accompanied by
a very large MR.

The magneto-transport behavior is shown in Fig. 2(e).
The MR at two temperatures, above and below the ob-
served Tc is plotted as a function of applied magnetic
field. Typically in conventional metals, the MR decreases
because the relaxation rate, τ decreases with increasing
temperature. This is the first report of MR in this sys-
tem and shows no saturation at 9 T. The MR is obtained
by MR(B) = ρ(B)−ρ(B0)

ρ(B0)
× 100 %. As-grown RbBi2 ex-

hibits an MR of about 3500% at 2 K and 9 T. The most
trivial mechanism responsible for the extremely large un-

Figure 2. (a) The electrical resistivity as a function of ap-
plied magnetic field in the range 0 – 9 T. (b) Temperature
dependence of resistivity at low temperatures in the presence
of applied field H = 9 T. The solid line shows the power law fit
ρ = ρ0 +AT 2 +BT 3 +CT 5 to the data at low temperatures.
(c) The low temperature resistivity behavior at applied fields
measured on a quenched sample of RbBi2 above the critical
field. (d) The residual resistivity at 2 K plotted as a func-
tion of the applied magnetic field. (e) The magnetoresistance
(MR) of RbBi2 is compared between data collected at 2 and
5 K. (f) MR fitted with MR = α(H/ρ0)m at 2 K and 5K
showing the Kohler scaling.

saturated MR in semimetals has been associated with a
semiclassical two-band model where electron and hole-
like carriers are almost compensated [15]. However, non-
saturating large MR has also been observed in topological
Weyl semimetals such as WTe2 [16] and MoTe2 [17] with
high mobilities and low-residual resistivities. Although
the two-band model predicts a quadratic in applied-field
MR, these systems usually exhibit a linear field depen-
dence and the origin of the extreme MR is not well un-
derstood.

Typically the magnetotransport in semiclassical single-
band metals follows a functional form known as Kohler’s
rule where ∆ρ/ρ0 ∝ F (H/ρ0) where ρ0 is the zero-field
resistivity [18]. In most simple metals, the MR exhibits
an H2 dependence so that MR is proportional to τ2H2.
Therefore a plot of MR versus (H/ρ0) is expected to col-
lapse to a single temperature independent curve if the
number of carriers is constant, and with only one type
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of carrier with a scattering rate that is the same at all
points on the Fermi surface. This is not what is observed
as seen from the fitting of the MR in RbBi2 with Kohler’s
scaling (Fig. 2(f)). ∆ρ/ρ0 ∝ (H/ρ0)1.26 which is not con-
sistent with a Fermi-liquid quasiparticle scattering rate.
We suggest that the electron - hole compensation can be
one potential explanation for the large MR behavior in
RbBi2, however, we do not see a quadratic field depen-
dence of MR which implies that such compensation is
weak. It is not likely for the electron-hole compensation
to be the dominant mechanism due to the complex nature
of Fermi surface in this material. The different tempera-
ture dependence of ρ and MR is because ρ is related to
the 1/τ over the Fermi surface. The MR on the other
hand is related to < τ > over the Fermi surface. The
transport and magnetotransport are reminiscent of the
behavior observed in systems such as Ag2-d(Te/Se)d [19],
Bi2Te3 [20], Bi metal [21], graphite [22], Cd3As2 [23] and
(Sr/Ca)MnBi2 [24]. In these systems, the mechanism for
the large MR has been attributed to involve the presence
of Dirac fermions and their linear dispersion (such as in
Ag2-d(Te/Se)d, Bi2Te3) or Fermi surface compensation.
It is possible that the magnetic field breaks TRS and re-
organizes the Dirac Fermi surface. A high mobility of
the Dirac carriers could induce a very large MR as in the
case of Cd3As2.

B. Phonons and electron-phonon coupling

The phonon dispersion curves along the W-L-Γ-X-W
high symmetry points as calculated using linear-response
theory (Fig. 3a) and the results from the supercell-based
finite displacement method are shown (Fig. 3b). Over-
all, both plots show similar features. Most importantly,
no phonons with imaginary frequencies are found using
either method. This suggests that the cubic structure
of RbBi2 is dynamically stable at 0 K. This result is in
agreement with the experimental data where no struc-
tural phase transition was seen in any of our experiments
down to 2 K.

