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The velocities of the quasiparticles that form Cooper pairs in a superconductor are revealed by the
upper critical magnetic field. Here we use this property to assess superconductivity in magic-angle
twisted bilayer graphene (MATBG), which has been observed over a range of moiré band filling,
twist angle, and screening environment conditions. An average Fermi velocity can be defined as
v∗F ≡ kBTc`c/~, where Tc and `c are the critical temperature and magnetic length, respectively. An
advantage of this definition is that v∗F can be directly extracted from the existing experimental data.
Mean-field theory calculations of upper critical fields in model superconductors are consistent with
the expectation that Fermi velocities defined in this way are nearly independent of the strength of
pairing interaction. Moreover, for fixed strength pairing interaction, minima in v∗F as a function of
band filling are coincident with maxima in Tc, as expected from the McMillan formula. Since no
association between Tc maxima and v∗F minima is present in MATBG experimental data, we argue
that the pairing interaction in MATBG is strongly filling factor dependent. Any theory of MATBG
superconductivity must explain this dependence, which is apparently primarily responsible for the
observed superconducting domes.

I. INTRODUCTION

The observation of superconducting domes near cor-
related insulating states in magic-angle twisted bilayer
graphene (MATBG)1,2 has stimulated interest in achiev-
ing a full microscopic understanding of this relatively
simple electronic system3–20. The electronic proper-
ties of MATBG devices are extremely sensitive to mul-
tiple tuning knobs, especially electrostatic doping and
twist angle1,2,9, but also interlayer separation3,21, verti-
cal displacement field3, and three-dimensional screening
environment22–24. The tunability of MATBG makes it
a particularly appealing experimental platform for the
exploration of strong-correlation superconductivity.

In MATBG, as in many other superconductors, obser-
vations that clearly distinguish between purely electronic
pairing mechanisms, possibly related to the correlated in-
sulating states25–36, and conventional phonon-mediated
electron pairing37–39 are sparse. A possible difference be-
tween purely electronic and electron-phonon mechanism
of superconductivity is that in the former case the ef-
fective pairing interaction is likely to be flat-band-filling
dependent30–33. For example, pseudospin paramagnon-
mediated effective interactions tend to be enhanced close
to half band fillings40.

Since the superconducting critical temperature Tc is
determined by the product of the Fermi-level density of
states and the strength of pairing interaction, an ac-
curate determination of the electronic structure is ex-
tremely helpful for identifying the microscopic pairing
mechanisms. However, in contrast to conventional met-
als, the electronic structure of the flat bands in MATBG
is so sensitive to the details of model parameters and also
to dielectric screening environment that it is difficult to
draw conclusions. This is especially true when the ubiq-
uity of Fermi surface reconstructions related to broken
flavor symmetries is acknowledged41–43. Therefore, de-
tailed band structure properties are not easily predicted

theoretically, and are in all likelihood device dependent.

In this work, we show that the key Fermi level band
structure properties can be determined experimentally by
combining measured critical temperatures Tc and critical
perpendicular magnetic fields Hc2 to determine the aver-
age Fermi velocity v∗F ≡ kBTc`c/~ of the quasiparticles

that form Cooper pairs. Here `c =
√

Φ0/2πHc2 with
the superconducting flux quantum Φ0 = 2e/hc. Such
a definition is motivated by the observation that super-
conductivity is suppressed at finite pairing momentum
q = 1/` because the electrons that form Cooper pairs
differ in energy by ∼ (dεk/dk)/` ∼ ~vF /`, and that it is
lost in mean-field theory when this difference is compara-
ble to kBTc. Microscopically, superconductivity is lost in
a magnetic field because Landau level Cooper pair states
are formed from individual electron states that differ in
energy by ∼ ~vF /`c44.

Both Tc and Hc2 can be calculated within mean-field
theory by realizing that the maximum paring momentum
qc = 1/`c (see Appendix B), enabling close comparisons
between experimental and theoretical results for v∗F . For
a pairing interaction that is independent of band filling,
e.g. optical phonon-mediated pairing, our calculations
show that the critical temperature Tc exhibit a correla-
tion with the average Fermi velocity v∗F that is opposite
to that seen in experiment. Specifically, a robust cor-
relation between Tc maxima and v∗F minima occurs in
theory when the Fermi level is close to the van Hove sin-
gularity (VHS) of density of states. These findings are
also valid for Bistritzer-MacDonald (BM) models that
accounts for non-local interlayer tunneling and Hartree-
Fock self energy corrections. In experiment however, it
appears that moving closer to van Hove singularities is ac-
tually associated with a suppression of superconducting
Tc’s

20,45–47, which argues against conventional phonon-
mediated pairing.

