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The Chamon model is an exactly solvable spin Hamiltonian exhibiting nontrivial fracton order.
In this work, we dissect two distinct aspects of the model. First, we show that it exhibits an
emergent fractonic gauge theory coupled to a fermionic subsystem symmetry-protected topological
state under four stacks of Z2 planar symmetries. Second, we show that the Chamon model hosts
4-foliated fracton order by describing an entanglement renormalization group transformation that
exfoliates four separate stacks of 2D toric codes from the bulk system.

I. INTRODUCTION

Gapped quantum systems can form nontrivial phases
of matter in the absence of symmetry if they exhibit long-
range entanglement in the many-body ground state [1].
The traditional examples of long-range entangled phases
are those with intrinsic topological order such as
fractional quantum Hall states [2, 3] and discrete gauge
theories [4, 5], which are characterized at low energy by
topological quantum field theories [6]. In 2005, Chamon
discovered a three-dimensional exactly solvable lattice
model [7] that represents the first example of a new
kind of long-range entangled order known as fractonic
order [8, 9].

Quantum phases with fractonic order cannot be
described by topological quantum field theory due to
an intertwining of universal properties with lattice
geometry [8–11]. In particular, fractonic orders are
characterized by a ground state degeneracy that scales
exponentially with linear system size, and the existence
of fractional excitations with constrained mobility [9, 12–
15]. The Chamon model, for instance, harbors three
kinds of quasiparticles: planons, which are mobile within
a plane, lineons, which can move along a line, and
fractons, which are fundamentally immobile as individual
particles [12]. In recent years, a wide range of fracton
orders have been discovered theoretically, each exhibiting
a different manifestation of constrained quasiparticle
mobility and subextensive ground state degeneracy [8,
9, 11, 14–49]. Notable examples include the Haah cubic
code [18] and the X-cube model [9]. It is natural to ask
how the variety of fractonic orders can be systematically
characterized within a common theoretical framework.

Many fractonic orders have a unified characterization
as emergent gauge theories of discrete subsystem symme-
tries, which have either planar or fractal geometry [9, 50–
52]. For example, the X-cube model is obtained by gaug-
ing three orthogonal sets of planar Ising symmetries of
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a cubic lattice spin-1/2 paramagnet (referred to as a 3-
foliated gauge theory) [9]. The gauging procedure has
been extended to fermion parity subsystem symmetries in
fermionic systems, whose gauging yields gapped fractonic
gauge theories with emergent fermionic charges [53, 54].
On one hand, a large class of fractonic orders, including
those belonging to the class of Calderbank-Shor-Steane
(CSS) stabilizer codes, can be obtained via this proce-
dure [52]. On the other hand, it remains unclear how, or
if, certain fracton models including the Chamon model,
can be obtained by gauging and hence characterized by
emergent gauge theory.

In a parallel development, the concept of foliated
fracton order (FFO) was recently introduced in an
effort to systematically characterize fractonic orders with
planon excitations [51, 55]. A lattice model is said to have
FFO if the lattice size can be systematically reduced by
removing, or exfoliating, layers of 2D topological orders
from the bulk 3D system via a finite-depth quantum
circuit. Such a transformation maps a subset of the
bulk planon excitations into anyons of the exfoliated 2D
orders. For instance, for the X-cube model, it is possible
to exfoliate layers of 2D toric code normal to the three
cubic lattice directions, hence the X-cube model is said
to have a 3-foliation structure. The notion of FFO has
been shown to apply to a large class of models beyond the
X-cube model [56–58]. However, thus far it has remained
unknown whether the fractonic order of the Chamon
model is foliated.

The purpose of this paper is to fill the gaps in the
fracton literature by presenting two new results on the
Chamon model. First, we show that the model is
characterized by a 4-foliated gauge theory coupled to
a fermionic subsystem symmetry-protected topological
(SSPT) state. In other words, it can be obtained
by gauging four sets of planar Z2 symmetries that
protect a non-trivial SSPT state [39, 59] in a fermionic
lattice system and then performing a local unitary
transformation. This is a surprising result because there
is no a priori clear division of fractional excitations into
gauge charge and gauge flux sectors (as is the case for
CSS codes). Instead, it is necessary to expand the unit
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cell and divide the excitations into charge and flux sectors
according to the sublattice on which they reside. This is
reminiscent of the gauge theory description of the much
simpler 2D Wen plaquette model [60].

Second, we show that the Chamon model exhibits
FFO with a 4-foliation structure composed of 2D toric
code resource layers. In particular, we describe an
entanglement renormalization group transformation [23,
61, 62] that maps a copy of the Chamon model on a
3L × 3L × 3L cubic lattice to a coarse-grained Chamon
model on an L × L × L lattice tensored with four
decoupled stacks of 2D toric codes. This 4-foliation
structure is consistent with the four orientations of
planons in the Chamon model, and is most easily
described in terms of the action of the transformation
on the planon excitations. We have also obtained
an explicit translation-invariant Clifford circuit realizing
this transformation.

The paper is organized as follows. In Sec. II, we review
the Chamon model and its essential properties. In Sec.
III, we explain the characterization of the Chamon model
in terms of emergent fermionic gauge theory. In Sec. IV,
we describe the FFO exhibited by the Chamon model.
We conclude with a discussion in Sec. V.

II. THE CHAMON MODEL

The Chamon model was originally defined on an FCC
lattice with one qubit per site [7, 12], exhibiting the
tetrahedral point group symmetry of the lattice. For our
purposes it will be more convenient to place the model
on a cubic lattice with one qubit per site, by performing
an isometry of R3 defined by(

0, 1
2 ,

1
2
)
→ (1, 0, 0)( 1

2 , 0,
1
2
)
→ (0, 1, 0)( 1

2 ,
1
2 , 0
)
→ (0, 0, 1).

(1)

In this formulation the Hamiltonian has the form

HC = −
∑
c

Oc (2)

where c indexes the elementary cubes of the lattices
and Oc is the six-body Pauli operator depicted in
Fig. 1(a). For any pair of cubes c, c′, it holds that
[Oc, Oc′ ] = 0, thus HC is an exactly solvable stabilizer
code Hamiltonian [63]. The ground state degeneracy
(GSD) of the model on an Lx × Ly × Lz periodic cubic
lattice has the form

log2 GSD = Lx + Ly + Lz + gcd(Lx, Ly, Lz)− 3, (3)

The linear component of this formula arises from the
following relations between stabilizer generators:∏

c∈P
Oc = 1 (4)

where P is any dual lattice plane normal to the x, y
z, or w = (1, 1, 1) directions. This gives a total of
Lx+Ly+Lz+Lw relations, where Lw = gcd(Lx, Ly, Lz)
is the number of planes normal to w under periodic
boundary conditions. However, not all of these relations
are independent. The global relation between all
Hamiltonian terms is generated by the product of all
planar relations for each of the four directions. Hence
there are three redundant relations leading to the
constant correction in (4).