The calculated electron-phonon coupling constant, λep,
from the linear-response theory varied from 0.55 to
0.72 depending on the broadening used to calculate the
α2F (ω) function. Since our calculated λep is less than
1, we used the McMillan formula [13] instead of the
Allen-Dynes formula to estimate Tc. The McMillan for-
mula provided a Tc estimate between 1.263 and 2.852 K,
which is in close agreement with the experimental value
(∼4.15 K for a polycrystal). Intriguingly, our calculated
λep for RbBi2 agrees closely with that in KBi2 [25], an
experimentally confirmed Type-I superconductor [9].

C. Electronic band structure and Fermi surface

In Fig. 4a and b, electronic band structures of metallic
RbBi2 without and with SOC are shown along the Γ-

W L Γ X W
0

20

40

60

80

F
re

q
u

e
n

cy
 (

cm
-1

)

Linear Response Theory

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

W L Γ X W
0

20

40

60

80

F
re

q
u

e
n

cy
 (

cm
-1

)

Finite Displacement Method

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 3. Phonon dispersion curves of RbBi2 along the high-
symmetry directions using (a) Linear-response theory and (b)
Finite displacement method. The high symmetry points are
marked in the Brillouin zone in Fig. 1(d).

X-W-Γ-L high symmetry directions, respectively. In the
absence of SOC, a total of four bands cross the Fermi
energy (EF). All four bands are from the Bi-atom. In-
troducing SOC has a non-trivial effect on the electronic
band structure. Some of the major changes occur along
the X-W k-path near EF. Two bands that cross the Γ-X
and X-W k-path in Fig. 4a are shifted to higher energies
(by ∼0.5 eV) as shown in in Fig. 4b. Consequently, in
the SOC electronic band structure, no bands cross EF

along the X-W path. Another interesting difference due
to SOC is observed in the W-Γ path. A Dirac-like linear
dispersion along the W-Γ path at ∼0.75 eV below EF in
Fig. 4a is gapped in Fig. 4b when SOC is turned on. The
band crossing at the X point just above the Fermi level
is also Dirac which is qualitatively the same as the one
below the Fermi level.

Fig. 5a is a plot of the Fermi surface without SOC.
An electron pocket (in red) is located at the Γ-point
of the BZ. Hole pockets at the X- and L-points can be
seen in Fig. 5c and d, resulting in a complex Fermi sur-
face, with electron and hole characteristics as shown in
Fig. 5b. This topology is similar to the Fermi surface of
superconductor KBi2 [25]. In Fig. 6, the Fermi surface
and corresponding Fermi velocity are plotted with SOC
included. An electron pocket is present at the Γ-point,
shown in green in Fig. 6a. In Fig. 6b, a complex structure
that consists of tubes connecting the X- and L-points are
formed. The maximum and minimum Fermi velocities,
vf , were calculated to be 2.64×106 and 0.65×106 m/s,
respectively. The maximum vf is found around the elec-
tron pocket in the Γ-point of the BZ (Fig. 6c), whereas
the minimum vf is found in the tubes that connect the
X- and L-points.
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Figure 4. Electronic band structures of RbBi2 (a) without
SOC (scalar relativistic) and (b) with SOC (fully relativistic).
The Fermi energy (EF) is set at 0 eV. (c) Dirac point at X
at −0.4187 eV below the Fermi level. For the two pairs of
bands that cross the Fermi level, the degenerate pair with
lower (higher) energy are bands #5 and #6 (#7 and #8).

Figure 5. (a)-(d) Fermi surface without SOC for RbBi2. Four
bands cross the EF, whose Fermi surface is shown here. The
Brillouin zone showing the high symmetry points is shown in
Fig. 1(d).

