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Non-Hermitian Chern insulators differ from their Hermitian cousins in one key aspect: their edge
spectra are incredibly rich and confounding. For example, even in the simple case where the bulk
spectrum consists of two bands with Chern number ±1, the edge spectrum in the slab geometry
may have one or two edge states on both edges, or only at one of the edges, depending on the model
parameters. This blatant violation of the familiar bulk-edge correspondence casts doubt on whether
the bulk Chern number can still be a useful topological invariant, and demands a working theory
that can predict and explain the myriad of edge spectra from the bulk Hamiltonian to restore
the bulk-edge correspondence. We outline how such a theory can be set up to yield a thorough
understanding of the edge phase diagram based on the notion of the generalized Brillouin zone (GBZ)
and the asymptotic properties of block Toeplitz matrices. The procedure is illustrated by solving
and comparing three non-Hermitian generalizations of the Qi-Wu-Zhang model, a canonical example
of two-band Chern insulators. We find that, surprisingly, in many cases the phase boundaries and
the number and location of the edge states can be obtained analytically. Our analysis also reveals a
non-Hermitian semimetal phase whose energy-momentum spectrum forms a continuous membrane
with the edge modes transversing the hole, or genus, of the membrane. Subtleties in defining the
Chern number over GBZ, which in general is not a smooth manifold and may have singularities, are
demonstrated using examples. The approach presented here can be generalized to more complicated
models of non-Hermitian insulators or semimetals in two or three dimensions.

I. INTRODUCTION

In recent years, substantial progress has been made
in characterizing the topological properties of non-
Hermitian (NH) Hamiltonians describing non-interacting
particles hopping on periodic lattices [1–4]. Despite
its apparent simplicity, many aspects of the problem,
especially in dimensions higher than one, still remain
shrouded in mystery and lack the same level of com-
pleteness or clarity as the Hermitian topological phases of
matter. To motivate our work and to pinpoint the prob-
lem, we jump right to a concrete model. More detailed
discussion of the background, including previous results
that inspired and influenced our work, will be given in
Section VI.

A. The Qi-Wu-Zhang model

We are interested in the non-Hermitian generalizations
of Chern insulators in two dimensions (2D). A simple ex-
ample of Hermitian Chern insulators is a two-band model
introduced by Qi, Wu, and Zhang on a square lattice [5].
Its Hamiltonian reads

H0(k) = d(k) · σ (1)

= sin kxσx + sin kyσy + (m− cos kx − cos ky)σz,

where k = (kx, ky) is the crystal momentum, σ =
(σx, σy, σz) denotes the Pauli matrices to describe the
two orbital degrees of freedom (pseudo-spin 1/2), and the
momentum-dependent “magnetic field” d = (dx, dy, dz)
with dx = sin kx, dy = sin ky, dz = m − cos kx − cos ky.
The tuning parameter m is real and plays the role of
Dirac mass to dictate the energy gap. Note that the en-
ergy is always measured in units of the nearest neighbor

hopping t which we have set to be 1. The Qi-Wu-Zhang
model Eq. (1) has the virtue of being mathematically el-
egant with a clean-cut phase diagram [5]: for |m| < 2, the
system is topologically nontrivial with the Chern num-
bers of the two bands being ±1; the energy gap closes
when m = ±2; and the system becomes topologically
trivial for |m| > 2. From the Chern numbers of the
bands, we immediately know that there is one chiral edge
modes inside the energy gap for |m| < 2.

B. Three non-Hermitian generalizations

A few different non-Hermitian generalizations of the
Qi-Wu-Zhang model have been considered in the litera-
ture. Below, we will analyze and compare three exam-
ples. They are obtained by adding one extra term to the
Qi-Wu-Zhang model H0, resulting in increasing complex-
ity in the edge spectra. The first model is

H1 = H0 + ihzσz. (2)

The constant hz term introduces an imaginary part to
the “magnetic field” d by replacing dz → dz + ihz while
retaining dx,y in H0. In Ref. [6], a three dimensional
generalization (with kz) of this model was used to discuss
Weyl exceptional rings. This model will be analyzed in
Section III, and its phase diagram in the slab geometry
(e.g. with open boundaries in the x direction, x ∈ [0, L],
and periodic boundary condition along y) is summarized
in Fig. 1(a). We use H1 as a warm-up example to set the
stage for models H2 and H3 below which feature much
more complicated phase diagrams.

The second model is similar to H1, but with the non-
Hermitian term applied to σx instead,

H2 = H0 + ihxσx. (3)
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FIG. 1. Summary of main results: a myriad of phases of non-Hermitian Chern insulators in slab geometry, x ∈ [0, L] in the
limit of large L with periodic boundary conditions along y. The three panels (a), (b) and (c) show the phase diagram for the
generalized Qi-Wu-Zhang model H1, H2 and H3 respectively. For model H1 in panel (a), there are three phases indicated by
color: the gapped topological phase with Chern number ±1 (C1), the gapless phase (GL), and the trivial band insulator (T).
This model is discussed in Section III. For H2 in panel (b), the C1 phase is further partitioned into three regions, where the
subscripts such as LR describe the localization of the edge modes. There are also a gapped phase C2 with Chern number ±2,
and a topological gapless phase S. Both are unexpected from the bulk phase diagram. See Section IV for details. For model
H3 in (c), the C1 phase has two regions with distinct edge behaviors, and a novel topological gapless phase S′ (Section V).

This model has been investigated by Kawabata, Shiozaki,
and Ueda in Ref. [7] to illustrate the breakdown of bulk
edge correspondence in non-Hermitian Chern insulators.
These authors obtained the phase diagram of H2 in the
slab geometry by numerical diagonalization. Our objec-
tive here is to formulate an analytical theory to predict
all the phase boundaries based on the notion of GBZ,
without resorting to numerical diagonalization of finite
size systems with boundaries. This is done in Section
IV, and the analytical result for L → ∞ is summarized
in Fig. 1(b). Note that we label the various phases dif-
ferently from Ref. [7], for reasons to be elaborated in
Section IV.

The third model is defined as

H3 = H0 + it1 sin kxσz. (4)

A more general version of this model with an extra term
involving sin ky was considered in Ref. [8] as an example
of the non-Hermitian skin effect. The phase diagram of
H3 in the slab geometry, however, remains unexplored
to our best knowledge. We solve this model in Section
V and the resulting slab phase diagram is shown in Fig.
1(c).

C. New phases in slab geometry

The slab phase diagrams in Fig. 1(b) and 1(c) exhibit
a few striking features when viewed alongside the cor-
responding bulk (i.e., with periodic boundary conditions
in both x and y direction) phase diagrams. All three
generalized Qi-Wu-Zhang models above bear the form

Hbulk(k) = D(k) · σ, (5)

where the vector D depends on k and is in general com-
plex. For example, for H3 we have Dx = dx, Dy = dy,
Dz = dz + it1 sin kx. Its bulk spectrum is simply

Ebulk(k) = ±
√
D2
x +D2

y +D2
z , (6)

with k confined within the Brillouin zone (BZ). When the
spectrum on the complex E plane has a well-defined line
gap, one can compute the Chern number of each band
from its bi-orthorgonal eigenstates. But the knowledge
of Ebulk(k ∈ BZ) offers little help to comprehend the
corresponding slab phase diagram for the case of H2 or
H3.

Take H2 for example. As highlighted in Fig. 1 of
Ref. [7], its bulk phase diagram is partitioned by equally
spaced diagonal lines on the (m,hx) plane. Three gapped
phases with Chern number C = 0,±1 respectively have
the shape of a perfect diamond with side length

√
2. In

contrast, the slab phase diagram of H2 in Fig. 1(b) is
rather different. Most striking is the appearance of a
gapped phase C2 (labelled as NL/R = 2 in Ref. [7]) that
has two edge modes on both the left (x = 0) and the
right edge (x = L). This phase is unexpected, seemingly
popped out from nowhere, because there is no bulk phase
with Chern number C = ±2. The second notable feature
is the emergence of two phases CLL

1 and CRR
1 (labelled as

NL = 2 and NR = 2 in Ref. [7]) with two edge modes
localized at only one of the edges, which is impossible
for Hermitian Chern insulators. It is obvious that these
features cannot be inferred from Ebulk(k ∈ BZ), and the
familiar bulk-edge correspondence breaks down.

These observations beg the following questions. Can
one predict when these caprice edge modes decide to
switch sides, e.g. relocate from the left edge to the right
edge as parameters m and hx are varied? Moreover,
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what determines the curved phase boundaries of these
phases? The goal of our work is to address these ques-
tions to achieve a more refined understanding of H2. For
instance, we will prove in Section IV that all the phase
boundaries of H2 shown in Fig. 1(b) are actually given
by a set of simple analytical curves. In Section V, we
apply the theoretical technique developed to analyze the
even more challenging case of H3.