Table I summarizes experimental data and extracted
Fermi velocities v∗F for MATBG superconductors. We
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TABLE I. Experimental results for the superconducting criti-
cal temperature Tc, critical perpendicular magnetic field Hc2,
Pauli limit HP , and the extracted average Fermi velocity v∗F
for MATBG in a variety of experiments with different twist
angles θ, band fillings ν, and screening environments.

θ (◦) ν Tc (K) Hc2 (mT) HP (T) v∗F (104m/s) Refs
1.05 -2.02 1.7 - 3.15 - 1

1.16 -2.15 0.5 125 0.93 0.34
1.27 -2.33 3.1 210 5.74 1.54 3

1.27 -2.62 2 72 3.7 1.78
-2.31 3.1 180 5.74 1.67 9

1.1 -1 0.14 100 0.26 0.10
0.67 0.16 300 0.3 0.07
1.48 0.65 400 1.2 0.23

1.15 -1.6 0.92 220 1.7 0.46 22

1.8 0.42 26 0.78 0.56
1.04 -2.43 1.3 >50 2.41 <1.38 23

1.09 -2.79 2.5 45 4.63 2.78
1.18 -2.5 0.7 >60 1.3 <0.68
1.12 -2.47 4 >50 7.4 <4.24

note that the experimental values of v∗F in Table I are
typically a hundred or more times smaller than the
Dirac velocities of isolated graphene sheets, demonstrat-
ing the crucial role of the dramatically flattened moiré
bands48. The main point we wish to make here how-
ever is that experimental critical temperature maxima,
which always occur in a narrow range of filling factor
near ν = −2.31,3,9,19,23, do not correlate with average
Fermi velocity minima as they would in any theory in
which pairing is mediated by phonons, or other bosons
that are insensitive to ν.

This paper is organized as follows. In Sec. II, we in-
troduce the band structure model, the Hartree-Fock self
energy correction, and the pairing interaction model em-
ployed in this study. In Sec. III, we briefly describe mi-
croscopic mean-field calculations of critical temperatures
and critical magnetic fields. In Sec. IV, we present the
main results of this work, contrasting the experimental
and theoretical correlations between critical temperature
and average Fermi velocity. In Sec. V we discuss the
implications of the experimental correlations between Tc
and v∗F , and present our conclusions.

II. THEORETICAL MODEL

A. Band structure

In the BM model for MATBG48, the interlayer tun-
neling strengths are approximated by their values at K
and K ′ points of the graphene Brillouin zone (BZ). This
amounts to assuming the interlayer tunneling is local in
the real space. To capture the particle-hole asymmetry of
the flat bands predicted by ab initio calculations49,50 and
revealed in experimental measurements3,4,9,22,23, non-
local interlayer tunneling has to be taken into account

in the BM model49,51. The resulting K-valley projected
Hamiltonian is given by

H0 =

[
−iνFσ−θ/2 ·∇r T (r, r′)

T †(r, r′) −iνFσθ/2 ·∇r′

]
, (1)

where σθ = ei(θ/2)σz (σx, σy)e−i(θ/2)σz , σx,y,z are Pauli
matrices acting on sublattice, and vF ∼ 106 m/s is the
Fermi velocity of Dirac electrons in monolayer graphene.
As detailed in Appendix A, the non-local interlayer tun-
neling

T (r, r′) =

2∑
n=0

∑
k

Tn(k)eiqn·reik·(r−r
′), (2)

where the tunneling matrix Tn(k) is wavevector depen-
dent and can be expanded to linear order of k as

Tn(k) = Tn

[
1 + ξ(R̂2nπ/3ekD ) · (k − kD)/kθ

]
. (3)