D. Massless Dirac fermions at the X points

The fourfold degenerate bands closest to and below EF
at each of the three X points correspond to a massless
Dirac fermion (Fig. 4(c)) [26]. Thus, RbBi2 is a Dirac
(semi)metal. [27] Here we review the symmetry-protected
Dirac point and present an effective k ·p Hamiltonian de-
scription near each X point. The symmetry group at X
is generated by time reversal T , inversion P , twofold ro-
tation C2 and fourfold screw rotation S4. Since the three
X points are related to each other by the threefold ro-
tation about the (111) axis, it suffices to focus on one

Figure 6. (a)-(d) Fermi surface and corresponding Fermi ve-
locity of RbBi2 with SOC. The high symmetry points are
labeled.

where S4 is parallel to, say, the a-axis and the C2 is par-
allel to the perpendicular b-axis. (See Fig. 1(c).) While
the symmorphic C2, P and T all mutually commute, the

non-symmorphic screw rotation S4 = C4T
1/4
a contains

the fractional translation T
1/4
a and does not commutes

with P and C2. T
1/4
a translates along the a axis by a/4,

where a is the lattice constant of the cubic cell. At the X
point, (T

1/4
a )2 = −1 and therefore the screw representa-

tion obeys PS4P = −S4. The twofold rotation flips the
screw direction by conjugacy, C2S4C

−1
2 = S−1

4 .
The fourfold degenerate bands at X irreducible repre-

sents the little group and is referred to as X5. We adopt
the following 4 × 4 matrix representations for the sym-
metries. T = isyK where K is the complex conjugate,
and

C2 =

(
isy 0
0 −isx

)
, S4 =

(
0 isy
isx 0

)
, (1)

and P = σz = diag(1,−1). Here, sx,y,z are the
spin Pauli matrices, and 1 is the spin identity ma-
trix. The Kramers’ theorem and PT symmetry, which
is antiunitary and squares to (PT )2 = −1, requires
all band at all momentum to be doubly degenerate.
Restricting to the screw symmetric a-axis in momen-
tum space, bands can be labeled by their S4 eigenval-
ues. The four bands near the Dirac point along ka
are grouped in two degenerate pairs with S4 eigenval-
ues {eiπ/4, ei3π/4} and {e−iπ/4, e−i3π/4}. The eigenval-
ues are 4th roots of unity because S4

4 = −1. PT switches
the degenerate eigenstates since (PT )S4 = −S4(PT ).
For example, S4(PT )|eiπ/4〉 = −(PT )S4|eiπ/4〉 =
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−(PT )eiπ/4|eiπ/4〉 = ei3π/4(PT )|eiπ/4〉. These two pairs
of degenerate bands cross at X and the Dirac crossing is
protected by S4 and PT symmetry.

The massless Dirac bands can be effectively described
by the k · p Hamiltonian in a linear approximation near
the X point,

H(X + k) = εXI + h̄vzkzγz + h̄vx (kxγx + kyγy) , (2)

where the x, y, z directions are the orthogonal b, c, a di-
rections, respectively. The fourfold degenerate bands at
X sits below EF at εX = −0.418705eV . The gamma ma-
trices are restricted by the little symmetry group at X5.
They are

γz =
σx(sx + sy)√

2
, γx =

σy + σxsz√
2

, γy =
σy − σxsz√

2
,

(3)

which mutually anticommute, and each matrix square
equals to the identity, γ2 = I. The Fermi velocities vx
and vz along the axis normal and parallel to the screw
direction from X are extracted by a polynomial fit of
band energies near X (within 4% away from X towards
Γ and M). Using the numerical lattice parameter a =
9.52016 Å, they are vx = (2.568 ± 0.006) × 105m/s and
vz = (4.94± 0.06)× 105m/s.

The Dirac fermions at the three X points can become
massive if the fourfold screw symmetry is broken, for ex-
ample when the material is under uniaxial stress along
the threefold (111) direction. The only time-reversal and
inversion symmetric mass term is mP , where the Dirac
masses of the three X points are identical due to the
threefold symmetry. The sign of m depends on the sign
of stress. Since the tension and compression phases are
separated by three Dirac transitions – an odd number,
one of them must be in the strong Z2 topological insu-
lating phase, and exhibits gapless Dirac surface bands at
the surface projected X̄ points.