The model hosts fractional excitations of all mobility
types: fractons, lineons, and planons. This structure can
be understood by examining the quasiparticle creation
operators. First of all, lineons are created at the
endpoints of truncated segments of rigid wireframe
operators, which are products of all Oc terms within
a given polyhedral region bounded by x, y, z, and w
planes. Due to the relations in (4), such an operator is
supported on the edges of the polyhedron, for instance
the tetrahedral wireframe operator pictured in Fig. 1(b).
There are six kinds of lineons, with mobility in the
x, y, z, (0, 1,−1, ), (−1, 0, 1), and (1,−1, 0) directions,
respectively. They obey triple fusion rules in which
three distinctly oriented lineons fuse together into the
vacuum, which is possible when their respective string
operators form the corner of a wireframe operator. For
example, both the x, y, z lineon triple and the (1,−1, 0),
(0, 1,−1), z lineon triple fuse into the vacuum, whereas x,
y, (1,−1, 0) and x, y, (−1, 0, 1) triples do not. A lineon
corresponds to an excitation of a pair of (next-nearest
neighbor) Hamiltonian terms.

Fractons, on the other hand, correspond to excitations
of a single isolated Hamiltonian term, and are created
at the corners of membrane operators. For instance,
consider the action of a single Pauli Z operator at
the origin. This excites four Hamiltonian terms
centered around (1/2,−1/2,−1/2), (1/2,−1/2, 1/2),
(−1/2, 1/2,−1/2), and (−1/2, 1/2, 1/2). Hence, a large
rectangular membrane of Pauli Z operators within
a plane normal to the (1, 1, 0) direction will excite
four isolated Hamiltonian terms at the corners of the
membrane. There are equivalent membrane operators
normal to the (0, 1, 1) and (1, 0, 1) directions composed
of Pauli X and Y operators respectively.

Finally, there are four types of planons mobile
within planes normal to the x, y, z, and w directions
respectively. For each direction, there is one independent
species of planon per lattice spacing, referred to as
an elementary planon. A closed string operator for
an elementary planon can be obtained by taking the
product of all Oc operators in a large region within
a single x, y, z, or w plane, for instance as depicted
in Fig. 1(c). There are two important features: first,
each of the elementary planons has fermionic exchange
statistics. Second, adjacent parallel planons have a
mutual π braiding statistic. These facts can be verified
by examining the structure of the planon string operators
as shown in Fig. 1(d-f). Since the elementary planons
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FIG. 1. (a) The operator Oc, which is a tensor product of the six Pauli operators. (b) A tetrahedral wireframe operator, which
is equal to a product of Oc operators inside the tetrahedron. (c) A loop operator for an elementary planon of the Chamon
model, which is a product of Oc operators within the loop. (d-f) Three planon string operators W3, W2, and W1 forming a
T-junction (the bold edge represents the same edge in each subfigure). The fermionic exchange statistic of the elementary
planon is given by W3W

†
2W1W

†
3W2W

†
1 = −1.

can be regarded as lineon dipoles, this also implies that
intersecting lineons have a mutual π braiding statistic.

III. EMERGENT FERMIONIC GAUGE
THEORY

In this section we demonstrate that the Chamon
model is equivalent under a generalized local unitary
transformation [1] to a fractonic gauge theory coupled
to a fermionic subsystem symmetry-protected topological
(SSPT) state [39, 59]. We begin with the SSPT matter
Hamiltonian HM , which is symmetric under four stacks
of Z2 planar symmetries. We then gauge the symmetry to
obtain a spin model HG. Finally, we transform HG into
the Chamon model HC via a generalized local unitary.

We also sketch an argument that HM is a weak SSPT
in the sense of Refs. [64, 65].

A. Matter Hamiltonian

First we describe the matter Hamiltonian HM . We
consider a cellulation of R3 obtained by slicing along
lattice planes of integer spacing normal to the x, y, z,
and w = (1, 1, 1) directions. The x, y, and z planes
divide R3 into unit volume elementary cubes, and each
cube is further sliced into three 3-cells by the w planes:
two types of tetrahedra and one octahedron, as pictured
in Fig. 2. The Hilbert space of HM is composed of
one fermionic orbital per tetrahedron and one qubit per
octahedron. The Hamiltonian has the form

HM = −
∑
t

iγtγ
′
t −
∑
o

Xo (5)

where γt indicates the fermion at tetrahedra t, Xo
indicates the Pauli X operator that acts on the qubit
of the octahedra o, and

Xo ≡ Xo

1∏
a=0

1∏
b=0

1∏
c=0

1∏
d=0

Zo+aŷ−bẑ+c(1,−1,0)+d(−1,0,1) (6)

where o+~r represents the octahedron displaced from o by
~r (see Fig. 3(a)). The terms of HM mutually commute,
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FIG. 2. The tetrahedral-octahedral honeycomb. Each cube of
a cubic lattice is split into two tetrahedra and one octahedron
by (1, 1, 1) planes (shaded).

hence the model is exactly solvable.
HM is symmetric under four stacks of unitary Z2

planar subsystem symmetries, normal to the x, y, z, and
w directions. Each symmetry generator is associated
with a dual lattice plane of the tetrahedral-octahedral
honeycomb. Let P denote the set of all 3-cells lying in a
dual lattice plane. Then the corresponding symmetry of
HM is

SP =
∏
t∈P

iγtγ
′
t

∏
o∈P

Xo. (7)

There is one symmetry generator for every such P . To see
that the Xo terms commute with all of these symmetries,
note that each of the x, y, z, and w planes contains at
least one of the ŷ, ẑ, (1,−1, 0), or (−1, 0, 1) vectors.

We note that the subsystem symmetries obey the
global relations∏

Px

SPx
=
∏
Py

SPy
=
∏
Pz

SPz
=
∏
Pw

SPw
(8)

where the products are over all dual lattice planes Pµ
normal to µ. Importantly, we also note that the product
of symmetries over all even dual lattice planes in all
four directions is equal to the global fermion parity ZF2 ,
which is thus generated by the subsystem symmetry
group. Therefore, a bosonic system will be obtained upon
gauging the symmetries.

B. Gauging

We now discuss the gauging of symmetries according
to the general prescription [51, 53, 54, 66]. The first step
is to identify a set of ‘minimal couplings’ that generate
the algebra of symmetric operators together with the on-
site symmetry representations (Pauli X on qubits and
iγγ′ on fermion orbitals). There is one minimal coupling
for each edge e of the tetrahedral-octahedral honeycomb,
acting on the degrees of freedom associated with the four
3-cells adjacent to e (two octahedra o and o′ and two
oppositely oriented tetrahedra t and t′), which we choose
to be

Me ≡ ZoZo′γtγt′ . (9)

FIG. 3. (a) Depiction of the operator Xo. Each Pauli operator
acts on an octahedral qubit, whose center-points form a cubic
lattice. The octahedron o is indicated by subscript. (b)
The set of edges Eo with respect to the octahedron o, whose
vertices are the six dots.