D. Strategy to characterize the new phases

Our strategy to comprehend non-Hermitian Chern in-
sulators in the slab geometry is built upon a few tech-
niques developed earlier for one-dimensional (1D) non-
Hermitian Hamiltonians. A key idea is to include local-
ized (non-Bloch) states besides the familiar Bloch waves
by allowing the wave vector to take complex values. This
is motivated in part by the non-Hermitian skin effect, i.e.,
the emergence of extensive number of eigenstates local-
ized at the open boundaries, e.g. at x = 0 and/or L.
For a given 1D tight-binding Hamiltonian H(kx), by re-
placing eikx with a complex number β, one obtains an
analytically continued Hamiltonian H(β),

H(kx)→ H(β). (7)

Its eigenvalues E(β) will reproduce the open-boundary
spectrum in the thermodynamic limit of L → ∞ if β is
restricted to a closed curve on the complex plane known
as the Generalized Brillouin Zone (GBZ),

β ∈ GBZ. (8)

In the context of 1D non-Hermitian band insulators, the
concepts of “non-Bloch” band theory and GBZ were first
proposed in Ref. [9]; the correct definition of GBZ for
the general case was given in Ref. [10]. Once the GBZ
is determined, one can define topological invariants such
as the winding number. It was shown that the phase
boundaries obtained from H(β ∈ GBZ) matches those
from numerical diagonalization of finite-size systems with
open boundaries. In this way, the bulk-boundary corre-
spondence is restored by introducing GBZ for 1D non-
Hermitian Hamiltonians.

At first sight, one might expect that this approach can
be generalized trivially to two dimensions to describe
non-Hermitian Chern insulators. Consider for instance
H2 or H3 in the slab geometry with open boundaries at
x = 0, L and periodic along y. One can follow the 1D
recipe by the replacement

eikx → β (9)

to construct an analytically continued Hamiltonian

H(kx, ky)→ H(β, ky), (10)

where ky is a good quantum number. H(β, ky) can be
viewed as a 1D Hamiltonian with parameter ky. For each

given ky, one may compute the corresponding GBZ curve
for H(β, ky),

β ∈ GBZ(ky). (11)

In principle, these ky-dependent GBZ curves will con-
gregate into a 2D surface in the space of (Reβ, Imβ, ky).
Let us call this 2D surface the GBZ surface, or GBZs, to
differentiate it from the 1D GBZ curve,

GBZs = ∪kyGBZ(ky). (12)

It reduces to the two-torus Brillouin zone if the Hamilto-
nian is Hermitian. One can proceed to define Chern num-
bers on GBZs and use them to characterize each phase
of H(β, ky). If everything works out as expected, the re-
sulting phase diagram should agree with the numerical
diagonalization of large size systems.

(a)

(b)

FIG. 2. (a) An example of the Generalized Brillouin Zone sur-
face (GBZs) for model H3. It is a three-dimensional surface
in the space (Reβ, Imβ, ky), continuous but not necessarily
smooth. Different values of ky ∈ [0, 2π] are colored coded.
(b) The cross section of the GBZs at ky = 0. The red curve is
the GBZ showing numerous cusps. It consists of arc segments
belonging to multiple auxiliary GBZ curves (in grey) which
intersect with each other. Thus, the GBZs in general is not
a smooth manifold but an algebraic variety. The results are
obtained numerically by following the algorithm outlined in
Section II.C. The parameters used are m = 0.6, and t1 = 0.4.

In reality, carrying out this plan runs into difficul-
ties. The GBZ surface is in general not a smooth com-
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pact manifold like the two torus. This makes the def-
inition and numerical computation of the Chern num-
ber challenging. Computing the GBZ curve for 1D non-
Hermitian Hamiltonians is a nontrivial task. A few pow-
erful algorithms have been developed so far [10–12], and
they rely on numerical solution of algebraic equations
(e.g. finding the roots of polynomial equations or the in-
tersections of two curves) to yield a collection of discrete
data points for β on the complex plane. With sufficient
resolution, these data points coalesce into a curve which
is believed to be a continuous and closed, but not neces-
sarily smooth. In fact, it often has sharp turns, or cusps.
An example is the red curve in Fig. 2(b). After running
the algorithm for each ky ∈ [0, 2π], the resulting GBZs
inherits these cusps, see the example shown in Fig. 2(a).

To make matters worse, the resulting GBZs sometimes
features singularities as ky is varied. For example, each
GBZ curve of H2 is a circle of radius r on the complex
plane, but r shrinks to zero or blows up to infinity at
certain ky values as shown in Fig. 3. Thus, to evaluate
the Chern number from the Berry connection for a gen-
eral non-Hermitian Chern insulator, we have to settle for
irregular mesh points on a rugged GBZs, and watch out
for singularities, e.g. when the GBZ surface shrinks to a
point. Note that previously in Ref. [13], the singularities
of GBZ in 1D non-Hermitian models have been noted.
Here, we focus on 2D models. To circumvent these sub-
tleties and crosscheck the Chern number calculation, we
shall also pursue an alternative scheme to characterize
the topological invariant of H(β, ky) using the eigenvec-
tors on the Bloch sphere.

From Section III to V, the three models H1,2,3 are dis-
cussed in turn to illustrate the technical complexities and
challenges in executing the strategy outlined above cen-
tering aroundH(β, ky) and GBZs. In particular, we show
how analytical solutions can be obtained for H2 to yield
a thorough understanding of the problem. By working
through these three examples, we hope the reader can ap-
preciate the rich, nontrivial behaviors of non-Hermitian
Chern insulators with open boundaries as highlighted in
Fig. 1.

II. COMPUTING THE GBZ

The concept of Generalized Brillouin Zone (GBZ) plays
a crucial role in our analysis of the non-Hermitian Chern
insulators. In this section, we outline the technical pro-
cedures to compute the GBZs for our two-band models.
Based on existing algorithms, we introduce a few tricks so
the numerical task is simplified and analytical results be-
come possible. This leads to a rather detailed knowledge
of how the GBZ varies with the parameters such as m, hx
or t1, and ky, including the development of singularities.

A. The algorithm

The first step of the algorithm is to analytically con-
tinue Hbulk(kx, ky) by the replacement eikx → β. Take
model H2(kx, ky) as an example. After the replacement,
H2 becomes

H2(β, ky) =
(
ihx +

β − β−1

2i

)
σx + sin kyσy

+
(
m− cos ky −

β + β−1

2

)
σz. (13)

The two eigenvalues of H2 are ±E(β), where the ky de-
pendence of E has been suppressed for brevity. We will
focus on their square, which is a Laurent polynomial of
complex variable β,

ε(β) ≡ E2(β) =
a′β2 + b′β + c′

β
. (14)

Here the coefficients

a′ = −m+ cos ky + hx, (15)

b′ = m2 − 2m cos ky + 2− h2
x, (16)

c′ = −m+ cos ky − hx. (17)

For β living on the unit circle with |β| = 1, let β = eikx

with kx ∈ [−π, π], then ε(β) becomes ε(kx) to reproduce
the bulk spectrum Eq. (6), i.e. the spectrum of H2 with
periodic boundary conditions.

To discuss the slab geometry with open boundaries and
the corresponding edge modes, let write down H2 in sec-
ond quantized form,

H2 =

L∑
n=1

∑
ky

[
ψ†nAψn + ψ†nBψn+1 + ψ†n+1Cψn

]
. (18)

Here the good quantum number ky is the crystal mo-
mentum along y, n is the unit cell index along x, the cre-
ation operator ψ†n is a shorthand notation for the spinor

[ψ†n,↑(ky), ψ†n,↓(ky)], and A, B, C are 2× 2 matrices,

A = [m− cos ky]σz + ihxσx + sin kyσy, (19)

B = (−σz + iσx)/2, (20)

C = B†. (21)

Again, the ky dependence of ψn and A is suppressed for
brevity. In other words, H2 is a block Toeplitz matrix

T =

 A B 0 0 ..
C A B 0 ..
0 C A B ..
.. .. .. .. ..


L×L

. (22)

This form is particularly convenient for finding the dis-
persion and location of the edge states in Section IV.

We stress that the open spectrum (i.e. the set of eigen-
values of T for a system of size L in the x-direction with
open boundaries at x = 0, L) may bear little similarity
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with the bulk spectrum Ebulk(kx, ky) in Eq. (6). Fur-
thermore, the open spectrum depends on the size L. And
since T is non-Hermitian, its numerical diagonalization
is prone to instabilities and large errors when L is large.
Some of these counterintuitive phenomena have been long
noticed for non-Hermitian Toeplitz matrices (here we are
dealing with block Toeplitz matrices). A simple exam-
ple is when the three matrices A, B and C reduce to
numbers with A = 0. In this case, the bulk spectrum
is an ellipse (a curve), while the open spectrum is a line
segment within the ellipse. The sensitive dependence of
the spectra on the boundary conditions has been well
recognized for non-Hermitian Hamiltonians.

The spectra of T in the thermodynamic limit L→∞,
save for a subset corresponding to the edge states, are
called continuum bands. The eigenvalues of T congre-
gate into continuum sets (e.g. lines) on the complex E
plane. And the corresponding eigenstates may include
localized states that do not belong to the bulk spectrum
with periodic boundaries. A key step in understanding
the slab phase diagrams of non-Hermitian Chern insula-
tors is to find the continuum bands. Remarkably, this
task can be reduced to an algebraic problem involving
the analytically continued Hamiltonian H(β). The eigen-
value problem of H(β) has the following generic form,

Pp+q(β,E)

βp
= 0. (23)

Here Pp+q denotes a polynomial of β of degree p + q (it
is also a polynomial of E of some other degree). For
example, in Eq. (14) for H2, we have p = 1 and q = 1.
For generalized Qi-Wu-Zhang models, Eq. (23) can be
further simplified to a form similar to Eq. (14),

ε(β) =
Qp+q(β)

βp
, (24)

where Qp+q is a polynomial of β of degree p + q with
coefficients independent of E. Eq. (24) defines a mapping
β → ε, i.e. from β on the complex plane to ε = E2

which is also complex. Note that this is a multiple-to-
one mapping: for a given image ε, we label its preimages
by βi and order them by their magnitudes,

|β1| ≤ |β2| ≤ ... ≤ |βp+q|. (25)

For E to lie within the continuum band, its preimage βp
and βp+1 must satisfy the degeneracy condition,

|βp| = |βp+1|. (26)

This key result was established in Ref. [9] and [10] for
1D non-Hermitian Hamiltonians. And in the context of
Toeplitz matrices, it was first proved by Schmidt and
Spitzer (see Theorem 1 of Ref. [14] and Refs. [15, 16]
for a review). Solving Eq. (26) together with Eq. (24)
accomplishes two goals at once: the set of E’s form the
continuum band, and the union of the set βp and the set
βp+1 gives the generalized Brillouin zone.

