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This work demonstrates a first-principles-based approach to obtaining finite temperature 

thermal and electronic transport properties which can be employed to model and understand 

mesoscale structural evolution during electronic, magnetic, and structural phase transitions. A 

computationally tractable model was introduced to estimate electron relaxation time and its 

temperature dependence. The model is applied to Ca3Ru2O7 with a focus on understanding its 

electrical resistivity across the electronic phase transition at 48 K. A quasiharmonic phonon 

approach to the lattice vibrations was employed to account for thermal expansion while the 

Boltzmann transport theory including spin-orbit coupling was used to calculate the electron-

transport properties, including the temperature dependence of electrical conductivity.  
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1 Introduction 

Due to their unconventional magnetic and electronic properties, Ruddlesden-Popper (R-P) 

ruthenates (Sr,Ca)n+1RunO3n+1 are attracting increasing interest in the field of solid-state physics 

and materials science  1. Notably, Ca3Ru2O7 is one of the few known polar metals (which are able 

to retain a spontaneous electric polarization in the metallic state)  2. In its Bb21m crystalline form  3, 

Ca3Ru2O7 exhibits a rich variety of physical phenomena, including temperature-dependent band 

dispersion  4–6, pressure-induced magnetic phase transition  3, colossal magnetoresistance  7, strong 

correlation, and pronounced spin-orbit coupling, making it a prototypical system to study the 

effects of temperature on the electronic, magnetic, and transport properties of polar metals. Cooled 

down below its Néel temperature of 56 K, Ca3Ru2O7 becomes antiferromagnetic with spins aligned 

along its a-axis (AFM-a). When further cooled down to 48 K, it undergoes a second magnetic 

phase transition, where  spins reorient along the b-axis (AFM-b); this transition is accompanied by 

an isostructural phase transformation (corresponding to a contraction of the unit cell along its c-

axis) and by a sudden change in resistivity of semimetallic character (often interpreted as arising 

from the opening of a pseudo-gap)  5,6,8. Below 30 K, Ca3Ru2O7 undergoes another phase transition 

whereby it recovers its metallic temperature-dependent resistivity.  

While first-principles calculations based on density functional theory (DFT)  9,10 have 

demonstrated their accuracy in predicting lattice vibrations, electron excitations, and configuration 

effects  11–14, it is still an ongoing challenge to evaluate the transport properties of materials. For 

instance, the calculations of electrical conductivities typically rely on the Boltzmann transport 

theory  15,16 which further needs the electron relaxation times whose values are generally on the 

order of 10−14 s [24]. While the relaxation times can in principle be predicted based on electron-

electron scattering  5,17–19, or using the Bardeen-Shockley deformation-potential theory  20,21 under 
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the effective mass approximation together with phenomenological parameters  22,23, the majority 

of DFT-based calculations  15,19,24 treat them as the scaling parameters. 

This work reports the thermal and electrical properties of Ca3Ru2O7 from first-principles 

calculations based on density-functional theory. In this work, first-principles quasiharmonic 

phonon calculations are carried out to understand the thermodynamic and electrical properties of 

Ca3Ru2O7. A tractable model is proposed to estimate the temperature dependence of the electron 

relaxation time by correlating electron-relaxation times to the specific heat per mobile charge, as 

initially suggested by the previous work 25,26.  

 

2 Boltzmann transport theory 

The electrical conductivity in the Boltzmann transport theory is written as 

𝝈 =
𝑒2

𝑉𝑘B𝑇
∫ 𝑓(1 − 𝑓) 𝚵(𝜀)𝑑𝜀
∞

−∞

 
Eq.  1 

where e is the elementary charge, where V is the volume, T is the temperature, 𝜀 the one-electron 

energt, and 𝚵(𝜀) is the so-called the transport function  15,16. 𝚵(𝜀) is a tensor with components 

𝛯𝛼𝛽(𝜀) = ∫ ∑ 𝜏𝑖,𝒌𝑣𝑖
𝛼(𝒌)𝑣𝑖

𝛽
(𝒌)

𝑖

𝛿(𝜀 − 𝜀𝑖(𝒌))
𝑑𝒌

8𝜋3
 

Eq.  2 

where 𝛼 and 𝛽 are the indices labeling the cartesian axis, i is the one-electron band index,  𝜏𝑖,𝒌 is 

electron relaxation time, and the electron group velocity 𝑣𝑖
𝛼 is the gradient of electron band energy 

with respect to 𝒌, namely 

𝑣𝑖
𝛼(𝒌) =

1

ℏ

𝜕𝜀𝑖(𝒌)