The second step is to introduce a gauge qubit degree
of freedom for each minimal coupling, hence one per
edge. We simultaneously restrict the Hilbert space by
introducing generalized Gauss’s law constraints for each
matter degree of freedom. The constraints have the form

Xo

∏
e∈o

Xe = 1, iγtγ
′
t

∏
e∈t

Xe = 1 (10)

for each octahedron o and tetrahedron t.
The third step is to couple the gauge and matter

degrees of freedom by introducing a gauged Hamiltonian
that preserves the constraints. In particular, in the
gauged Hamiltonian, the minimal coupling for each edge
e is composed with the gauge qubit operator Ze:

Me →MeZe. (11)

This modification is non-unique, since there are multiple
ways to express the operator Xo in terms of the minimal
couplings. We choose the expression

Xo = Xo

∏
e∈Eo

Me (12)

where Eo is the set of edges depicted in Fig. 3(b). Hence

Xo → Xo

∏
e∈Eo

MeZe. (13)

The final step is to add a set of terms Bv,µ for each
vertex v to the gauged Hamiltonian in order to gap out
the gauge flux excitations. Here µ = x, y, z, w and Bv,µ
is defined as the tensor product of Pauli Z operators over
the six links adjacent to v in the plane normal to µ. Thus,
the gauged Hamiltonian takes the form

H̃M = −
∑
t

iγtγ
′
t −
∑
o

Xo

∏
e∈Eo

MeZe −
∑
v,µ

Bv,µ, (14)

subject to the constraints (10).
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The matter degrees of freedom can be eliminated via
the unitary

Xo → Xo

∏
e∈o

Xe Zo → Zo

γt → γt
∏
e∈t

Xe γ′t → γ′t

Xe → Xe Ze →MeZe,

(15)

which maps the constraints of (10) to Xo = 1 and
iγtγ

′
t = 1 respectively. The Ze operators are defined

in Fig. 4 such that Ze and Ze′ anticommute if e and e′

belong to the same tetrahedron, and commute otherwise.
In the constrained space, H̃M is mapped to a bosonic
Hamiltonian HG acting on the pure gauge qubit Hilbert
space:

HG = −
∑
t

At −
∑
o

Ao −
∑
v,µ

Bv,µ, (16)

where

At ≡
∏
e∈t

Xe, Ao ≡
∏
e∈o

Xe

∏
e∈Eo

Ze, (17)

and Bv,µ is the image of Bv,µ under the unitary (15).
The terms of HG mutually commute, hence they define
a Pauli stabilizer code.

C. Excitation content and ground state degeneracy
of the gauged Hamiltonian

To analyze the properties of HG, it is helpful to
express the Hamiltonian in terms of operators Xe and
Ze associated with edge e of the tetrahedral-octahedral
honeycomb. These operators are defined in Fig.4. We
have already used the Ze operators in the unitary (15).
In particular,

Ac =
∏
e∈c

Xe, Bv,µ =
∏

v3e⊥µ

Ze (18)

where the second product is over the six edges e adjacent
to v in the plane normal to µ. These operators are defined
in Fig. 4 and satisfy the relations

X
2
e = Z

2
e = 1,

{
Xe, Ze

}
=
[
Xe, Ze′

]
= 0 (19)

where e and e′ are distinct edges. On the other hand, if
e and e′ are nearby, then it is generically the case that[

Xe, Xe′

]
6= 0,

[
Ze, Ze′

]
6= 0. (20)

It is instructive to note that due to (18), there is a formal
relation between HG and a certain 4-foliated version of
the X-cube model, H4XC , described in Appendix A.
Roughly speaking, HG is obtained from H4XC by
replacing Xe → Xe and Ze → Ze.

HG has six qubits and six stabilizer generators per unit
cell (since one of the four Bv,µ terms is redundant). The
stabilizer generators obey the following relations:∏

c∈P
Ac = 1,

∏
v∈P ′

Bv,µ = 1, (21)

where c ∈ P indexes all 3-cells in a dual lattice plane
P , and v ∈ P ′ indexes all vertices belonging to a direct
lattice plane P . However, three of these relations are
redundant, hence the ground state degeneracy (GSD) of
HG on an Lx × Ly × Lz lattice with periodic boundary
conditions satisfies

log2 GSD = 2Lx+2Ly+2Lz+2 gcd(Lx, Ly, Lz)−3. (22)

The fractional excitations of HG can be split into two
sectors, which we refer to as electric charges and magnetic
fluxes. The magnetic sector consists of lineons created at
the endpoints of rigid string operators, which are finite
segments of wireframe operators equal to the product
of all Ac terms within a polyhedral region bounded by
x, y, z, and w planes. Rigid string operators are equal
to the product of Xe operators over all edges of the
string, which follows from the first expression of (18).
There are six species of lineons, corresponding to the
six orientations of edges in the tetrahedral-octahedral
honeycomb: x, y, z, (1,−1, 0), (0, 1,−1), and (−1, 0, 1).
Triples of lineons meeting at a single vertex fuse into
the vacuum if their string operators belong to the corner
of a wireframe operator. For example, x, y, z, and
(1,−1, 0), (0, 1,−1), z lineon triples fuse into the vacuum,
whereas x, y, (1,−1, 0) and x, y, (−1, 0, 1) triples do not.
Due to these triple fusion rules, composite excitations
of two adjacent parallel lineons, i.e. lineon dipoles, are
planons. There are four species of lineon dipoles in the
model: those mobile in planes normal to the x, y, z, or
w directions. The loop operators for lineon dipoles are
wireframe operators with a slab geometry.

The electric sector consists of fractons created at the
corners of dual lattice membrane operators composed
of a product of Ze operators over all dual lattice
faces comprising the membrane (each dual lattice face
corresponds to a direct lattice edge e). Each fracton
excitation is associated with a 3-cell of the tetrahedral-
octahedral honeycomb. Fracton dipoles composed of a
tetrahedral fracton and an adjacent octahedral fracton,
are planons. There are four species of fracton dipoles in
the model: those mobile in planes normal to the x, y, z,
or w directions.

The charge and flux sectors of HG interact via general-
ized long-range Aharanov-Bohm statistical interactions.
In particular, a phase of −1 is obtained when a lineon
dipole flux encircles a fractonic charge, and likewise when
a fracton dipole charge encircles a lineonic flux. These
interactions arise from the commutation relations of (19).

There are also nontrivial statistical interactions within
both the electric and magnetic sectors, due to the
nontrivial commutation relations of (20). In the electric
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FIG. 4. Definitions of the Pauli operators introduced in this section. The operators Xv,i and Zv,i acting on HG for i = 1, . . . , 6
are defined in the table on the left, which are equivalent to the Xe and Ze operators for the bold edge e. Red, green, and blue
edges respectively represent the action of Pauli Z, Y , and X. The operators X̂v,i and Ẑv,i acting on HC for i = 1, . . . , 8 are
defined in the tables on the left, with v given by the enlarged magenta dot in each figure (an unlabelled enlarged dot has no
Pauli action). The 3-cell operators At, At′ , and Ao, and vertex operators Bv,µ of HG are defined in the tables on the right.
The vertices of octahedron o are indicated by black dots, whereas the vertex v for each Bv,µ operator is the central vertex.
The operators Ât, Ât′ , Âo, B̂v,x, B̂v,y, and B̂v,z acting on HC are likewise defined in the tables on the right. These operators,
together with Ẑv,7 and Ẑv,8, generate the stabilizer group of HC . The shaded cubes indicate that a given operators is equal
to a product of the corresponding cube terms of HC (the color of each cube corresponds to the vertex of minimum x, y, and z
coordinates).
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FIG. 5. Three fracton dipole string operators W3, W2, and W1 forming a T-junction (the bold edge represents the same edge
in each subfigure). The fermionic exchange statistic of the fracton dipole is given by W3W

†
2W1W

†
3W2W

†
1 = −1. The red, green

and blue edges represent Pauli operators Z, Y and X. The bold gray edge has no Pauli action.