B. Circular GBZ for model H2

Let us apply the algorithm to H2 to show its GBZ is
a circle. Recall from Eq. (14), ε(β) = a′β + b′ + c′/β,
so p = 1 and each ε only has two preimages, β1 and β2.
The degeneracy condition requires them to have equal
magnitude, therefore we can follow the parametrization
scheme of Ref. [10] to write

β2 = β1e
iθ. (27)

Next, using ε(β1) = ε(β2 = β1e
iθ), we find

β2
1 =

c′

a′
e−iθ. (28)

Thus the GBZ for H2 is a circle with radius

r2(ky) =

∣∣∣∣m− cos ky + hx
m− cos ky − hx

∣∣∣∣1/2 . (29)

We stress that working with ε = E2 is a simple yet crucial
trick to render the problem analytically tractable.

Fig. 3 shows two examples of the GBZ radius varying
with ky. It clearly illustrates the pinching of the GBZs
where r2 vanishes, as well as the divergence of r2 at cer-
tain ky values dependent on the parameter m and hx.

FIG. 3. Singularities in the circular GBZ of model H2. The
radius r2, given by Eq. (29), is plotted as a function of ky ∈
[0, 2π] for m = 0.1, hx = 0.2 (in blue), and for m = 0.1,
hx = 1 (in red). It shrinks to zero when m− cos ky + hx = 0,
and blows up to infinity when m− cos ky − hx = 0.
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C. GBZ for model H3

Next we apply the algorithm to the analytically con-
tinued model H3, which has the form

H3(β, ky) =
β − β−1

2i
σx + sin kyσy (30)

+
(
m− cos ky +

1− t1
2

β − t1 + 1

2
β−1

)
σz.

Its eigenvalue square is the Laurent polynomial

ε(β) ≡ E2(β) = aβ2 + b/β2 + cβ + d/β + f, (31)

with

a = t1(t1 − 2)/4, (32)

b = t1(t1 + 2)/4, (33)

c = +(m− cos ky)(t1 − 1), (34)

d = −(m− cos ky)(t1 + 1), (35)

f = (m− cos ky)2 + sin2 ky − t21/2 + 1. (36)

Comparing with the general form Eq. (24), we find that
in this case, p = q = 2, so the degeneracy condition
becomes

|β2| = |β3|. (37)

This motivates the parametrization β3 = β2e
iθ. To find

the GBZ, we need to solve the quartic equation

ε(β2) = ε(β2e
iθ) (38)

for β2 for all possible values of θ.
Before attempting a general solution, let us first con-

sider a special case m = 1 and ky = 0, so c = d = 0.
Then the Laurent polynomial Eq. (31) simplifies to
ε(β) = aβ2 + b/β2 + f , and Eq. (38) can be solved by
hand. After a little algebra, we find

β4
2 =

t1 + 2

t1 − 2
e−i2θ. (39)

Thus the GBZ for m = 1 and ky = 0 is a circle of radius

r3 =

∣∣∣∣ t1 + 2

t1 − 2

∣∣∣∣1/4 . (40)

For general values of (m, t1, ky), we choose to solve Eq.
(38) numerically to find its four solutions ηi, i = 1, 2, 3, 4.
For each solution ηi, we compute its image ε∗ = ε(ηi), and
find all four preimages of ε∗ and sort them into

|ξ1| ≤ |ξ2| ≤ ξ3| ≤ |ξ4|. (41)

If |ξ2| = |ξ3| and ηi = ξ2 or ξ3, we conclude that ηi and
ηie

iθ satisfy the condition Eq. (37) and therefore belong
to the GBZ. Repeating this procedure for a discrete grid
of θ values within the interval [0, 2π] will produce a set
of data points to form the GBZ curve (e.g. the red curve
in Fig. 2(b)).

It is not immediately obvious that the GBZ obtained
this way is guaranteed to be a connected, closed curve.
To gain a better understanding, it is useful to examine
all the solutions of Eq. (38), including those that do not
meet the criterion Eq. (37) and thus do not belong to
the GBZ. As the solutions of a polynomial equation, they
forms continuous curves on the complex β plane which
are called the auxiliary GBZ by Ref. [11]. For example,
some of the solutions satisfy |βj | = |βj+1| with j 6= q.
These curves may intersect, and GBZ is nothing but a
subset of the auxiliary GBZ, consisting of arcs connected
to each other at these intersection points. Fig. 2 shows
the computed GBZ (in red) and other auxiliary GBZ for
parameters m = 0.6, t1 = 0.4 with ky = 0.

It is clear from the discussion above that the GBZ,
unlike the familiar Brillouin Zone, is not necessarily a
smooth manifold and may feature singular points. More
precisely, it should be called an algebraic variety, as it is
derived from solutions to polynomial equations.

D. GBZ from self-intersection

The recipe outlined in the preceding subsections works
very well in tracing out smooth GBZ curves, e.g. approx-
imately of elliptical shape. Its performance suffers how-
ever when the GBZ contains segments going along the
radial direction, which can be easily missed if the mesh
grid of θ is not fine enough. Thus it is useful to develop
an alternative method that can find points on the GBZ
at a given radius ρ on the complex β plane. An ingenious
algorithm of this type was proposed in Ref. [12] based
on the self-intersection and winding of the image ε(β).
Below we show how it can be adapted to H3. Readers
who are not interested in these technical details can skip
to Section III.

Let Cρ be a circle of given radius ρ on the complex
plane. As β varies along Cρ to complete a cycle, its image
ε(β) traces out a closed curve Γρ on the complex plane
of ε,

Γρ = {ε(β ∈ Cρ)} . (42)

Thus, in order for two distinct points βi and βj on Cρ to
map to the same image εs ∈ Γρ,

ε(βi ∈ Cρ) = ε(βj ∈ Cρ) = εs, (43)

εs must be a self-intersection points of the curve Γρ. For
our problem, we observe that the location of these points
are mirror symmetric with respect to the real axis, be-
cause all coefficients a to f in Eq. (31) are real.

Plotting the curve Γρ reveals that it is in general very
complicated. One may take a purely numerical approach
to find its intersection points. But it is time consum-
ing (we must repeat the calculation for different ρ’s and
different parameters such as ky) and requires fine-tuning
for different parameters. It turns out that with some ef-
fort all the self-intersection points for model H3 can be
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found analytically as follows. For a given radius ρ, let us
parametrize β = ρeiθ and separate ε into real and imag-
inary parts, ε(β = ρeiθ) = x(θ) + iy(θ). Then Eq. (31)
becomes two equations,

x(θ) = a+ cos 2θ + c+ cos θ, (44)

y(θ) = a− sin 2θ + c− sin θ, (45)

with the shorthand notation

a± = aρ2 ± bρ−2, (46)

c± = cρ± dρ−1. (47)

According to Eq. (43), a self-intersection point of Γρ
corresponds to a solution to the equation set

x(θ) = x(θ′), (48)

y(θ) = y(θ′), (49)

with θ 6= θ′. These trigonometric equations can be con-
verted into polynomial form by introducing

u = cos θ, v = cos θ′, (50)

and applying trig identities. For example, Eq. (48) for x
reduces to

u+ v = −c+/2a+ (51)

after factoring out (u−v). Eq. (49) for y is more involved.
One can square it to obtain a quartic equation for u and
v using sin2 θ = 1−u2. Luckily, we can factor out (u−v)
again, and evoke Eq. (51) to reduce it to a quadratic
equation for u,

auu
2 + buu+ cu = 0, (52)

where the coefficients have lengthy expressions

η = −c+/2a+,

au = 8a2
−η + 4a−c−,

bu = −8a2
−η

2 − 4a−c−η,

cu = 4a2
−η

3 + 4a−c−η
2 + (c2− − 4a2

−)η − 4a−c−.

The quadratic equation (52) yields a pair of solutions u±.
Another independent solution of Eq. (49) corresponds to
y(θ) = y(θ′) = 0, leading to

u3 = −c−/2a−, (53)

with the corresponding intersection point lying on the
real axis. For each solution of u, we can work backwards
to find θ = arccos(u), v, θ′, and εs = x(θ) + iy(θ).