𝜕𝑘𝜶
 

Eq.  3 
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3 A model to estimate the electron relaxation time based on Heisenberg uncertainty 

principle 

In this section, an attempt is made to propose a tentative model for estimating the electron 

relaxation time and its temperature dependence based on the outputs from DFT calculations. The 

initial schematic idea stems from a) the Heisenberg uncertainty principle as given in Eq.  4 below, 

and b) the common believe that the thermal energy per mobile charge carrier is on the scale of 

𝑘𝐵𝑇. One may then guess that the electron relaxation time might be roughly on the scale of 

ℏ/(2𝑘𝐵𝑇). Following this thought, at 300 K, one can obtain a relaxation time of 1.27× 10−14 𝑠  

which is very close to the commonly assumed value of 1.0× 10−14 𝑠 for the electron relaxation 

time in literature  15,16,24.  

Next, we will formulate a procedure to calculate the electron relaxation time. We will 

follow the constant electron relaxation time approximation, i.e., treat 𝜏𝑖,𝒌 = 𝜏 in Eq.  2.  The 

inspiration is from the Heisenberg uncertainty principle which imposes the lower limit for the 

product between the measurable uncertainty of energy and the measurable uncertainty of time by 

〈∆𝜀〉 ∙ 〈∆𝑡〉 ≥
ℏ

2
 Eq.  4 

We propose the electron relaxation time can be thought as a kind of time fluctuation for an electron 

transition from one state to another state. We therefore assume the electron relaxation time is 

proportional to the measurable uncertainty of time, i.e.,  𝜏 ∝ 𝑥〈∆𝑡〉, so that we have 

〈∆𝜀〉 ∙ 𝜏 = 𝑥
ℏ

2
 Eq.  5 
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where x can be treated as a material constant and we found that x = 0.5 is a good choice for the 

present example of Ca3Ru2O7 and the FeNbSb half-Heusler (Rundong Wan, personal communication 

on using the open source code  27 which was developed based on the present work and forked from 

BoltzTrap2 28).  

Continually, we will formulate a procedure to calculate the energy uncertainty 〈∆𝜀〉. For 

the electron system, we assume that the energy uncertainty 〈∆𝜀〉  is related to the energy 

fluctuations 〈∆𝜀〉2 as heat is randomly exchanged between the system and heat bath, i.e.,  

〈∆𝜀〉2 = 〈(𝜀 − ⟨𝜀⟩)2〉 Eq.  6 

Furthermore, one knows that 〈∆𝜀〉2 is related to the heat capacity of a particle, c, by 

𝑐 =
〈(𝜀 − ⟨𝜀⟩)2〉

𝑘𝐵𝑇2
≅

〈∆𝜀〉2

𝑘𝐵𝑇2
 Eq.  7 

For the present case, c will be the heat capacity per mobile charge carriers as rationalized in the 

previous work  25,26,29 

𝑐 =
𝑐el

𝑛
=

〈(𝜀 − ⟨𝜀⟩)2〉

𝑘𝐵𝑇2
≅

〈∆𝜀〉2

𝑘𝐵𝑇2
 Eq.  8 

 

where 𝑐el is the electronic contribution to the specific heat, and 

𝑛 = ∫ (1 − 𝑓)𝑓
∞

−∞

𝐷(𝜀)𝑑𝜀 
Eq.  9 

Where f is the familiar Fermi distribution 30–32 and  𝐷(𝜀) is the electronic density-of-states given 

by 
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𝐷(𝜀) = ∫ ∑ 𝛿(𝜀 − 𝜀𝑖(𝒌))

𝑖

𝑑𝒌

8𝜋3
 

Eq.  10 

𝑛  in Eq.  9 can be considered as the number of the mobile charge carriers, or the number 

of active electronic thermal carriers.  Eq.  9 shows that the electronic states near the Fermi level 

[𝜇(𝑇) in Error!  Reference source not found.]  33,34 contributes the most to the electric or thermal 

conduction as it is dictated by the factor of (1 − 𝑓)𝑓   which mimics an interaction between 

electron and hole states through 𝑓  and (1 − 𝑓), respectively. In other words, the electron system 

can be viewed as a system made up of mobile charge carriers which makes the main contributions 

to the electronic heat conductivity, electronic heat capacity, and electric conductivity.  