FIG. 6. A tetrahedral wireframe operator for HG, given by a
product of Ac terms over 3-cells inside the tetrahedron. The
red, green and blue edges represent Pauli operators Z, Y and
X.

sector, the tetrahedral fractons are fermionic, whereas
the octahedral fractons are bosonic. Therefore, each
of the fracton dipoles is a fermion. This self-exchange
statistic can be explicitly computed using the formula
θ = W3W

†
2W1W

†
3W2W

†
1 where Wi are three fracton

dipole string operators with a common endpoint [67, 68],
as in Fig. 5.

In the magnetic sector, the lineons exhibit nontrivial
exchange statistics and nontrivial braiding statistics
with other lineons. In particular, any pair of lineons
intersecting in an x, y, z, or w plane has a mutual π
braiding statistic, arising from the anticommutation of
intersecting lineon string operators. This can be observed
from the form of the wireframe operators, an example of
which is shown in Fig. 6. As a result, lineon dipoles
in adjacent planes likewise have a π braiding statistic.

FIG. 7. A 2 × 2 × 2 cell of the Chamon model, regarded as
a unit cell in the transformation between HC and HG. There
are eight qubits in the unit cell, each represented by a dot of
a distinct color.

Moreover, each lineon dipole is a fermion.

D. Mapping to the Chamon model

We now describe a generalized local unitary (gLU)
transformation that maps the ground space of HG to that
of the Chamon model HC . Based on the expressions (3)
and (22) for the ground state degeneracy of these models,
it is clear that for this transformation to work, a unit cell
ofHG must correspond to a 2×2×2 cell ofHC . Therefore,
in this section, we place the Chamon model qubits on
the sites of a cubic lattice with half-integer coordinates.
With respect to the integer cubic lattice, the Chamon
model has eight qubits and eight stabilizer generators
per unit cell, forming a Hilbert space HC as shown in
Fig. 7. We label the qubits with a double subscript v, i
with i = 1, . . . , 8 and v the vertex of the integer lattice
coinciding with qubit 1.

On the other hand, the gauged model HG has only
six qubits per unit cell (one per edge of the tetrahedral-
octahedral honeycomb). To match the degrees of
freedom, we add two ancillary qubits per unit cell to the
Hilbert space of HG, forming a Hilbert space HG which
has eight qubits per unit cell and can thus be identified
with HC . Each of the eight qubits is likewise labelled
with a double subscript v, i with i = 1, . . . , 8. Qubits 1
through 6 are those associated with the edges emanating
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from v in the x, y, z, (0, 1,−1), (−1, 0, 1), and (1,−1, 0)
directions, respectively, and 7 and 8 are the two ancillary
qubits. We also add two additional terms Zv,7 ≡ Zv,7
and Zv,8 ≡ Zv,8 for each vertex v to HG, defining an
augmented Hamiltonian H ′G.

To facilitate the transformation, in Fig. 4 we define
operators X̂v,i and Ẑv,i on HC that obey relations
identical to Xv,i and Zv,i for i = 1, . . . , 8:

[[X̂v,i, X̂v′,j ]] = [[Xv,i, Xv′,j ]],
X̂2
v,i = Ẑ2

v,i = 1, [[X̂v,i, Ẑv′,j ]] = [[Xv,i, Zv′,j ]],

[[Ẑv,i, Ẑv′,j ]] = [[Zv,i, Zv′,j ]].
(23)

where [[A,B]] ≡ A−1B−1AB. (Each of these group
commutators is a ±1 phase). Due to these relations, and
the fact that Zv,i and Xv,i generate the operator algebra
of HG, it follows that there exists an operator algebra
automorphism V mapping

Xv,i → X̂v,i, Zv,i → Ẑv,i. (24)

Moreover, as shown in Fig. 4, V maps the terms of H ′G
to a set of stabilizers{

Ât, Ât′ , Âo, B̂v,x, B̂v,y, B̂v,z, Ẑv,7, Ẑv,8

}
(25)

that generates the stabilizer group of HC . Therefore,

V H ′GV
† ∼ HC (26)

where ∼ denotes equality of ground spaces. In the
supplementary Mathematica file we demonstrate that
V is in fact a finite-depth Clifford circuit. Thus, we
have arrived at the first main result of the paper: the
Chamon model HC is generalized local unitary equivalent
to the gauged Hamiltonian HG. Appendix B provides an
alternative description of this transformation in terms of
the polynomial description of translation invariant Pauli
stabilizer codes.

To better understand this equivalence, we consider
how the transformation acts on the fractional excitation
superselection sectors. First, we note that the wireframe
operators of HG are mapped by V into wireframe
operators (with even-length edges) of the Chamon
model HC . Therefore, the lineons of HG become the
lineons of HC (with even lattice coordinates) under
the transformation. This is consistent with the fact
that both models exhibit a mutual π braiding statistic
between intersecting lineons sharing an x, y, z, or w
plane. Second, we note that the loop operators for
fracton dipoles of HG are transformed into loop operators
for the elementary planons of the Chamon model lying
in even dual lattice planes. In other words, adjacent
fracton dipoles are mapped into pairs of elementary
planons of HC separated by two lattice spacings. This
is consistent with the fact that the fracton dipoles of
HG have fermionic exchange statistics but trivial mutual

braiding statistics, as the elementary planons in the
Chamon model are fermions that braid non-trivially with
their nearest neighbors only.

E. Weak SSPT

In this section, based on the excitation content of HG,
we argue that the matter Hamiltonian HM represents a
weak subsystem symmetry-protected topological (SSPT)
state. A weak SSPT is defined as one that can be
obtained by stacking 2D SPTs onto a trivial state in such
a way that all planar symmetries are preserved [64, 65].
In the presence of fermionic degrees of freedom, this
definition can be extended to allow for stacking of
non-invertible 2D topological states. In particular, we
consider starting with a completely trivial state (Ising
paramagnet plus atomic insulator) on the matter Hilbert
space of HM . We then stack alternating layers of
invertible topological orders corresponding to the ν = 4
and ν = −4 states of the Kitaev 16-fold way [67] onto
each plane of the tetrahedral-octahedral honeycomb.
Finally, each of the SP symmetry generators is modified
such that it is the product of the original SP with the
total fermion parities of the two Kitaev states adjacent
to P . It is easy to see that this modification preserves
all the relations of the symmetry group. We conjecture
that this state belongs to the same universality class as
the model HM .