Here ξ = (kθ/tkD )∂tk/∂k|k=kD is a dimensionless coef-
ficient characterized by the slope of interlayer tunneling
amplitude tk at Dirac point kD, R̂φ denotes the 2D rota-
tion matrix with angle φ, and ekD = kD/kD is unit vec-
tor along Γ-K direction of the graphene BZ. In the above
model, the strength of non-local tunneling is controlled
by ξ, which in turn controls the degree of asymmetry of
the electron and hole flat bands51. The local interlayer
tunneling matrix Tn is defined as

Tn = w0σ0 + w1 [cos(2nπ/3)σx + sin(2nπ/3)σy] (4)

where w0 and w1 are energies of interlayer hopping be-
tween the same (AA) and different (AB) sublattices48.
In the following calculations, we choose finite values of
η = w0/w1 < 1 to account for the lattice relaxation ef-
fect that becomes dramatic at small twisting angles49.

B. Hartree-Fock self energy

The long-range Coulomb interaction is demonstrated
to have a dramatic renormalization effect on the single-
particle band structure of MATBG41–43,52–54. In this
work, we mainly focus on the band renormalization of
Coulomb interaction within self-consistent Hartree-Fock
(HF) approximation. The Coulomb interaction is de-
scribed by

Hee =
1

2

∑
αα′

∑
q

vαα′(q)ρ̂α(q)ρ̂α′(−q), (5)

where the lumped notation α = (lτsσ) with l, τ , s, and
σ specifying layer, valley, spin and sublattice, ρ̂α(q) de-
notes electron density operator, and Coulomb potential
vll′(q) = (2πe2/εqq)e

−qd(1−δll′ ) with d the interlayer dis-
tance. The metallic gate screening effect is incorporated
into the q-dependent dielectric constant εq (see details in
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FIG. 1. (a) Schematic diagram of a moiré Brillouin zone
(MBZ) and four shells of reciprocal lattice vectors. (b) Band
structures of MATBG for different values of flat-band filling ν
after including the HF self energy corrections. These results
are calculated by choosing twist angle θ = 1.05◦, interlayer
tunneling ratio η = w0/w1 = 0.7, non-local tunneling coeffi-
cient ξ = 0.1, gate-sample distance ds = 30 nm, and dielectric
constant ε = 25.

Appendix C). Within HF approximation, the band struc-
ture are calculated by solving

H(k) = H0(k) + ΣHF (k), (6)

where H0(k) is the non-interacting single-particle moiré
band Hamiltonian given by Eq. (1) and ΣHF (k) is the
self-consistent HF self-energy correction (see Appendix
C). The exchange interaction plays a crucial role in fla-
vor symmetry breaking at integer flat band fillings41–43

and the cascade phase transitions14,15. For simplicity, we
restrict ourself to consider the effect of exchange interac-
tion on band reshaping without symmetry breaking, and
assume the interaction effects have a smooth dependence
on the band filling. Therefore, the HF self energy at a
given band filling (ΣHFν ) can be approximated by a lin-
ear interpolation between the HF self energies calculated
at the empty flat bands (ΣHFν=−4) and filled flat bands

(ΣHFν=4), namely,

ΣHFν =
1

2

[
(1 +

ν

4
)ΣHFν=4 + (1− ν

4
)ΣHFν=−4

]
, (7)

where ν denotes the flat band filling.
As a concrete example, Fig. 1(b) shows the band struc-

tures calculated by solving Eq. (6). The particle-hole
asymmetric in the band structures calculated at charge
neutrality ν = 0 arises mainly from the non-local inter-
layer tunneling. Upon electron (hole) doping, the HF self
energy raises (lowers) the band energy around the κ and
κ′ points relative to the band energy around γ point of
the MBZ53. As explained in details in Appendix C, such
a behavior is the combined effects of Hartree and Fock
interactions, which shift the flat bands along opposite di-
rections and have negligible influence on bands around
MBZ center where the corresponding wave function dis-
tributions are relatively homogeneous in the real space.
As illustrated in Fig. 1(b), the HF self energy tends to
flatten the flat band bottom (top), moving the van Hove

singularity to larger hole (electron) filling. All these fea-
tures are consistent with earlier studies51,53.