⟨𝜀⟩ in Eq.  7 is the average band energy per mobile charge carrier defined as 

⟨𝜀⟩ =
1

𝑛
∫ 𝜀(1 − 𝑓)𝑓𝐷(𝜀)𝑑𝜀
∞

−∞

 Eq.  11 

𝑐𝑒𝑙 in Eq.  7 can be calculated by 

𝑐𝑒𝑙 =
1

𝑘𝐵𝑇2
∫ (𝜀 − ⟨𝜀⟩)2(1 − 𝑓)𝑓𝐷(𝜀)𝑑𝜀
∞

−∞

 Eq.  12 

Finally, substituting Eq.  7 into Eq.  5, one gets 

𝜏 = 𝑥
ℏ

2𝑇
√

𝑛

𝑘𝐵𝑐el
 Eq.  13 

Note that n and 𝑐𝑒𝑙  can be calculated using Eq.  9 and Eq.  12, respectively.  
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4 Computational details 

4.1 Electronic-structure calculations 

DFT calculations are performed using the Vienna Ab-initio Simulation Package (VASP) 

with considering spin-orbit interactions. The projected augmented wave method  35,36. LDA  37 

(local density approximation) functional is utilized to assess the electron and phonon properties. 

To account for the strong correlation among the d electrons in Ru, the on-site Coulomb repulsion 

of 1.2 eV is applied on the 4d orbitals using the Dudarev’s approach  38. The initial lattice 

parameters are taken from experimental measurements  1 at 8 K and 50 K, respectively, which 

correspond to the AFM-b and AFM-a magnetic ordering. The optimization of the atomic positions 

is carried out with a plane-wave cutoff of 650 eV, and the Brillouin zone is sampled using Gaussian 

smearing with a 20 meV width on a 5×5×3 Γ-centered k-mesh. The energy and forces are 

converged to be within 10–8 eV and 0.1 meV/Å. After the self-consistent calculations, non-self-

consistent calculations are performed using denser k-mesh of 10x10x6 for more accurate electronic 

energy eigenvalues to calculate the transport properties of electrons based on the Boltzmann 

transport theory  15,16. 

 

4.2 Computational implementation 
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Figure 1. Computerization of workflow  

 

The workflow for the computerization is given in Figure 1. To implement the formulism, 

we modified the BoltzTrap2 code  28 by adding the functions to calculate the electron heat capacity 

and effective charge carrier density as described in Eq.  7 and Eq.  9. To make sure the 

computational accuracy at low temperature region, the mesh for the one-electron energy was 

modified from uniformly sampling to a self-adapted sampling with denser mesh (1000 time) near 

the Fermi energy by Gaussian distribution. The procedure for calculating the chemical potential of 

electron was also revised by implementing the Brent’s method  39 to improve computational 

efficiency.  

The thermodynamic calculations are performed using the DFFTK package  40 which has been 

released to the public under the MIT software license. In addition to the routine calculations of 

thermodynamic properties via the quasiharmonic approach (QHA)  11,41, it has been implemented 

in the DFTTK that any properties, as long as they depend on volume or stain, can be calculated 

under a quasi-static approach via the predicted property-volume/strain relationship from the 

QHA  41,42. Therefore, the effects of thermal expansion have been considered for calculating both 

the electron relaxation time and the electrical conductivity.  

 

5 Results and discussions 

5.1 Heat capacity and Debye temperature 
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Figure 2. Heat capacities, electronic heat capacity coefficients,  and Debye temperatures for the 

AFM-b [(a), (b), and (c)] and AFM-a [(d), (e), and (f)] phases of Ca3Ru2O7, respectively. The dots 

are experimental data  1,43,44. The dashed lines in the heat capacity plot are for the calculated values 
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without considering the thermal electronic contributions. C/T vs T2 plot represents the analysis of 

the heat capacity at low temperature heat capacity.  

 

The calculated heat capacities for the AFM-a and AFM-b phases of Ca3Ru2O7 are compared 

with a collection of experimental data  1,43,44 in Figure 2. It shows excellent agreements between 

the calculations and experiments except for the experimental spike around 48 K. A heat capacity 

spike in the vicinity of a phase transition temperature is typical for structural phase transitions. The 

thermal electronic contribution in Eq.  12 is separated from the lattice contribution as 

𝐶𝑝,𝑙𝑎𝑡+𝑒𝑙 = 𝑐𝑒𝑙 + 𝐶𝑝,𝑙𝑎𝑡 Eq.  14 

Figure 2 shows that the electronic contributions are small.  