In some special cases, the self-intersection points coin-
cide and merge into a single point. This corresponds to
having three β’s on the circle Cρ that map to the same
value of ε. In Ref. [12] this is called three-bifurcation
point. Let the three β’s be β1 = ρc, β2 = ρce

iθ and

β3 = ρce
−iθ. They are the solutions of the quartic equa-

tion

aβ4 + cβ3 − εβ2 + dβ + b = 0. (54)

Using Vieta’s formulas, after eliminating θ, we find ρc is
the solution of a high order equation

a2ρ8
c + adρ5

c − cbρ3
c − b2 = 0, (55)

which can be solved numerically, e.g. using Mathematica.
Once ρc is known, θ can be found via

cos θ = −1

2
(ρ4
ca/b+ ρcd/b+ 1). (56)

This example illustrates the modest algebraic price one
has to pay to understand the continuum bands of non-
Hermitian Chern insulators. To summarize, the self-
intersection points εs can be found analytically from the
values of a, b, c, d and ρ, except for solving Eq. (55) for
the special case of higher-order bifurcation points.

Not all the self-intersection points εs found above be-
long to the continuum band. Ref. [12] established a
qualifying criterion: the neighborhood of εs is divided
into four regions by the two intersecting lines at εs; with
respect to a chosen point εw in one of these regions and
away from Γρ, the winding number of the curve Γρ de-
fined by

W (εw) =
1

2π

∫
Γρ

dzArg(z − εw) (57)

should be +1, 0,−1, 0 respectively. (The patterns of the
winding number near a higher-order birfurcation points
are more complicated and discussed in Ref. [12]). The
winding number is easy to evaluate numerically with the
help of the argument principle,

W (εw) = Nw − p, (58)

where p = 2 and Nw is the number of the preimages of
εw residing inside the circle Cρ. For those qualified self-
intersection points with the right set of winding numbers,
we collect their preimages ρeiθ on the circle Cρ as a sub-
set of GBZ. By changing the radius ρ and repeating the
procedure, one obtains the whole GBZ curve.

What about those rejected εs with the “wrong” wind-
ing number patterns? Their preimages are nothing
but the auxiliary GBZ. The self-intersection method de-
scribed here is complementary to the scheme given in the
preceding subsections. It excels at resolving the cusps
where the other method struggles. We have checked that
these two methods agree with each other and produce
the same GBZ as well as the auxiliary GBZ.

III. EXCEPTIONAL RING OF MODEL 1

Some non-Hermitian Chern insulators are adiabati-
cally connected to the familiar Hermitian Chern insu-
lators. One example is the model H1 defined in Eq. (2)
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by replacing m with a complex Dirac mass m + ihz in
the Qi-Wu-Zhang model H0. In this case, the bulk-edge
correspondence holds as usual, and there is no need for
introducing the notion of the GBZ. The other two models
H2,3, in comparison, will not be so cooperative. Model
H1 provides a nice geometric picture of the band topol-
ogy in terms of the d vectors. Here we show that the
phase diagram of H1 on the (m,hz) plane (Fig. 1(a))
can be understood quantitatively by analyzing the the
singularity of H1 in the space of d. This viewpoint based
on the d vectors was advocated in Ref. [17] for a more
complicated model.

As kx and ky vary throughout the Brillouin zone, the
vector d(kx, ky) defined in Eq. (1) traces out a closed
surface in the space of (dx, dy, dz). The surface is mirror
symmetric with respect to the plane dz = m, where it
becomes pinched along the diagonal lines |dx| = |dy| ∈
[0, 1]. It is useful to imagine the upper half of the surface
as a bloated tent of height 2 with its bottom stitched
together along two lines on the ground. The eigenvalues
of H1(kx, ky) will vanish when

d2
x + d2

y + (dz + ihz)
2 = 0. (59)

And the singularity here is an exceptional point. Sepa-
rating the real and imaginary part, we find the condition
becomes

dz = 0, d2
x + d2

y = h2
z. (60)

This defines a ring of radius hz on the plane of dz = 0.
We will call it the exceptional ring (Ref. [17] uses the
more generic name “singularity ring”). In the limit of
hz = 0, the Qi-Wu-Zhang model is recovered, and the
ring shrinks to a point at the origin which, since the
work of Berry [18], is often called a magnetic monopole
carrying magnetic charge. In this sense, the ring here is
a ring of magnetic charge.

Now the phase diagram of model H1 can be worked
out from the geometries of the tent (centered at dz = m
with overall height 2|m|) and the exceptional ring (cen-
tered around dz = 0 with radius hz). When the excep-
tional ring lives inside/outside the tent, the system is a
topologically nontrivial/trivial insulator; when the ring
intersects the tent, the spectrum is gapless. Fig. 1(a)
shows the phase diagram of H1 where the two gapped
phases are separated by the gapless region. By examin-
ing the cross section of the tent surface with the dz = 0
plane and how it touches the ring, one can determine
the phase boundaries. For example, for m = 1 the lower
critical point is at hz = 1 and the upper critical point is
at hz =

√
3/2. At m = 0, the transition to the trivial

gapped phase occurs at hz = 2. And the gap closes at
m = 2 and hz = 0. One can check that the edge states
have real energy, and the bulk-edge correspondence holds
for H1.

FIG. 4. The ring and the tent: geometric visualization of the
d vector (golden surface, the tent) and the exceptional ring,
Eq. (60), for model H1. At fixed m = 0.25, for hx = 0.3,
the exceptional ring (red) resides inside the tent, the system
is within the topological phase C1. For hx = 0.8, the ring
(blue) intersects the tent surface, the system is gapless. For
hx = 1.5, the ring is outside the tent, the system is gapped
but topologically trivial. The base of the tent is at m = 0.25.

IV. ANALYTICAL THEORY OF MODEL 2

In this section, we revisit the phases and edge modes
of H2, which has been investigated numerically in Ref.
[7]. As discussed in the Introduction, our goal here is
to achieve an analytical understanding. To this end, we
shall restrict our focus to the first quadrant of the (m,hx)
plane with m,hx > 0. The phase diagram in other quad-
rants can be obtained by using symmetry. In particular,
we establish the following eight theorems.
Theorem 1. The GBZ for model H2(β, ky) defined in

Eq. (13) is a circle of radius r2 given by Eq. (29).
Theorem 2. The band structure of H2(β ∈ GBZ, ky)

defines three topologically nontrivial phases with robust
edge states. Phase C1 (C2) has line gap and band Chern
number ±1 (±2), while phase S is gapless. The phase
boundaries shown in Fig. 1(b) are given by four curves
on the (m,hx) plane,

m =
√

1 + h2
x + 1, (61)

m =
√

1 + h2
x − 1, (62)

hx =
√

(m− 1)2 + 1, (63)

hx =
√

(m+ 1)2 + 1. (64)

They mark the closing of the gap in the continuum band.
Theorem 3. In the thermodynamic limit L→∞, one

of the edge modes of H2 has dispersion

E+
edge(ky) = + sin ky, (65)
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with decay factor (defined in Eq. (78) below)

λ+ = m− cos ky − hx. (66)

In slab geometry, it is localized on the left (right) edge if
|λ+| < 1 (> 1).
Theorem 4. The other edge mode has dispersion

E−edge(ky) = − sin ky, (67)

with decay factor

λ− = m− cos ky + hx. (68)

It is localized on the right (left) edge if |λ−| < 1 (> 1).
Theorem 5. Phase C1 is further partitioned into three

regions (RR, LR, LL) based on the localization of the two
edge modes near ky = 0. For example, in the LR region,
the E+ mode is localized on the left (L) edge, while the
E− mode is localized on the right (R) edge. These three
regions are separated by two lines

m = hx, (69)

m+ hx = 2. (70)

These lines do not correspond to gap closing. Rather,
they mark the divergence of the localization length, i.e.
|λ±| = 1, at ky = 0.

Theorem 6. In phase C2, there are four edge modes
at zero energy. Among them, E±(ky = π) are localized
on the left edge, while E±(ky = 0) are localized on the
right edge.

Theorem 7. Phase S is gapless with two edge modes
localized on the left edge and crossing E = 0 at ky = π.
Theorem 8. The energy eigenvalues of H2 are real for

m + cos ky > hx. For example, phase T at the bottom
right corner of Fig. 1(b) has a real spectrum.

Taken together, these eight theorems provide a clear
characterization of the phases and the edge modes of
model 2. These analytical results agree with the numer-
ical diagonalization of H2 for large L in slab geometry
found in Ref. [7]. Below we prove these theorems, and
present a more detailed discussion of the phase diagrams,
edge modes, and topological invariants.

A. Continuum bands

Theorem 1 has been proved back in Section II.B. Since
the GBZ is a circle, β ∈ GBZ can be parametrized by
introducing a wave vector k̃x,

β = r2e
ik̃x , k̃x ∈ [−π, π]. (71)

Then the continuum bands of H2(β, ky) can be found
from Eq. (13). After a little algebra, we find

E2
c (k̃x, ky) = 1 +m2

y − h2
x + (hxr− −myr+) cos k̃x

+ sin2 ky + i(hxr+ −myr−) sin k̃x, (72)

where the shorthand notation

my = m− cos ky, (73)

r± = r2 ± r−1
2 . (74)

In general, the eigenenergy Ec is complex according to
Eq. (72). Within the region my > hx, however, hxr+ −
myr− = 0 and therefore E2

c is real. By direct calculation,
one can further show E2

c > 0 which proves Theorem 8.
Inspecting the continuum band structure confirms that

phase C1 and C2 have a line gap, while phase S is gap-
less. Fig. 5 gives two examples of the continuum bands
(in color blue) for phase C1 and C2 respectively. It is
illuminating to compare the continuum band E2

c above
with the bulk spectrum of H2(kx, ky),

E2
bulk(kx, ky) = 1 +m2

y − h2
x − 2my cos kx

+ sin2 ky + i2hx sin kx. (75)

This result clearly illustrates the highly nontrivial recon-
struction of the band structure in many non-Hermitian
Chern insulators, E2

b → E2
c , as the boundary conditions

change from periodic to open along the x direction. In
Fig. 5, the bulk spectra (in color red) obviously deviate
from the corresponding continuum bands (in blue). For
example, in phase C2 one would expect the system to be
gapless from the bulk dispersion, but instead the contin-
uum band in the slab geometry develops a line gap, giving
rise to a novel phase C2. Such band reconstruction is re-
sponsible for much of the rich behaviors of non-Hermitian
Chern insulators in the slab geometry.