E. Topology of the Fermi surfaces

Although RbBi2 has finite Fermi surfaces and is a band
metal, it is classified as an enforced semimetal with Fermi
degeneracy (ESFD) [28] for the following reasons. The
partially filled doubly degenerate conduction bands #7
and #8 can be continuously deformed above EF while
keeping all symmetries (See Fig. 4). Similarly, the par-
tially empty doubly degenerate valence bands #5 and
#6 can be moved below EF . The Dirac crossing at X
between the conduction and valence bands is still sym-
metry protected. It will reside exactly at the Fermi level
after a continuous band deformation because of charge
neutrality and electron filling. The resulting band struc-
ture is semimetallic as it has a vanishing Fermi surface
and energy gap. However, in the real material, the elec-
tron and hole pockets have finite Fermi surfaces. They

enclose the same volume in momentum space because of
charge neutrality.

The valence bands #5 and #6 cut across EF and give
rise to the hole pocket Fermi surface (shown in Fig. 6(a)).
It has an isotropic shape and resembles a smoothed out
rhombic dodecahedron that encloses the Γ point at its
center. The conduction bands #7 and #8 cut across EF
and give rise to the electron pocket Fermi surface (shown
in Fig. 6(b)). At low temperature, the electron pocket
occupies regions near the boundary of the Brillouin zone
including the X and L points, and does not overlap with
the hole pocket near the zone center. The electron Fermi
surface Σe−FS has genus 18, and is topologically equiv-
alent to a torus with 18 “holes”. It has 18 independent
longitudinal cycles that wrap inside Σe−FS where the
conduction band is occupied, and 18 meridian cycles that
wrap outside Σe−FS where the conduction band is empty.
The electron Fermi surface Σe−FS consists of 24 “tubes”
that connect between the three X points and the four L
points. Each X point is connected to any given L point
by two “tubes”. The longitudinal (meridian) cycles run
inside (outside) the tubes. A longitudinal loop cycle links
a meridian cycle if they thread the same tube. We de-
fer the consequence of the negative Gaussian curvature
of Σe−FS and the Wilson loop algebra of its cycles to
future work.

III. CONCLUSION AND SPECULATION

There exists a large list of non-magnetic compounds
recently discovered that exhibit extraordinary responses
under field i.e. large positive MR, with centrosymmet-
ric symmetries. Systems such as NbSb2 [29], YSb [30],
LaSb [31], MoAs2 [10], TaSb2 [32], and NbAs2 [33] all
show strong MR, a resistivity plateau, induced by the
magnetic field, leading to a crossover from a metal to a
semiconductor. In these systems, the exponent in the
Kohler’s fitting is less than 2, indicating weaker carrier
compensation. Magnetotransport in semiclassical single-
band metals scales as MR = F (H/ρ0) assuming a sin-
gle scattering rate. In our system, MR ∝ H1.26 which
deviates from Kohler scaling. The MR is almost linear
that may arise from the quantum limit, suggesting that it
could be the Dirac carriers that induce the large MR [34].

We close by speculating on the prospect of normal
metallic and superconducting phases of this Dirac mate-
rial under symmetry-breaking perturbations. The three
massless Dirac fermions can become massive in this case
and RbBi2 may serve as a testbed for tunable topological
phases. As discussed in section II D, we expect uniaxial
stress along the (111) direction turn the material into a
strong topological insulator that hosts protected surface
Dirac fermions. It would be equally interesting to ex-
plore the effects of other directional perturbations such
as electric/magnetic fields or shear stress, on the topol-
ogy and transport nature of this system. The high genus
electron Fermi surface contains saddle point regions with
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negative Gaussian curvature that associate to high den-
sity of states and locally flat energy dispersions along
special directions. These regions are prone to electron
many-body interactions and may give rise to non-trivial
strong correlated behaviors. The superconducting state
of RbBi2 deserves further investigation due to the strong
SOC and Dirac nature of the material. For example,
the surface Dirac fermion of a topological insulator are
known to host vortex-bound Majorana zero modes un-
der superconducting pairing [35]. Although RbBi2 is a
type-I superconductor, quantum vortices could be intro-
duced in thin film sandwiched by bulk trivial type-II su-
perconductors. It would be interesting to observe such
exotic excitations on the superconducting RbBi2 surface
and the onset of surface Majorana gap under a strong
enough symmetry-lowering perturbation such as the uni-
axial stress. Thus RbBi2 is a strong candidate to be a
novel topological system from which the interplay of su-
perconductivity and Dirac states can be explored.