To see why this is reasonable, it is helpful to
consider the same construction on the gauged level,
which should yield a model gLU-equivalent to the
Chamon model. In the gauged system, the stacking
of Kitaev states is equivalent to stacking alternating
layers of fermion parity-gauged ν = 4 and ν = −4
states, i.e. semion-fermion and anti-semion-fermion
topological orders, onto an untwisted fermionic gauge
theory (equivalent to the model described by polynomial
matrix TΣ of Appendix A). After stacking, bound states
of the emergent fermion and the fracton dipole living in
the same plane are condensed, confining all of the original
lineons in the model but leaving deconfined bound states
formed out of a lineon fused with the a semion (or anti-
semion) in each of the two parallel planes. This step is
equivalent to modifying the symmetry generators SP on
the ungauged level. It is clear that this procedure results
in the correct braiding statistics of gauge flux planons,
i.e. a mutual semionic statistic between adjacent lineon
dipoles. Each of these bound-state lineons can be
mapped to a (possibly dyonic) lineon of the Chamon
model, therefore the condensed model has the same
fractional excitation content as the Chamon model.

IV. FOLIATED FRACTON ORDER

A model is said to have foliated fracton order (FFO)
if its system size can be systematically reduced by
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disentangling, or exfoliating, layers of 2D topological
orders from the bulk system via generalized local unitary
(gLU) transformation [55]. If there are n different
orientations of such 2D states, the model is said to have
an n-foliation structure. The first known example of FFO
was the X-cube model, which has a 3-foliation structure,
followed by a handful of other examples including 1-, 2-,
and 3-foliated models [56–58, 69].

In this section we demonstrate that the Chamon
model hosts 4-foliated fracton order, with foliation layers
normal to the x, y, z, and w = (1, 1, 1) directions. In
particular, we show that the system size can be decreased
by a constant factor m by exfoliating stacks of 2D toric
codes [5] in four directions from the bulk system, where
m is any odd integer. This result is consistent with
previous studies on entanglement signatures [70] and
compactification [71] of the model.
HC is defined on a cubic lattice, which we will take to

have integer coordinates in this section and refer to as
Λ. The combination of Hamiltonian and its underlying
lattice is denoted HC(Λ). We also define coarse-grained
cubic lattices mΛ whose lattice constants are the integer
m. For a given odd m, we posit the existence of a Clifford
circuit U satisfying

UHC(Λ)U† ∼ HC(mΛ) +H2D(mΛ) (27)

where ∼ denotes equality of ground spaces, and the
Hamiltonian H2D describes four stacks of decoupled 2D
toric codes normal to the x, y, z, and w directions
respectively, each with m−1

2 toric codes per lattice
spacing. We construct such a circuit explicitly in the
supplementary Mathematica file in the m = 3, 5 cases.
In the case of general m, we show in Appendix C the
unitary U exists, although we do not explicitly equate the
model H2D(mΛ) to stacks of toric codes. In the following
discussion, we explain the Chamon model’s foliation
structure (27) at the level of its fractional excitations.

In general, gapped long-range entangled phases are
characterized by the structure of fractional excitations
above the ground state. In FFOs, exfoliation of a set
of 2D topological states corresponds to a factorization of
the fusion group A of quasiparticle superselection sectors
into two subgroups A′�A2D. Here, we use � to denote a
product of fusion groups such that there are no nontrivial
mutual statistics between the two factors. A′ is the fusion
group of the coarse-grained fracton order, and A2D is
the fusion group of planons in the exfoliated topological
layers.

In the case of the Chamon model, we find that the
fusion group AC(Λ) on lattice Λ obeys the following
property:

AC(Λ) ∼= AC(mΛ) �A2D(mΛ) (28)

where

A2D = Ax2D �Ay2D �Az2D �Aw2D (29)

and Ax2D, Ay2D, Az2D, and Aw2D are the fusion groups
of stacks of 2D toric codes in the x, y, z, and w

directions respectively, each with m−1
2 toric codes per

lattice spacing. Here ∼= denotes a locality-preserving
isomorphism.

To see this, note that by the transformation of the
previous section, the fusion rules of HC(Λ) are identical
to those of the 4-foliated X-cube model H4XC(2Λ)
discussed in Appendix A (since HC is gLU equivalent
to HG whose fusion rules are the same as H4XC).
The fusion group of H4XC is known to have the form
A4XC = Q4XC × P4XC where P4XC is the subgroup
consisting of all planon excitations [69], and Q4XC
is a (non-unique) finite subgroup generated by one
fracton and three lineons. As an aside, this observation
forms the basis of the notion of quotient superselection
sectors (QSS), which are defined as equivalence classes
of superselection sectors modulo planons [69]. According
to this definition, the group of QSS of H4XC (and hence
of HC) is A4XC/P4XC ∼= Q4XC .

Hence, we have that AC = QC × PC where QC is an
order 16 subgroup and PC = P xC � P yC � P zC � PwC is the
subgroup of all planons. The decomposition of (28) is
implied by the following decomposition of P :

PC(Λ) ∼= PC(mΛ) �A2D(mΛ), (30)
since QC can always be chosen such that QC and
A2D(mΛ) have no nontrivial mutual statistics, i.e.

AC(Λ) ∼= [QC × PC(mΛ)] �A2D(mΛ). (31)
The equivalence (30) can in turn be factored by direction:

PµC(Λ) ∼= PµC(mΛ) �Aµ2D(mΛ). (32)
Thus, we can focus on the group of planons in a single
direction, PµC(Λ). Recall from Sec. II that for a given
direction, there is one independent planon per lattice
spacing whose loop operator is given by the product of
Oc terms in a particular dual lattice plane. The total
group is generated by the set of all such elementary
planons. Each elementary planon has fermionic exchange
statistics. Moreover, neighboring planons have mutual
semionic braiding statistics.

To demonstrate (30), we need to find an alternative set
of generating planons that splits into two parts: one that
generates PµC(mΛ) and one that generates Aµ2D(mΛ).
Actually, we will show the following equivalent relation:1

PµC(Λ) ∼= PµC(mΛ) �Aµ2D(2mΛ) �Aµ2D(2mΛ). (33)
Factorization of this form for m = 3 and m = 5 are
depicted in the planon diagrams of Fig. 8, demonstrating
that the fractional excitation structure of HC indeed
exhibits the decomposition of (28). It is straightforward
to generalize these diagrams for larger m. Thus, we
conclude that the Chamon model exhibits a 4-foliation
structure of 2D toric code layers in the x, y, z, and w
directions.

1 The additional coarse-graining by a factor of two is necessary to
pair up 3-fermion states so they can be transformed into pairs of
toric codes.
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FIG. 8. Planon diagrams depicting coarse-grained bases of µ-normal planons in a given direction µ = x, y, z, w for the (a)
m = 3 and (b) m = 5 cases. Each basis is translation-invariant with respect to the enlarged unit cell of 2mΛ. Each vertical
line is commensurate with a µ-normal lattice plane, hence the numbers 0 to 2m represent dual lattice coordinates. A box lying
in column k represents a planon living in that dual lattice plane. On the other hand, each horizontal row represents a single
generator of our chosen basis, equal to the fusion product of all elementary planons in the row. Since each unit cell contains
2m basis planons, A and G (K) belong to different unit cells for the m = 3 (m = 5) case. The planon bases are partitioned into
m subsets of two generators per unit cell, such that they have pairwise trivial mutual braiding statistics. (Recall that adjacent
planons of the Chamon model have a mutual π braiding statistic). For m = 3, the subsets are colored black (ADG), red (BC),
and blue (EF), whereas for m = 5 they are colored black (AFK), green (BE), red (CD), purple (GJ), and blue (HI). The black
planons are excitations of the coarse-grained Chamon model HC(mΛ), as they are fermions (being composed of an odd number
of fermions with trivial mutual statistics) with a mutual π braiding statistic between adjacent pairs. On the other hand, each
of the remaining m− 1 pairs of planons generates a decoupled layer of 2D toric code. These diagrams verify the relation (33).