Next, we investigate the behaviors of the heat capacity at low temperature region as routinely 

performed  1,44 via the form of C/T vs T2, namely, 

𝐶𝑝,𝑙𝑎𝑡+𝑒𝑙 𝑇⁄ = 𝛾 + 𝛽𝑇2 Eq.  15 

where 𝛾 is the so-called electronic heat capacity coefficient  45, and based on the value of 𝛽 one 

can calculate the Debye temperature or vice versa the value of 𝛽 can be determined once upon the 

Debye temperature is known.  

Approaching to the 0 K limit, we get the Debye temperatures of 492.4 K and 476.4 K, for 

the AFM-b and AFM-a phases, respectively. In comparison, the reported Debye temperature by 

McCall et al.  44 was 480 K based on fitting their measurements. Away from the low temperature 

region, one can get the Debye temperature by fitting the calculated constant heat capacity from the 

phonon approach utilizing the Debye formula for the heat capacity  12,46. Figure 2 shows that the 

Debye temperatures are moderately temperature dependent.  
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At the low temperature limit, the calculated 𝛾’s by the present work are 0.23 mJ/mol-atom 

and 0.90 mJ/mol-atom, for the AFM-b and the AFM-a phases, respectively. In particular, the value 

of 0.23 mJ/mol-atom for the AFM-b phase agrees excellently with the calorimetric result reported 

by Ke et al.  43 and is close to the value of 0.28 mJ/mol-atom reported by Yoshida et al.  1, whereas 

it is one magnitude smaller than the value of 3.7 mJ/mol-atom as reported by McCall et al.  44 and 

the value of 3.1 mJ/mol-atom  by Gao et al.  47. 

 

5.2 Calculated physical quantities from the electron density of states 
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Figure 3. Calculated electronic properties based on the electron density of states for the AFM-b 

and AFM-a phases of Ca3Ru2O7. (a) the electron density of states; (b) the density of the active 

electronic thermal carriers; (c) 𝒄𝒆𝒍/𝒏 the electronic heat capacity per active electronic thermal 

carriers; and (d) the relaxation time estimated using Eq.  13 based on 𝒄𝒆𝒍/𝒏 in Eq.  7. 

 

Major thermal properties of electrons can be calculated from the electron density of states  12. 

The electron density of states (DOS) calculated for the AFM-b and AFM-a phases are illustrated 

in Figure 3a. At the Fermi energy, the DOS for the AFM-b is roughly half of that of the AFM-a 

phase. This ratio is quite similar to the measured ratio of the electrical conductivity  5 of the AFM-

b to the AFM-a phases. It is observed that the opposite behaviors  5 on the locations of Fermi 

energies for the two phases, i.e., a dip structure for the AFM-b phase vs a peak structure for the 

AFM-a phase at the Fermi energy. This observation could correspond to the experimental 

suggestion of the appearance of an insulating-like pseudo-gap  5. 

Hereby want to reiterate the importance of concept of “mobile charge carriers” as given in 

Eq.  9 which was introduced in a previous work  48. On one hand, it showed that only the electronic 

states with energies around the Fermi level can contribute to the thermal properties, by a factor of 

f(1-f) to the electron density of states as seen from Eq.  9, Eq.  11, and Eq.  12. As a matter of fact, 

f(1-f) behaves quite like a Dirac delta function except a normalization factor when approaching to 

low temperature. For the two AFM phases of Ca3Ru2O7, the calculated mobile charge carriers are 

illustrated in Figure 3b which shows that the calculated densities of mobile charge carriers for the 

two phases are nearly linear temperature dependent, typical for metallic materials. 

The most important quantity came into the expression for electron relaxation time in Eq.  13 

is the electronic heat capacity per effective mobile charge carriers, namely  𝑐𝑒𝑙/𝑛 in Eq.  7. The 
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calculated 𝑐𝑒𝑙/𝑛’s for the two phases of Ca3Ru2O7 are plotted in Figure 3c. It shows that the values 

of 𝑐𝑒𝑙/𝑛’s are roughly constants. This can be understood in terms of the Lorenz number which is  

a factor of 𝑘𝐵/𝑒2  to 𝑐𝑒𝑙/𝑛 as we proved in a separate work  26. Last, plotted in Figure 3d is the 

estimated electron relaxation time based on Eq.  13 using x=0.5 which is found to be a good fit to 

match the electrical resistivity measured by Yuan et al.  5. 

Theoretically, the electron relaxation time was mostly analyzed in terms of the rates of 

impurity, acoustic phonon, and polar phonon scattering  49,50 as well as electron-electron 

scattering  5,17–19. The resulting electron relaxation time (τ) in Eq.  13 could be considered as an 

effective estimate incorporating all these scatterings in an average way. 