Let us find out when the gap closes from the expression
of E2

c (k̃x, ky). First consider ky = 0, so that my = m−1.

For the case of my > hx, let z =
√
m2
y − h2

x, then

E2
c = 1 + z2 − 2z cos k̃x. (76)

Obviously, E2
c = 0 requires cos k̃x = 1 so the solution is

z = 1, i.e. m2
y − h2

x = 1 leading directly to Eq. (61).
For the opposite case my < hx, the gap touches down at

k̃x = 0 or π with

E2
c = (my ± r+/2)2 − (hx ± r−/2)2. (77)

Thus E2
c = 0 leads to, after a little algebra, h2

x = m2
y + 1

which gives Eq. (63). Similarly, the gap may close at
ky = π with my = m+1 instead. Running the calculation
again for my > hx, we are led to Eq. (62), while for
my < hx, the result is Eq. (64). Now we have found all
the phase boundaries summarized in Theorem 2.

B. Edge modes

Theorem 3 and 4 are not new results. The edge disper-
sions Eqs. (65) and (67) were established previously in
Ref. [7]. For completeness, we briefly recount the deriva-
tion here. This serves three purposes. First, it clarifies
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(a) (b)

FIG. 5. Deviation of the continuum band spectrum (blue)
from the bulk spectrum (red) for model H2. (a) Phase C1

with m = 0.9, hx = 0.5. (b) Phase C2 with m = 0.15,
hx = 0.9. Notice the opening of the line gap in case (b) and
the dramatic reconstruction of the band structure (red→blue)
as the boundary conditions change.

the origin of the analytical expression for λ± which we
will use to establish Theorem 5 to 7. Second, we will
apply the same approach to model 3 in the next sec-
tion, where the calculation becomes more challenging.
Third, we find it fascinating that sinusoidal edge disper-
sion emerges not only for model H2 and H3 (see Section
V.B) but also for some driven quantum Hall systems [19].
Thus it is worthwhile to review the main arguments.

Consider a semi-infinite system (x ≥ 0) with an open
boundary at x = 0 (the left edge) described by the matrix
T in Eq. (22) with L → ∞. Seeking a solution for the
edge state, we try the ansatz

ψ = (φ, λφ, λ2φ, ...)T , (78)

where λ is referred to as the decay factor, φ is a two-
component spinor and (...)T means transpose. In terms
of the 2×2 matrices A,B,C defined in Eqs. (19) to (21),
the eigenvalue problem T ψ = Eψ reduces to

[A+Bλ]φ = Eφ, (79)[
Cλ−1 +A+Bλ

]
φ = Eφ. (80)

Following Ref. [7], we conclude that Cφ = 0, and φ =

(1, i)T /
√

2. Plugging φ back into Eq. (79), we are facing
the following dilemma,

(m− cos ky − λ− hx)φ∗ = (E − sin ky)φ. (81)

The only way for this equation to hold is for the two
coefficients in the parenthesis to vanish. This proves Eq.
(65) and (66).

Note the energy of the edge state is always real, and
crosses zero at ky = 0 or π. Let us examine the spatial
profile of this edge mode near ky = 0. It is localized on
the left edge if the wave function decays with increasing
x, that is, if |λ| < 1. According to Eq. (66), this occurs
within the strip hx < m < 2 + hx (recall we only focus
on the first quadrant m,hx > 0). Outside this region on
the (m,hx) plane, |λ| > 1 so the solution E+ describes
a mode that grows with x, i.e., localized on the right
edge. (In the slab geometry, an edge mode on the right

edge still needs to satisfy the open boundary condition
at x = 0.)

The other edge mode solution can be worked out anal-
ogously by considering a semi-infinite system occupying
x ≤ 0, with an open boundary on the right edge x = 0.
In this case, we seek solution of the type

ψ = (..., λ2φ, λφ, φ)T , (82)

with

[Cλ+A]φ = Eφ, (83)[
Cλ+A+Bλ−1

]
φ = Eφ. (84)

By repeating the argument in the preceding paragraph, it
is straightforward to show Eq. (67) and (68). At ky = 0,
we find that when m + hx < 2, |λ| < 1, i.e. the edge
state is localized on the right edge. Otherwise, the solu-
tion represents a state on the left edge. Note that in the
discussion above, we have implicitly assumed the contin-
uum band structure has a gap at ky = 0. Otherwise, the
solution does not qualify as an edge state.

These results regarding the location of the edge modes
near ky = 0 can be combined to yield the “localization
phase diagram” shown in Fig. 6(a). We can identify four
regions on the (m, ky) plane: LL, RR, LR, and RL. Here
the first capital letter indicates whether the E+(ky ∼ 0)
mode resides on the left (L) or right (R) edge, while the
second letter describes the location of the E−(ky ∼ 0)
mode. In particular, the RR, LR, and LL regions are
separated by two lines, m = hx and m + hx = 2, where
|λ±| = 1. This proves Theorem 5.

The edge states E± also cross zero energy at ky = π
inside phase C2 and phase S. From the expression for λ+

in Eq. (66), we conclude that E+(ky ∼ π) is localized on
the left edge for m < hx < m+ 2. Similarly from λ−, we
find that E−(ky ∼ π) is always localized on the left edge
in the first quadrant. The resulting “localization phase
diagram” for the edge modes near ky = π is summarized
in Fig. 6(b). If we overlay Fig. 6(a) and 6(b), we are led
to Theorem 6: inside phase C2, the two modes E±(ky ∼
0) are within the region of RR, while E±(ky ∼ π) are
within the region of LL. In other words, out of the four
edge modes crossing the zero energy, two of them are on
the left edge, and the other two are on the right edge.
We stress once again that such a scenario is only possible
in non-Hermitian Chern insulators.

C. Chern number

To characterize all gapped phases of model H2, we
compute the Chern numbers. The starting point is
the analytically continued, non-Hermitian Hamiltonian

H2(β, ky) in Eq. (13) with β = r2(ky)eik̃x ∈ GBZ. The
left and right eigenstates of H2 are defined as

H2 |ψ`〉 = E` |ψ`〉 , (85)

〈ξ`|H2 = 〈ξ`|E`. (86)
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(a)

(b)

FIG. 6. The localization phase diagrams for the edge modes of
model H2 near (a) ky = 0 and (b) ky = π. The first (second)
capital letter indicates the localization of the E+ (E−) edge
mode. Combining these results with the phase boundary in
Theorem 2 fixes the phase diagram of model H2 in Fig. 1(b).
See main text for details.

Here ` = ± is the band index, and the dependence on
(β, ky) is suppressed. The right eigenstates {|ψ`〉} are
linearly independent but not necessarily orthogonal [20].
Instead, we require them to satisfy the biorthogonal nor-
malization condition, 〈ξ`|ψ`′〉 = δ`,`′ . The (generalized)
Chern number is defined as an integral of the Berry cur-
vature over the GBZ surface,

C` =
1

2πi

∫
GBZs

dk̃xdkyε
ij∂i 〈ξ`| ∂j |ψ`〉 . (87)

Here i, j = k̃x, ky are the two independent directions on
the GBZ surface, with repeated indices summed over.

According to Eq. (29), the GBZ curve as a circle
shrinks to a dot (r2 = 0) when cos ky = −(m + hx)
and the radius r2 diverges when cos ky = −(m − hx).
Thus, rigorously speaking, the Berry curvature becomes
ill defined at these singular points of ky. To yield a sen-
sible result, the integral in Eq. (87) must be understood

as the principal value. An efficient, gauge-invariant way
to numerically evaluate the Chern number is to parti-
tion the Brillouin zone into little patches and find the
flux through each patch, e.g. by taking the trace of the
Berry connection along the boundary of the patch [21].
This algorithm can be generalized to compute the Chern
number over the GBZs, as long as one carefully avoids
hitting the singular points along the patch boundaries.
To understand why this procedure works, imagine contin-
uously deforming the GBZs only at the vicinity of these
singularities so it becomes closed and smooth, leaving the
patch boundary intact. Thanks to Gauss’s theorem, the
total flux stays the same during the deformation, as long
as the small deformation does not encounter any mag-
netic charge. Then, the Chern number calculated on the
deformed smooth GBZs is well-defined, and has the same
value as the original GBZs with integrable singularities.
We find the resulting Chern number for phase C1 (C2) is
±1 (±2), which completes the proof of Theorem 2.