Methods:
Material Synthesis: The RbBi2 samples were prepared

by solid state reaction following the procedure described
in Ref. [14]. Rubidium pieces (Alfa Aesar, 99.5%) and
Bismuth powder (Alfa Aesar, 99.99%) were mixed in a
1:2 molar ratio and the mixture was vacuum sealed in a
quartz ampule. The samples were heated at 700°C for
24 hours. Two batches of samples were synthesized, one
that was slowly cooled down (furnace-cooled) to room
temperature and the other quenched from 700°C in liq-
uid N2 to room temperature. The samples are denoted as
AG (as-grown) and Q (quenched), respectively. The sam-
ple preparation and handling were done inside an Argon
filled glovebox to avoid exposure to air. Electrical trans-
port and magnetization measurements were performed
as a function of magnetic field. Magnetic field studies on
correlated metals have been instrumental in revealing the
ground state properties of the normal state by suppress-
ing the superconducting transition. The magnetic field
interacts with the charge carriers through the Lorentz
force, coupling directly to the orbital motion.

First Principles Calculations: DFT calculations were
performed using the planewave pseudopotential code,
Quantum ESPRESSO [36] within the generalized gra-
dient approximation [37] and the PBEsol exchange-
correlation functional is used for all calculations [38]. The
ultrasoft pseudopotential optimized in the Rappe-Rabe-
Kaxiras-Joannopoulos scheme was used to treat the core
and valence electrons [39]. The RbBi2 system is built as
a 6-atom cubic cell (space group Fd3̄m), where Rb atoms
occupy the 8a Wyckoff site and the Bi atoms occupy the
16d site. The lattice constant was obtained by perform-
ing a variable-cell optimization, where both the cell and
the internal coordinates were allowed to relax. A Γ-point

centered Monkhorst-Pack k-point mesh of size 16×16×16
was used for the structure optimization [40]. A kinetic
energy and charge density cutoff of 70 and 700 Ry, re-
spectively, were used in the self-consistent field (SCF)
calculation. An energy threshold of 7×10−10 Ry was used
for the SCF calculation in the electronic steps. Marzari-
Vanderbilt smearing with a degauss width of 0.001 Ry
was used [41]. The calculated equilibrium lattice param-
eter of 9.52016 Å agreed well with the experimental value
(9.59 Å). The electronic band structure and Fermi surface
calculations were performed with and without SOC in the
Hamiltonian. In the SOC calculations, fully-relativistic
pseudopotential were used only for the Bi-atoms because
the atom-projected density of states indicated that only
the Bi-orbitals are involved in the Fermi surface. For the
Fermi surface calculations, non SCF calculations were
performed with a dense 32×32×32 k-mesh. The Fermi
surface is visualized using XcrySDen [42]. The Fermi
velocity was also calculated using the SOC term (vf ) and
visualized the contour using the Fermisurfer software
[43].

The phonon dispersion curve, electron-phonon cou-
pling strength (λep), and Eliashberg spectral function
[α2F (ω)] were calculated using the linear-response theory
[44]. Both Rb and Bi atoms are described using scalar-
relativistic pseudopotentials in these calculations. The
superconducting critical temperature was calculated us-
ing the McMillan formula [13]. An energy threshold of
10−15 Ry was used for self-consistency based on a 4×4×4
Monkhorst-Pack grid. A total of 10 double-delta smear-
ing values with a spacing of 0.005 Ry were used in the
electron-phonon coupling calculation. In addition to the
linear-response theory, the phonon dispersion curve was
also calculated based on the finite displacement method
using Phonopy [45]. A 2×2×2 supercell of the conven-
tional cell was used in these calculations. In the SCF
calculations, a 4 × 4 × 4 k-point mesh and an energy
threshold of 7×10−12 Ry were used for convergence.
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