In a separate work  26, we proved that  𝑐el/𝑛 in Eq.  7 is related to the Lorenz number  51,52 

by a factor of 𝑘𝐵/𝑒2 . Considering the fact that the Lorenz number was weakly temperature 

dependent which was especially true for metallic materials  53–56, it was observed from Eq.  13 that 

the relaxation time by the present work was virtually inversely proportional to the temperature. 

This temperature proportionality is the same with the recent works, such as refs.   22,57 report 𝜏 =

𝐶𝑛−1 3⁄ /𝑇 where n is the doping level, and C is a fitting parameter, Wilson and Block’s result for 

metals  58,59,  the Umklapp process reported in ref.  60, and Ziman’s results  61,62. 

 

5.3 Calculated physical quantities from the transport electron density of states 
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Figure 4. The calculated conductive properties for the AFM-b (solid lines) and AFM-a (dashed 

lines) phases of Ca3Ru2O7. (a) the transport density of states of electron as defined in Eq.  16; (b)-

(e) the Mott the energy-dependent differential electrical conductivity at 10, 50, 90, and 300 K, 

respectively; and (f) the electrical resistivity. The diamonds in (f) are the experimental dc electrical 

resistivity reported by Lee et al.  8. 



15 
 

 

The transport electron density of states is a fundamental quantity to calculate almost all 

key kinetic properties of electrons  15,16 once the electron relaxation time is known. According to 

the BoltzTrap2 code  28, the transport electron density of states are defined as  

Φ(𝜀)   =
1

3
𝑡𝑟 [∫ ∑ 𝑣𝑖

𝛼(𝒌)𝑣𝑖
𝛽

(𝒌)

𝑖

𝛿(𝜀 − 𝜀𝑖(𝒌))
𝑑𝒌

8𝜋3
] 

Eq.  16 

where mathematical operator 𝑡𝑟  means to find the trace of a tensor. The calculated transport 

electron density of states for the two phases of Ca3Ru2O7 are illustrated in Figure 4a. Compared 

with the plot of the DOS’s given in Figure 3a, the pseudogap behavior  5,8 is more evident in the 

plot of transport electron density of states, i.e. a deep dip structure for the AFM-b phase vs a 

shallow structure for the AFM-a phase at the Fermi energy, attributed to the significant differences 

of the electron group velocities between the two phases.  

With the transport electron density of states and the electron relaxation time in hand, we 

can now investigate the electrical conductive properties and understand the T-dependent gapping  5. 

According to the Cutler-Mott theory  63, the electrical conductivity is formulated as 

𝜎 = ∫ 𝜎′(𝜀)𝑑𝜀
∞

−∞

 
Eq.  17 

where 𝜎′(𝜀) is a kinetic coefficient called the energy-dependent differential electrical conductivity 

which is related to the transport density of states in Eq.  16 by 

𝜎′(𝜀) =
𝑒2

𝑘𝐵𝑇𝑉
𝑓(1 − 𝑓)Φ(𝜀)𝜏 

Eq.  18 
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Again, it is observed that only the electronic states with energies around the Fermi level can 

contribute the electrical conductive properties dictated by the factor of f(1-f). In Figure 4b-e, we 

choose T=10, 50, 90, and 300 K to demonstrate the evolutions of the calculated 𝜎′(𝜀) for the two 

phases of Ca3Ru2O7.  

 Finally, the calculated electrical resistivities (the inverse of the conductivity given in Eq.  

17) of the AFM-b and AFM-a phases for Ca3Ru2O7 are compared with experiment  8 in Figure 4f. 

Note that a fair comparison with experiment should be only made up to the Néel temperature of 

56 K. By experiment  8,43, above 56 K Ca3Ru2O7 is paramagnetic which is not handled in the 

present work.  

 

 

6 Summary 

First-principles calculations based on density functional theory are carried out for the 

AFM-b and AFM-a phases of Ca3Ru2O7.   For the thermodynamic properties at finite temperature, 

the lattice vibration was handled by phonon approach, and the thermal electron excitation was 

treated by Mermin’s finite temperature DFT approach. For the electron transport properties, the 

Boltzmann transport equation was solved using the BoltzTraP2 code. The calculated heat 

capacities agree well with experimental data. Furthermore, a model for estimating the electron 

relaxation time was proposed so that one can estimate the temperature dependence of the electrical 

conductivity. The approach has been implemented in the BoltzTraP2 code. Application of the 

model to the AFM-b and AFM-a phases of Ca3Ru2O7 gives rise to promising results when 

compared with experiment for the temperature dependences of the electrical conductivity. 
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