To cross-check the numerical calculation of the Chern
number, we adopt a complementary scheme to visualize
and characterize the topology of the gapped phases. The
eigenvalue problem of H2 in Eq. (85) defines a mapping
from the GBZs to the Bloch sphere once the eigenvector
of H2 is parametrized using the polar angle θ and the
azimuthal angle φ,

(β, ky) ∈ GBZs 7→ |ψ〉 = eiχ
(

cos θ2
sin θ

2e
iφ

)
, (88)

with χ the overall phase. Then one can define the Chern
number as the number of times the images of (β, ky)
cover the whole Bloch spheres as it varies throughout
the GBZs. Fig. 7 show the wrapping for phase C1 and
C2. They agree with the numerical integration results
above. This approach circumvents the subtleties regard-
ing Berry curvature near the singular points of GBZ. In-
terestingly, it also provides a geometric picture of these
singularities. Direct analytical calculation reveals that,
at these singular points, the eigenstates lie within the
equator of the Bloch sphere. More specifically, r2 → 0
and∞ corresponds to the eigenvector pointing along the
∓y axis respectively, i.e. θ = π/2 and φ = ∓π/2. These
two points are visible in Fig. 7 as the center of the small
concentric red and blue rings.

D. The gapless phase S

Phase S is gapless, and it has no analog in Hermitian
Chern insulators. When the spectrum (in slab geometry)
is plotted on the complex energy plane, there is no line
gap (but there is a point gap around E = 0). The contin-
uum band spectrum in Fig. 8(a) forms a single connected
surface with “holes” in the space of (ReE, ImE, ky). The
finite-size spectrum in Fig. 8(b) clearly shows a pair of
edge states crossing E = 0 at ky = π as described by
Eqs. (65) and (67). From the localization phase diagram
of these modes in Fig. 6(b), it is clear that both modes
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(a) (b)

FIG. 7. Counting the Chern number by the wrapping of eigen-
vectors of model H2 on the Bloch sphere. (a) Phase C1 with
m = 1.5, hx = 0.3. Different colors correspond to a discrete
set of ky values from 0 to 2π, while the data points of the same

color depict varying k̃x for a given ky. As (k̃x, ky) transverse
the entire GBZs, the eigenvector covers the Bloch sphere ex-
actly once. (b) Phase C2 with m = 0, hx = 1. Here only ky
values restricted to [0, π] are shown, and they are sufficient to
cover the whole Bloch sphere. Thus the Chern number is two.
In the trivial phase T (not shown), the eigenvectors cannot
cover the entire Bloch sphere.

localize on the left edge, which proves Theorem 7 and is
confirmed by numerical results. Note the good agreement
between Fig. 8(a) and Fig. 8(b) for L = 50. For large L,
the diagonalization of the non-Hermitian Hamiltonian is
prone to numerical instabilities, and the resulting “spec-
trum” starts to show large fluctuations due to numerical
error and then becomes unreliable. This further rein-
forces the usefulness of the GBZ and the analytical ap-
proach we advocate here which operates directly in the
L→∞ limit.

In passing, we mention that in the phase diagram Fig.
1(b), the trivial region T at the bottom-right corner has
a line gap and real spectrum. In comparison, the spec-
trum of the T region at the left top corner is complex.
The region GL is gapless, there are edge modes but they
do not cross zero energy. To summarize, analytical re-
sults obtained for H2 in this section capture all the main
features of the phase diagram, edge states, and topologi-
cal characterization of each gapped phase. This example
illustrates the capability as well as the subtleties of this
approach based on the GBZ. We will apply the approach
to a new model in the next section.

V. MODEL 3

In this section, we analyze H3, the third model of non-
Hermitian Chern insulators defined in Eq. (4). Com-
pared to model H1 and H2 above, this model introduces a
new feature: the hopping between neighboring unit cells
is non-reciprocal. More specifically, the intra-orbital hop-
ping amplitudes to the left and right are given by 1 + t1
and 1− t1 respectively. The finite t1 term makes it more
challenging to find the GBZ, the continuum band struc-
ture, the phase diagram, and the edge states. But these
tasks are still manageable thanks to the techniques de-

(a)

(b)

FIG. 8. The gapless phase S of model H2. (a) The contin-
uum band spectrum from analytical calculation. (b) Spec-
trum from numerical diagonalization of a slab with L = 50,
showing a pair of edge states crossing E = 0 at ky = π. Both
are localized at the left edge. m = 0.3, hx = 1.25.

veloped in Section II and IV.
For the sake of clarity, we summarize our main results

into Theorems 9 to 13 below. Hereafter the term phase
diagram refers to the phase diagram for model 3 in slab
geometry (with open boundaries at x = 0, L and periodic
boundary conditions along y) in the limit of L→∞, and
we shall restrict our attention to the first quadrant of
the parameter space, m, t1 > 0. It is straightforward to
generalize the analysis to other parameter regions.

Theorem 9. For ky = 0, the GBZ is a circle on the
complex β plane with radius r3 given by Eq. (40).
Theorem 10. The phase diagram of H3 is mirror

symmetric with respect to m = 1. It consists of six re-
gions shown in Fig. 1(c). The continuum bands of phase
T have a line gap and are topologically trivial (i.e. their
Chern numbers are zero). Region CLR

1 and CLL
1 belong

to the same gapped phase with band Chern numbers ±1.
Phase GL1, GL2, and S′ are gapless.
Theorem 11. Region CLR

1 is bounded by two straight
lines, m = 2 and t1 = 1. All other phase boundaries
correspond to gap closing at E = 0 and ky = 0, and are
determined by solving an algebraic problem, Eqs. (93)
and (94) below. In particular, Phase CLL

1 , GL1, and S′

meet at the tricritical point m = 1 and t1 =
√

2.
Theorem 12. One of the edge states has dispersion

E+
edge = sin ky. (89)
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It is always localized the left edge for t1 > 0.
Theorem 13. The other edge state has dispersion

E−edge = − sin ky. (90)

It is localized on the right (left) edge if t1 < 1 (t1 > 1).

A. Phase boundaries

(a) (b)

FIG. 9. Comparing the continuum band spectrum Ec (in
blue), defined for the slab geometry in the limit of L → ∞,
with the bulk energy spectrum Ebulk (in red) for model H3.
(a) For phase CLR

1 with m = 0.9, t1 = 0.5. (b) For phase
CLL

1 with m = 1.2, t1 = 1.1. Notice the gap opening as the
boundary conditions change in case (b).

The rough contour of the phase boundaries can be ob-
tained from numerical diagonalization of the matrix T
for finite L. For example, one can monitor the minimum
magnitude of the eigenenergy, |E|min. On the one hand,
this quantity is finite for gapped phases (e.g. phase T)
that are topologically trivial, i.e. have no edge states, or
gapless phases (e.g. phase GL2) that avoid E = 0. On
the other hand, it vanishes for topological phases with
edge modes (e.g. phase C1 and S′). Such a quick scan
however has trouble in locating the precise boundary of
phase GL1 which is gapless and contains E = 0. In par-
ticular, one notices that the numerical spectrum depends
sensitively on L. It is well known that diagonalization of
large non-Hermitian matrices can experience numerical
instabilities, and caution must be exercised before trust-
ing their accuracies, see Refs. [2, 11, 22–24] for detailed
discussions. Thus, an alternative, algebraic method that
works well in the limit of L→∞ is desired.

We reiterate the key point that for non-Hermitian
Chern insulators, the knowledge of the bulk spectrum
may offer little help in determining or understanding its
slab phase diagram as we have witnessed in the case of
H2. For model H3 here, the bulk energy Ebulk(kx, ky)
closes its gap along the line of m = 2 at kx = ky = 0,
and along the line of t1 = 1 at ky = 0 and cos kx = m−1.
While the m = 2 line agrees with the phase boundary be-
tween CLR

1 and T, the t1 line, as we shall show below, is
not a phase transition line. Moreover, the bulk spectrum
fails to predict phase CLL

1 , GL1, and S′.
Now, we show that all the phase boundaries in the

limit of L→∞ can be worked out from the analytically

continued Hamiltonian H3(β ∈ GBZ, ky). For any given
value of ky, the GBZ can be computed using the two
algorithms outlined in Section II.C and II.D. As a simple
example, let us consider the cutline m = 1 with varying
t1, and focus on ky = 0. In this case, Theorem 9 was
already proved back in in Eq. (39) and (40). With the
GBZ being a circle, we can parameterize it using a “fake”
wave vector k̃x,

β = r3e
ik̃x . (91)

Then the continuum band spectrum simplifies for t1 < 2,

E2(k̃x, ky = 0) = 1− t1
2

2
− it1

√
4− t21 sin(2k̃x). (92)

Immediately we see that for k̃x = 0, E vanishes when
t1 =

√
2, which marks the tricritical point between phase

CLL
1 , GL1, and S′. Away from the central m = 1 line, an

analytical solution seems out of reach, and the GBZ has
to be found numerically to yield the continuum bands.