V. DISCUSSION

In this work, we have carried out a comprehensive
investigation of the Chamon model, which is historically
significant as the first fracton model to appear in the
literature. Specifically, we have demonstrated two
results: first, its characterization as a twisted 4-foliated
gauge theory with emergent fermionic charge. Second, we
have found that it has a 4-foliation structure composed of
2D toric code layers. The foliation structure is consistent
with a conjecture of Ref. [62], which outlines conditions
under which a copy of 2D toric code can be extracted
from a 3D stabilizer code model under a local unitary.
The emergent gauge theory structure found in this paper,
has been used by two of the authors to write a topological
defect network for the Chamon model [72].

The transformation between the Chamon model and
the 4-foliated X-cube variant HG is reminiscent of
previous findings about the checkerboard model [56]
and the Majorana checkerboard model [8], which were
respectively shown to be equivalent to two copies of

the (3-foliated) X-cube model, and to the semionic
X-cube model [57] (plus transparent fermions), each
of which has a clear gauge theory description. It is
similarly reminiscent of the equivalence between the Wen
plaquette model [60] and the 2D toric code [67]. These
transformations all have in common that the original
model, e.g. Chamon, has an enhanced translation
symmetry compared with the transformed model, e.g.
HG. Therefore, the respective gauge theory descriptions
are enriched by translation symmetry via a nontrivial
permutation on the fractonic superselection sectors. We
leave a detailed exploration of this topic to future studies.

While it is known that CSS stabilizer codes can
generically be characterized via emergent gauge theory,
our results raise the question of how generally non-CSS
codes in three dimensions admit such a description. It
seems plausible that all stabilizer codes possess a gauge
theory description and hence it could be enlightening to
study more examples. For instance, one could check
whether a gauge theory description, analogous to the
Chamon model, is possible for the fracton models in
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Ref. [73]. Another question raised by this work is that of
strong subsystem symmetry-protected topological (SPT)
states in fermionic systems, whose classification is an
open problem. We have argued that the Chamon model
is dual to a weak subsystem SPT.

More generally, it is an open question to what extent
the framework of emergent gauge theory has utility in
the classification of fractonic phases of matter. To our
knowledge, among the class of exactly solvable lattice
models, there are no examples that are explicitly known
to not admit a gauge theory description. It would be
interesting to either find such an example, or demonstrate
that none exist. On the other hand, there are examples
of fractonic orders with excitations of infinite order which
are unlikely to have any characterization in terms of finite
gauge groups (although they arise naturally as infinite-
component U(1) Chern-Simons gauge theories [74]).

Finally, it is worthwhile to note that the some of the
fractonic excitations in the Chamon model exhibit non-

bosonic self-exchange statistics [75]. For the present
analysis it has been sufficient to consider in detail
the statistics of planon excitations. A systematic
investigation of fracton self-statistics in n-foliated models
is left to future work.
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Appendix A: Relation between HG and the 4-foliated X-cube model

In this section we introduce the 4-foliated X-cube model H4XC and describe its relation to HG. The fusion structure
of excitations of H4XC is identical to that of HG. However, the models differ in terms of the self and mutual statistics of
the excitations. In this section we will use the Z2[x, y, z, 1/x, 1/y, 1/z] Laurent polynomial ring formalism for describing
translation-invariant Pauli stabilizer codes [15]. In this formalism, Pauli operators in a cubic lattice system with n
qubits per site are represented by length 2n column vectors whose entries are elements of Z2[x, y, z, 1/x, 1/y, 1/z].
The first n entries represent the Pauli X components, and the last n entries the Pauli Z components.

The Hilbert space of H4XC is the same as that of HG. It is composed of one qubit on each edge of the tetrahedral-
octahedral honeycomb. The Hamiltonian has the form

H4XC = −
∑
c

Ac −
∑
v,µ

Bv,µ (A1)

where c runs over all 3-cells of the honeycomb, v all vertices, µ = x, y, z, w, and
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∏
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Xe, Bv,µ =
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v3e⊥µ

Ze. (A2)
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FIG. 9. The terms At, At′ , Ao, Bv,x, Bv,y, Bv,z and Bv,w of H4XC , where t and t′ are oppositely oriented tetrahedral cells
and o an octahedral cell. Here blue represents Pauli X and red Pauli Z. Each term is a tensor product of the depicted Pauli
operators.

where

A =


1 yz y + z
1 zx z + x
1 xy x+ y
1 x x+ 1
1 y y + 1
1 z z + 1

 , B =



0 1 + 1
x 1 + 1

x
1 + 1

y 0 1 + 1
y

1 + 1
z 1 + 1

z 0
1
y + 1

z 0 0
0 1

x + 1
z 0

0 0 1
x + 1

y

 . (A4)

The columns of A represents the 3-cell terms At, At′ and Ao, whereas the columns of A represent the vertex terms
Bv,x, Bv,y, and Bv,z, which together generate Bv,w. Note that Σ†Ω6Σ = 0 where † represents transposition combined

with spatial inversion, Ωk =
(

0 Ik
Ik 0

)
is the 2k × 2k symplectic form, and Ik the k × k identity matrix. Thus, the

terms of H4XC are mutually commuting.
HG can be obtained from H4XC via a pair of locality-preserving, invertible but non-isomorphic transformations of

the Pauli group P:

W : P → P, T : P → P. (A5)

In the polynomial formalism, these transformations correspond to multiplication by invertible but non-symplectic
matrices:

W =
(
I6 0
W̃ I6

)
, T =

(
I6 T̃
0 I6

)
(A6)

where

W̃ =


1 1 0 z z 0
0 0 0 0 0 0
1 1 0 z z 0
1
y

1
y 0 z

y
z
y 0

0 0 0 0 0 0
1
y

1
y 0 z

y
z
y 0

 , T̃ =


0 1 + y

x 0 0 z + 1 0
0 0 0 0 0 0

1 + x
z 1 + y

z 0 0 x+ 1 0
1 + x

yz 1 + 1
z 1 + 1

y 0 1 + x
y 0

0 1 + y
xz 0 0 0 0

1 + 1
y 1 + 1

x 1 + z
xy 1 + z

x 1 + z
y 0

 . (A7)

Note that T 2 = W 2 = 1. It holds that

Ac = T (W (Ac)), Bv,µ = T (W (Bv,µ)). (A8)

Therefore, the Hamiltonian HG is represented by the polynomial matrix Σ = TWΣ. Since Σ†Ω6Σ = 0, the terms of
HG mutually commute hence defining a stabilizer code. Note that

TW =
(
I6 + T̃ W̃ T̃

W̃ I6

)
. (A9)

The T and W transformations can also be used to define two other non-CSS stabilizer code Hamiltonians,
represented by the polynomial matrices WΣ and TΣ satisfying Σ†W †Ω6WΣ = 0 and Σ†T †Ω6TΣ = 0. The
Hamiltonians represented by Σ, Σ, WΣ, and TΣ can each be obtained via a gauging procedure of four stacks of
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planar Z2 symmetries. The procedure was described explicitly for HG, represented by Σ, in Sec. III B. On the other
hand, Σ, WΣ, and TΣ can be obtained by gauging the following matter Hamiltonians, respectively:

H
(1)
M = −

∑
t

Xt −
∑
o

Xo, (A10)

H
(2)
M = −

∑
t

Xt −
∑
o

Xo, (A11)

H
(3)
M = −

∑
t

iγtγ
′
t −
∑
o

Xo. (A12)

The Hilbert space of H(3)
M is the same as that of HM , whereas those of H(1)

M and H
(2)
M differ in that the fermionic

orbital on each tetrahedral 3-cell is replaced by a qubit. The symmetries of H(3)
M are the same as those of HM , whereas

for H(1)
M and H

(2)
M they are simply a product of Pauli X operators over all 3-cells in a given dual lattice plane.