For the purpose of finding the phase boundaries, how-
ever, it is not necessary to gain a full knowledge of either
the GBZ or the continuum bands. It turns out that for
model 3, one only needs to check when the energy gap
closes at E = 0 at some ky values, say ky = 0. Below,
we outline how this problem can be reduced to solving
a quartic equation. Following the notation introduced in
Section II, let ξi with i = 1, 2, 3, 4 be the four solutions
to the quartic equation

ε(β) = aβ2 + b/β2 + cβ + d/β + f = 0, (93)

with their magnitudes ordered according to Eq. (41). In
other words, ξi are the preimages of ε = 0. Then a gap
closing, E(β ∈ GBZ, ky = 0) = 0, requires the two roots
of the quartic equation (93) to have the same amplitude,

|ξ2| = |ξ3|. (94)

Recall that the coefficients a to f depend on parameter
m and t1. Thus, to find points on the (m, t1) plane where
Eq. (94) is satisfied, we can simply follow a given hori-
zontal or vertical cut and plot |ξi| to see where |ξ2| and
|ξ3| intersect. (While the roots of quartic equations are
analytically known, they are unwieldy to manipulate so
we opt to find and compare |ξ2| and |ξ3| numerically.)
The phase boundaries obtained this way are summarized
in Fig. 1(c). They agree with the rough outline from
numerical diagonalization of finite-size slabs. The main
advantage of the algebraic approach is that the phase
boundaries (e.g. that of phase GL1) can be obtained
precisely. Compared to model 2, here the phase bound-
aries of model 3 are no longer simple analytical curves,
but we still find it remarkable that it follows from the
solution of a quartic equation.

Once these boundaries are drawn from the gap clos-
ing condition, we can investigate the continuum bands in
each region. For example, one can confirm that C1 and
T are gapped with a line gap, while GL1, GL2, and S′ are
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gapless. Fig. 9 highlights the contrast between the bulk
spectrum (red) and the slab spectrum (blue) in the limit
of L→∞ obtained from H3. For example, the existence
of the line gap (and the edge states) within phase CLL

1

would have been completely missed by only considering
Ebulk(kx, ky). To unambiguously identify each phase, in
the next subsection we proceed to look into their edge
spectra and topological invariants. For example, we shall
see that region CLR

1 and CLL
1 are divided by a “transition

line” at t1 = 1 where the edge modes change location.

B. The dispersion and location of edge modes

(a)

(b)

FIG. 10. The spectrum of H3 in slab geometry (with slab
width L = 35) inside (a) the CLR

1 region for m = 0.9, t1 =
0.5, and (b) the CLL

1 region with parameters m = 1.2 and
t1 = 1.1. In both cases, a pair of edge modes E±edge = ± sin ky
transverse the line gap. Note however that for case (a), one
mode is localized on the right edge and the other on the left
edge whereas in (b), both edge modes are localized on the
right edge. The transition in the localization behavior occurs
at line t1 = 1 which separates region CLR

1 and CLL
1 .

To find the edge states and prove theorem 12 to 14 for
model H3, we once again face the big matrix T in Eq.

(22). But this time its submatrices are given by

A = [m− cos ky]σz + sin kyσy, (95)

B = [(−t1 − 1)σz + iσx]/2, (96)

C = [(t1 − 1)σz − iσx]/2. (97)

The overall strategy is the same as in Section IV.B. The
wave functions of the edge modes however become more
cumbersome due to the non-reciprocal hopping t1.

First consider the semi-infinite geometry (x ≥ 0) with
an open boundary at x = 0, the left edge. To solve the
eigenvalue problem T ψ = Eψ, let us write ψ as

ψ = (v1, v2, v3, ...)
T , (98)

where vi is a two-component spinor. This leads to

Av1 +Bv2 = Ev1, (99)

Cvn−1 +Avn +Bvn+1 = Evn, (n ≥ 2). (100)

In the limit t1 = 0, we conclude v1 = (1, i)T /
√

2 and E =
sin ky, which we take as the guess solution for the general
case. From v1, all other vn can be found inductively using
Eqs. (99) and (100). Exploiting the properties of Pauli
matrices, after some algebra we conclude that

vn = λnv1, (101)

where λn is a number. Within this ansatz, Eqs. (99) and
(100) become the following recursion relation for λn,

(2 + t1)λn = 2(m− cos ky)λn−1 + t1λn−2, (102)

with the initial condition

λ0 = 0, λ1 = 1. (103)

We seek solution of the power-law form λn = λn. Here
λ describes the decay (or growth) of the wave function
{vn = λnv1}, and must obey the quadratic equation

(2 + t1)λ2 − 2(m− cos ky)λ− t1 = 0. (104)

This equation has two solutions which we call λ±. The
general solution is then the superposition λn = c1λ

n
+ +

c2λ
n
−. The initial condition Eq. (103) fixes the coeffi-

cients c1,2. The final result is

λn =
λn+ − λn−
λ+ − λ−

=

n−1∑
j=0

λn−1−j
+ λj−. (105)

It decays with increasing n if and only if |λ±| < 1, or
equivalently |λ+λ−| < 1. This condition can be further
simplified by recalling Vieta’s formula,

|λ+λ−| =
t1

2 + t1
< 1 (106)

for t1 > 0. Note that this criterion is independent of m
or ky. It follows that that the edge state with energy
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E+
edge = sin ky is always localized on the left edge for

t1 > 0. This proves Theorem 12.
The calculation of the other edge mode proceeds sim-

ilarly. For a semi-infinite system (x ≤ 0) with an open
boundary at x = 0, let us label the wave function as

ψ = (..., u3, u2, u1)T . (107)

With ansatz E−edge = − sin ky, uT1 = (i, 1)/
√

2, and un =
λnu1, one finds that the decay factor λ is determined by

(2− t1)λ2 − 2(m− cos ky)λ+ t1 = 0. (108)

This result can also be obtained from Eq. (104) by sym-
metry arguments and replacing t1 → −t1. For t1 > 0,
the magnitudes of the two solutions satisfy

|λ+λ−| =
t1

|2− t1|
. (109)

Thus, the E− edge mode is localized on the right edge if
t1 < 1, and on the left edge if t1 > 1, proving Theorem
13. The transition occurs at t1 = 1.

It is worthwhile to take a closer look at the E− solu-
tion above in the region t1 > 1. At t1 = 2, the matrix
C becomes singular with a vanishing determinant and
its inverse becomes ill defined. Accordingly, |λ+λ−| di-
verges according to Eq. (109). We emphasize that there
is nothing physically singular at this point. To get a
clearer picture, we must recognize that once t1 exceeds 1
and the E− mode is localized on the left edge, it is much
more natural to find its wave function by starting from
the left boundary, rather than from the right boundary
as done in Eq. (107). More explicitly, we repeat the
same recipe as prescribed in Eq. (98), but this time with

ansatz E−edge = − sin ky and vT1 = (i, 1)/
√

2 instead. The
corresponding decay factor now satisfies the equation

t1λ
2 − 2(m− cos ky)λ− (t1 − 2) = 0. (110)

The magnitudes of its two solutions obey

|λ+λ−| =
|t1 − 2|
t1

. (111)

Compared to Eqs. (109), here the roles of t1 and (t1 −
2) are switched, now that we seek the edge state wave
function starting from the left boundary. It follows that
the E−edge mode is localized on the left edge if t1 > 1, and
on the right edge if t1 < 1. This is consistent with our
result obtained in the preceding paragraph and provides
an alternative proof of Theorem 13. The calculation here
also yields the decay factor along the line t1 = 2, where
Cv1 = 0. In this case, Eq. (110) reduces to a linear
equation, and we have λ = 2(m−cos ky)/t1, and λn = λn.

To summarize, within the region CLR
1 , the two modes

E±edge reside on opposite edges of the slab. In region CLL
1

and phase S′, they both reside on the left edge, which is
impossible for Hermitian Chern insulators. At the tran-
sition line t1 = 1, where |λ+λ−| = 1, the E−edge mode

permeates into the bulk, and therefore strictly speaking
is no longer an “edge mode.” These analytical results
agree with the edge states obtained from numerical diag-
onalization of finite systems.

C. Chern numbers

For each given value of ky, the GBZ curve of H3(β, ky)
can be found by following the recipes described in Section
II. As ky is varied from −π to π, the GBZ curve deforms
to produce a 2D surface GBZs defined in Eq. (12), which
is continuous but may have singularities. Fig. 2 shows
an example of GBZs for m = 0.6 and t1 = 0.4. Once
the GBZ surface is known, one can proceed to compute
the Chern numbers using Eq. (87) by discretizing the
GBZs into patches. One can verify that region CLR

1 and
CLL

1 have the same Chern numbers ±1, while region T is
topologically trivial with Chern number zero.

(a) (b)

FIG. 11. Chern number determined from the eigenvectors of
model H3 on the Bloch sphere. (a) Region CLR

1 with m = 0.6,
t1 = 0.4. Different colors correspond to a discrete set of ky
values from 0 to 2π, while the data points of the same color
depict transversing the GBZ curve for a given ky. As (β, ky)
varies throughout the GBZs, the eigenvector covers the Bloch
sphere exactly once. (b) Region CLL

1 with m = 1.2, t1 = 1.1.
Here, again ky varies from 0 to 2π and the eigenvector covers
the Bloch sphere exactly once as (β, ky) transverse the entire
GBZs. In the trivial phase T (not shown), the eigenvectors
do not cover the whole Bloch sphere.