Therefore, each of the models Σ, Σ, WΣ, and TΣ represents a distinct kind of fractonic gauge theory. Σ is coupled
to a trivial bosonic paramagnet, TΣ to a trivial atomic insulator/paramagnet state, WΣ to a bosonic SSPT state, and
Σ to a fermionic SSPT. The fusion rules of all four models are identical; moreover the generalized Aharanov-Bohm
statistics between gauge charge and flux sectors have identical form. However, the models differ in terms of the
statistics within the charge and flux sectors. Acting on Σ, the W matrix represents a twist of the gauge flux statistics,
whereas the T matrix represents a transmutation of the gauge charge statistics. This can be seen from the equations

W †Ω6W =
(
W̃ + W̃ † I6

I6 0

)
, T †Ω6T =

(
0 I6
I6 T̃ + T̃ †

)
, W †T †Ω6TW =

(
W̃ + W̃ † I6

I6 T̃ + T̃ †

)
. (A13)

The off-diagonal components represent the Aharanov-Bohm interactions whereas the diagonal components represent
the statistics within the charge and flux sectors. Therefore, Σ and WΣ have purely bosonic gauge charge statistics,
whereas the tetrahedral fractonic charges of Σ and TΣ are fermionic. On the other hand, Σ and WΣ have purely
bosonic gauge flux lineons, whereas intersecting lineons of Σ and WΣ have a mutual semionic braiding statistic.

Appendix B: Polynomial representation of the transformation from HG to HC

In this appendix we express the transformation from the gauge theory Hamiltonian HG to the Chamon model HC

in terms of the Laurent polynomial formalism. Regarding a 2 × 2 × 2 cell as the unit cell with qubits labelled as in
Fig. 7, HC is represented by the 16× 8 stabilizer map

Σ̂ =



0 x y 0 0 xz yz 0
1 0 0 y z 0 0 yz
1 0 0 x z 0 0 xz
0 1 1 0 0 z z 0
0 x y 0 0 x y 0
1 0 0 y 1 0 0 y
1 0 0 x 1 0 0 x
0 1 1 0 0 1 1 0
0 0 y xy z xz 0 0
0 0 y y z z 0 0
1 x 0 0 0 0 z xz
1 1 0 0 0 0 z z
1 x 0 0 0 0 y xy
1 1 0 0 0 0 y y
0 0 1 x 1 x 0 0
0 0 1 1 1 1 0 0



. (B1)
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We define a matrix C whose first (last) 8 columns represent the operators X̂v,i (Ẑv,i) for i = 1, . . . , 8:

C =



1 1 0 z z 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 1 + y

x
z
x

yz
x z y 0 0

0 1 0 0 0 0 0 0 0 0 z
y z xz

y 0 0 1 + x
y

0 0 0 0 0 0 0 1
y 0 0 0 0 0 1 1

y 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 1

y 1 1 1 0 1 + x
y 1 0 1

z + x
yz

0 0 0 0 0 0 0 0 0 0 1
y 0 0 1 1

y 0
0 1 1 y + z z y 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1 z

y z xz
y 0 0 x

y

0 0 0 0 0 1 1
y

1
y 1 + 1

y 1 + 1
x 1 + z

xy 1 + z
x 1 + z

y 1 0 1
y

0 0 1 0 0 0 1 1 0 1 1 0 x 0 0 x
z

0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1
z

0 0 0 0 0 0 0 1
y 0 0 0 1 0 0 1

y
1
z

0 0 0 0 0 0 1
y 0 1

y 0 0 1 0 0 1
y

1
z



. (B2)

In this section, we will redefine the matrices W and T from the previous appendix such that they accommodate the
two ancillary qubits. In particular,

W =
(

I8 0
W̃ ⊕ I2 I8

)
, T =

(
I8 T̃ ⊕ I2
0 I8

)
(B3)

Then, we define a matrix V = CWT satisfying V †Ω8V = Ω8 and V TW = C. Therefore V is a Clifford QCA that
maps Xv,i → X̂v,i and Zv,i → Ẑv,i. Moreover,

V Σ = Σ̂V2 (B4)

where V2 is the invertible matrix

V2 =



1 0 0 1
y 0 1

y 0 0
0 0 1 0 0 1

x 0 0
0 0 1 1

y
1
y

1
y

1
y 0

0 0 1 0 1
xy

1
xy 0 0

0 0 1 1
z 0 0 0 1

z
0 0 1 0 0 0 0 0
0 0 1 1

yz
1
yz 0 0 0

0 1 0 0 1
yz 0 0 1

yz


. (B5)

Therefore, V maps the ground space of HG to that of HC . In the supplementary Mathematica file, we demonstrate
that V is actually a finite-depth Clifford circuit (i.e., it can be decomposed into a product of elementary symplectic
transformations). This demonstrates that HG and HC are gLU equivalent.

Appendix C: Entanglement renormalization of the Chamon model

In this section, we study the entanglement renormalization (ER) on the Chamon model using the polynomial
formalism [15, 23]. The stabilizer map σ and the excitation map ε for the Chamon model can be written as

σ =
(

(1 + x−1)(y−1 + z−1)
(1 + y−1)(x−1 + z−1)

)
(C1)

and

ε = σ†Ω1 =
(

(1 + y)(x+ z) (1 + x)(y + z)
)
. (C2)
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respectively [15]. Our approach to doing ER involves going to a basis of stabilizer terms such that the associated
basis excitations include the bosonic planon charges. Then we write the creation operators or movers of these bosonic
charges and apply translation invariant gates (up to coarse-graining) to reduce them into a canonical form of unit
vectors. The excitations that form the bosonic planons and the relative positions between them are shown in Fig. 8.
Before stating an explicit ER result for the Chamon model, we first prove that a coarse-grained copy of itself can be
extracted under ER of the Chamon model. In particular, we have the following theorem.

Theorem C.1. For any odd m, there exists a Clifford circuit U such that

UHC(Λ)U† ∼ HC(mΛ) +HB(mΛ), (C3)

for some Pauli Hamiltonian HB. Here ∼ denotes equality of ground spaces.