Since the discretization of GBZs is numerically in-
volved, we also extract the Chern number by counting
the number of times the right eigenvector in Eq. (88)
wraps around the Bloch sphere, as done for model 2 in
Section IV.C. According to Fig. 11, within phase C1,
including region CLR

1 shown in panel (a) and region CLL
1

shown in panel (b), the eigenstate wraps the Bloch sphere
once. Within the trivial phase T, the eigenstate does not
cover the entire sphere. This verifies that CLR

1 and CLL
1

differ topologically from phase T, and finishes the proof
of Theorem 10. We emphasize that theorem 10 here re-
lies on numerical evaluation of the Chern number and the
phase boundary from a well defined algebraic problem.
This is slightly different from the proof of, e.g. theorem
7, where the phase boundary is simple and analytically
known.
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D. The gapless phase S′

A large area of the phase diagram Fig. 1(c) is occupied
by the gapless phase S′. An example of the slab spec-
trum within this phase is shown in Fig. 12 for t1 = 1.9
and m = 1. One observes that the two bands merge
into a single membrane in the space of (ky,ReE, ImE).
While the spectrum on the complex energy plane ap-
pears gapless, the membrane possesses a “hole” around
E = 0, which becomes apparent when projected on the
(ky, ImE) plane. In other words, within a certain interval
of ky values around ky = 0, the spectrum is gapped. This
situation is very different from Dirac semimetals, where
the gap closes at isolated point degeneracies. A pair of
edge modes E±edge = ± sin ky transverse the hole, and
both of them reside on the left edge as proved in Section
V.B. Note the edge states here differ from those in phase
S of model H2 which cross E = 0 at ky = π instead, see
Fig. 8. We have checked that the edge states are robust
against on-site disorder, e.g. in the value of m.

FIG. 12. The spectrum of H3 in slab geometry inside the gap-
less phase S′, m = 1, t1 = 1.9, L = 50. The continuum bands
form a single surface/membrane. Two edge modes transverse
the “hole” of the membrane, crossing E = 0 at ky = 0. Both
of them are localized on the left edge.

In short, this gapless phase is a rather unique feature of
non-Hermitian Chern insulators. The edge states are sep-
arated from the continuum bands in the imaginary part
of the energy, and therefore in principle can be probed
by dynamics [25]. In some sense, the existence of phase
S′ attests to the resilience of non-Hermitian Chern in-
sulators. When the gap is forced to close, for example
by increasing the non-reciprocal hopping parameter t1 at
fixed m, the edge modes may survive. The persistence
is most apparent along the line of m = 1 in the phase
diagram Fig. 1(c).

VI. COMPARISON TO EARLIER WORK AND
OUTLOOK

A large body of work has been devoted to study non-
Hermitian tight-binding models. For a more comprehen-
sive review of recent progress in this field, see for ex-
ample Refs. [1–4]. Here we only mention a few works
that provided crucial techniques used in our paper or
set the stage for our work. Non-Hermitian Hamiltoni-
ans describing particles hopping in one dimension, such
as the Hatano-Nelson model [26, 27], the generalized Su-
Schrieffer-Heeger [9, 28–31] and Rice-Mele model [32–35]
are well understood. These models showcase a number
of phenomena including the non-Hermitian skin effect
and exceptional points in the energy spectrum that are
unique to non-Hermitian systems. In order to charac-
terize the topology of these non-Hermitian systems, new
concepts and techniques were developed, beyond the es-
tablished framework for Hermitian Bloch Hamiltonians.
The initial theoretical efforts focused on the classification
of the topological phases based on the dichotomy between
point gaps and line gaps [27, 36–40]. Later works gave
a more general classification using braid groups [41, 42]
and knots [43] for non-Hermitian models with separable
bands [44]. For multiband systems in 1D with an odd
number of bands, invariants can be constructed through
the Majorana Stellar representation [45–47]. To restore
the bulk boundary correspondence, the notion of GBZ
was introduced in [9] and [10] for 1D non-Hermitian
Hamiltonians. And the topological origin of the non-
Hermitian skin effect in one dimension was clarified in
[27, 48–52] and attributed to the existence of point gap,
which allows the winding number to be defined as the
topological invariant. Compared to the thorough under-
standing achieved in one dimension, non-Hermitian topo-
logical phases in two and three dimensions are much less
understood with many questions remaining open.

Now we compare our approach and results to a few
existing works on non-Hermitian Chern insulators in 2D.
In Ref. [53], Yao, Song, and Wang considered a gen-
eralized Qi-Wu-Zhang model with imaginary magnetic
fields. They compared the bulk phase diagram (Fig. 1
in Ref. [53]) with that of the slab phase diagram (Fig.
3 in Ref. [53]) obtained by defining a non-Bloch Chern
number. These authors treated the non-Hermitian term
as a small perturbation, and computed the Chern num-
ber using a continuum approximation. In our work, no
approximation or extrapolation of the Hamiltonian was
made, and the procedure used to compute the GBZs and
continuum bands are general. We stress that our strat-
egy of computing the GBZs of 2D models builds on the
original algorithm outlined in [10], the notion of auxiliary
GBZ curves [11], and the self-intersection method [12].

Model H2 in our work was introduced by Kawabata,
Shiozaki, and Ueda [7]. These authors obtained the slab
phase diagram (Fig. 7 in Ref. [7]) numerically and com-
pared to the bulk phase diagram (Fig. 1 in Ref. [7]).
They also analytically derived the dispersion of the edge
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modes, and found their localization in the slab geometry
(roughly speaking the content of Theorem 3 and 4 here).
Here, we take several steps further to obtain the GBZ,
the continuum bands, the Chern numbers, and the ana-
lytical forms of all the phase boundaries. We also give
a precise identification of the gapless phase S and phase
C2 in terms of their continuum band structure and Chern
numbers. Our phase diagram Fig. 1(b) labels the phases
differently from [7]. These new results, summarized in
Theorem 1-2 and 5-8, give a thorough understanding of
this non-Hermitian Chern insulator.

Other theoretical approaches have been proposed to
describe non-Hermitian topological phases in 2D. Ref.
[54] introduced a framework based on the transfer ma-
trix in real space to analyze the Qi-Wu-Zhang model
with imaginary fields. And Ref. [50] employed single
and doubled Green’s functions to describe the Qi-Wu-
Zhang model in an imaginary magnetic field, including
the boundary modes and the phase diagram. Ref. [55]
employed the entanglement spectrum to determine topo-
logical properties in the gapped phases of the Qi-Wu-
Zhang model in an imaginary magnetic field along the
y direction. Ref. [56] constructed real-space topological
invariants to characterize the topological phases for the
Qi-Wu-Zhang model in an imaginary magnetic field. Ref.
[57] characterized a non-Hermitian Qi-Wu-Zhang model
obtained by a similarity transformation, and proposed
a topological invariant for classification. In passing, we
also mention Ref. [58] which focused on non-Hermitian
Dirac Hamiltonians with gapless spectrum and excep-
tional points. Ref. [59] proposed an alternative avenue
toward realizing non-Hermitian 2D models using waves
backscattered from the boundaries of insulators. A geo-
metric visualization of the topology of non-Hermitian 2D
modes based on the d vector was advocated in Ref. [17].
We borrow this perspective in our treatment of model
H1. Note however the 2D model studied in Eqs. (31)
and (32) of Ref. [17] was more complicated than H1,2,3

here. A more general version of H3 was mentioned in
Ref. [8] in discussing the the non-Hermitian skin effect.
To our best knowledge, phase diagram of model H3, its
continuum bands, GBZs, the dispersion and localization
of its edge modes, Theorem 9 to 13 have not been re-
ported before.

The main objective of this work is to outline an alge-
braic procedure to reliably predict the fascinating slab
phase diagrams, including the behaviors of edge modes,
for non-Hermitian Chern insulators. The algebraic pro-
cedure does not rely on numerical diagonalization of fi-
nite size systems, and therefore is free from the numer-
ical errors that plague the diagonalization of large non-

Hermitian matrices. This is not a trivial task, for we have
seen GBZs with cusps and singularities, topological gap-
less phases such as S and S′ or the higher Chern number
phase C2 that are unexpected from bulk analysis, and
edge states switching sides while the Chern numbers re-
main the same. The breakdown and resurrection of the
bulk-edge correspondence is illustrated by two examples,
H2 and H3. Such refinement in the understanding of
generalized Qi-Wu-Zhang model is achieved by combin-
ing various bits of technology available in the literature:
analytical continuation, calculation of GBZ curves, ana-
lytical solution of the edge spectrum, visualization of the
Chern number etc. We hope these examples are help-
ful to readers who are interested in analyzing other non-
Hermitian topological phases of matter in two and three
dimensions.

We have focused exclusively on the slab geometry to
limit the paper to a reasonable length. An open ques-
tion is to analyze the edge and corner modes in finite
systems with open boundaries in both the x and y direc-
tion, e.g. a rectangle of size Lx × Ly. As pointed out
in Ref. [25], the edge states of a non-Hermitian Chern
insulator may gravitate to corners due to the skin effect,
forming the so-called boundary-skin mode. The 1D the-
ory established in Refs. [48, 49] can be applied to the
effective Hamiltonian that describes the edge degrees of
freedom in the slab geometry to understand their cor-
ner localization in rectangle geometry. Our preliminary
analysis indicates that this scenario is possible for both
model H2 and model H3. A comprehensive analysis of
the non-Hermitian skin effect in 2D Chern insulators is
beyond the scope of this paper and left for future work.

Non-Hermitian lattice models have been realized in
experiments using topological electric circuits [60–62],
coupled optical ring resonators [63–65], nitrogen-vacancy
centers [66–69], cavity opto-mechanical systems [70],
phononic crystals with active acoustic components [71],
and mechanic metamaterials [72] to name just a few.
These experimental techniques can potentially be applied
to realize the models described here. Once their topolog-
ical properties are characterized and understood, non-
Hermitian systems may offer exciting opportunities for
application such as topological lasing [73–86], enhanced
quantum sensing [87–89], and quantum batteries [90].
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