Proof. We first write down two fracton creation operators,

s1 = xm−1(1 + y + ...+ ym−1)(1 + z/x+ ...+ (z/x)m−1)(1, 0)T

and

s2 = ym−1(1 + x+ ...+ xm−1)(1 + z/y + ...+ (z/y)m−1)(0, 1)T ,

which create fracton excitations at the sites corresponding to the polynomials (1+ym)(xm+zm) and (1+xm)(ym+zm)
respectively. Note that s1 and s2 are related via permutation of x and y. In other words, the action of the excitation
map as defined in Eq. C2 on operators s1 and s2 is given by

εs1 = (1 + ym)(xm + zm)
εs2 = (1 + xm)(ym + zm).

Under coarse-graining of the lattice, the translation group is reduced such that the translation variables modify to
x′ = xm, y′ = ym, z′ = zm. On the coarse-grained lattice, the representation of the creation operators s1 and s2 is
given by s(m)

1 and s(m)
2 respectively. Namely, φm#(s1) = s

(m)
1 and φm#(s2) = s

(m)
2 where φm# is the map that implements

coarse-graining by a factor of m. We now state two lemmas about s(m)
1 and s(m)

2 , one about the commutation relation
and the other about reducing them to a canonical form via elementary symplectic transformations. The proofs are
these lemmas are given after this proof.

Lemma C.1. For odd m, s(m)†
1 Ωms(m)

2 = 1 where Ωm =
(

0 1

1 0

)
is a 2m× 2m symplectic form and 1 is an m×m

Identity matrix.

Lemma C.2. For odd m, the creation operators s(m)
1 and s(m)

2 can be mapped to

s
(m)
1 =

(
1 0 · · · 0 | 0 · · · 0

)T
,

s
(m)
2 =

(
0 0 · · · 0 | 1 · · · 0

)T (C4)

via translation invariant elementary symplectic transformations. Here, as shown, s(m)
1 and s

(m)
2 , respectively, have

only one nonzero entry at the 1st and (m3+1)-th vector components.

The excitation represented as a singleton element, (1) before coarse-graining, is represented by the unit vector
e1 = (1, 0, 0, ..., 0)T with m entries after coarse graining. Considering the action of ε on the creation operators s(m)

1 ,
s

(m)
2 yields εs(m)

1 = (1 + y′)(x′ + z′)e1 and εs
(m)
2 = (1 + x′)(y′ + z′)e1, the excitation map becomes

ε =


(1 + y)(x+ z) ? ? · · · ? (1 + x)(y + z) ? ? · · · ?

0 ? ? · · · ? 0 ? ? · · · ?
...

...
...

...
...

...
0 ? ? · · · ? 0 ? ? · · · ?

 (C5)

where we suppressed the ′ in the coarse-grained translation variables and where ? indicates unknown entries. Since(
(1 + x−1)(y−1 + z−1) 0 0 · · · 0 (1 + y−1)(x−1 + z−1) 0 0 · · · 0

)T ∈ ker ε,
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the topological order condition ker ε = imσ = imΩqε† implies that the rows of ε must generate(
(1 + y)(x+ z) 0 0 · · · 0 (1 + x)(y + z) 0 0 · · · 0

)T
.

This implies that we can insert this as a row in the excitation map as follows,

ε =


(1 + y)(x+ z) 0 0 · · · 0 (1 + x)(y + z) 0 0 · · · 0
(1 + y)(x+ z) ? ? · · · ? (1 + x)(y + z) ? ? · · · ?

0 ? ? · · · ? 0 ? ? · · · ?
...

...
...

...
...

...
0 ? ? · · · ? 0 ? ? · · · ?

 . (C6)

On applying appropriate row operations, we get

ε =


(1 + y)(x+ z) 0 0 · · · 0 (1 + x)(y + z) 0 0 · · · 0

0 ? ? · · · ? 0 ? ? · · · ?
0 ? ? · · · ? 0 ? ? · · · ?
...

...
...

...
...

...
0 ? ? · · · ? 0 ? ? · · · ?

 . (C7)

Thus, we have extracted a copy of the Chamon model.

We now give proofs of the two lemmas that were used in proving Theorem C.1.

Proof of Lemma C.1. The polynomial given by s†1Ω1s2 encodes the commutation of translates of s1 and s2. Here,

Ωm =
(

0 1

1 0

)
is an 2m× 2m symplectic form and 1 is an m×m Identity matrix. Let us denote the coefficient of g

in the polynomial s†1Ω1s2 as (s†1Ω1s2)g. We note that two Pauli operators a and b commute if (a†Ωqb)1 = 0.
Note that s1 and s2 can be expressed as follows,

s1 = (1 + y + ...+ ym−1)(xm−1 + zxm−2 + ...+ zm−1)(1, 0)T

and

s2 = (1 + x+ ...+ xm−1)(ym−1 + zym−2 + ...+ zm−1)(0, 1)T .

Since all powers of translation variables are less than m, under coarse-graining by a factor of m in each direction, we
are left with 2m-dimensional vectors for s1 and s2 with only 1s and 0s. For s1, the 1s appear in the first half and
for s2, in the second half. Due to this form, s(m)†

1 Ωms(m)
2 = (s(m)†

1 Ωms(m)
2 )1 i.e. only the coefficient of 1 contributes

and there are no monomials. Since the commutation relation between the operators s1 and s2 i.e. (s†1Ω1s2)1 is not
affected by coarse-graining, we get

s
(m)†
1 Ωms(m)

2

= (s(m)†
1 Ωms(m)

2 )1

= (s†1Ω1s2)1

= m mod 2 (C8)

Thus, s(m)†
1 Ωms(m)

2 = 1 when m is odd.

Proof of Lemma C.2. For both s1 and s2, the degrees of translation variables x, y and z range from 0 to m−1. Thus,
after coarse-graining, s(m)

1 and s(m)
2 are both supported on at only one unit cell (at location 1). In particular, s(m)

1 is
a Laurent polynomial vector over F2[1], satisfying s(m)†

1 Ωms(m)
1 = 0. Since F2[1] is a principal ideal domain, we can

find an elementary symplectic transformation E1 composed of CNOT gates that turns s1 into a vector with a single
nonzero component, say, g at the first entry. Since the only nonzero component in F2[1] is 1, g = 1.

Since the transformation E1 acts only at the origin, E1s
(m)
2 still acts only at location 1 and thus is a Laurent

polynomial vector over F2[1]. Since s(m)†
1 Ωms(m)

2 = 1, the (m3 + 1)-th component of E1s
(m)
2 must be 1. Since E1s

(m)
2

can have non-zero entries i.e. 1s only in the second half of the vector, they can all be cancelled out via CNOT gates
without affecting the form of s(m)

1 . Thus, the we get the form of s(m)
1 and s

(m)
2 as desired.
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1. Explicit ER circuit

In the supplementary Mathematica file, we have constructed a circuit U which carries out an explicit ER of the
Chamon model given as follows:

UHC(Λ)U† ∼ HC(3Λ) +H2D(6Λ) +H2D(6Λ),
H2D = Htoric

x +Htoric
y +Htoric

z +Htoric
w . (C9)

Here, Htoric
µ is a stack of 2D toric codes along the µ direction with one layer per lattice spacing.
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