C. Pairing interaction

For the convenience of carrying out mean-field calcu-
lations for finite-momentum pairing states, we choose
in-plane optical phonon-mediated interaction as a puta-
tive pairing mechanism because their interactions with
graphene π-bands are well understood37,55,56. Since the
flat band width in MATBG is small compared to the op-
tical phonon energy (~ωE2

∼ 196 meV and ~ωA1
∼ 170

meV55), the phonon-mediated interaction is essentially
instantaneous and competes with repulsive Coulomb in-
teractions. The optical-phonon mediated effective inter-
action that pairs electrons from opposite valleys is37

Hep = −2gΓ

∑
lτsσ

∫
drψ†lτsσ(r)ψ†lτ̄ s̄σ(r)ψlτ̄ s̄σ̄(r)ψlτsσ̄(r)

− 2gK
∑
lτsσσ′

∫
drψ†lτsσ(r)ψ†lτ̄ s̄σ′(r)ψlτ s̄σ̄′(r)ψlτ̄sσ̄(r),

(8)
where τ̄ = −τ , s̄ = −s, σ̄ = −σ, gΓ and gK are esti-
mated to be 52 and 69 meV·nm2, denoting the electron-
electron attractive strengths mediated respectively by op-
tical phonons from the center (E2) and corners (A1/B1)
of graphene BZ.

In Sec. II B, we discussed the renormalization effect of
long-rang Coulomb interaction on the flat bands. For the
optical phonon mediated electron pairing, the repulsive
Coulomb interaction also plays a depairing role. In this
study, we assume that the Coulomb scattering between
valleys is negligible and take advantage of the repulsive
intra-valley Coulomb interaction as a tuning knob to con-
trol the strength of pairing interactions. Based on the
above considerations, the electron-electron depairing in-
teraction is modeled by

Hee =
u

2

∑
ll′

∑
τsσσ′

∫
drρlτsσ(r)ρl′τ̄ s̄σ′(r), (9)

where the density operator ρlτsσ(r) = ψ†lτsσ(r)ψlτsσ(r),
ψlτsσ(r) is the real-space electron annihilation operator,
and u is a tunable parameter. Coulomb repulsion is fur-
ther assumed to have the same strength for electrons from
the same and opposite valleys. We note however that in
order to obtain superconductivity u must be reduced to
values that are even smaller than what can be justified
on the basis of naive screening considerations.

III. MEAN-FIELD CALCULATION

The conclusions in this paper are based on calculations
of the pairing wavevector dependence of the condensa-
tion energy for MATBG superconductors. We assume
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FIG. 2. Finite-wavevector superconductivity calculated within the rigid band structure model of MATBG for twisting angle
θ = 1.07◦. (a) Fourier coefficients of the real-space pairing potential expanded up to four shells of the reciprocal lattice vectors,

which are generated by acting symmetry operations P̂ from point group C6 on Qi depicted in Fig. 1(a) with Q0 = 0. The
insert shows ∆P̂Q1

for flat-band filling ν = −1 at small pairing wavevector qx, where the dashed curve corresponds to ∆Q1 .

(b) Superconducting condensation energy normalized per moiré supercell vs. qx for different band fillings. The circles denote
numerical results and solid curves are fits to Eq. (B1). (c) Color scale plot of −δF (q) within the MBZ (dashed hexagon) at
ν = −1. These results are calculated by choosing η = 0.7, ξ = 0, and u = 40 meV·nm2 that yields Tc ∼ 1.7 K.

that superconducting condensation energy can be calcu-
lated using a mean-field approximation, and that the rel-
evant Cooper pairs involve two electrons from opposite
valleys. Given these assumptions, the theoretical sys-
tem properties depend on the MATBG band structure
model and the interaction Hamiltonian. The former is
not accurately known at present, mainly because bands
are renormalized by interactions41–43, and because these
renormalizations are sensitive to the three-dimensional
screening environment52–54. For example, the Coulomb
interaction tends to reduce the value η57. To explore the
possible role of band-structure renormalization, we will
compare results for various band structure model param-
eters, and for models that account explicitly for HF self
energy corrections.

A. Self-consistent gap equation

The mean-field calculations of the finite-momentum
pairing state are standard and briefly summarized in the
following paragraph. The Bogoliubov-de Gennes (BdG)
Hamiltonian for pairing wavevector q is given by

HBdG(q,k) =

[
H(k)− µq ∆q(k)

∆†q(k) −HT(q − k) + µq,

]
, (10)

where each block acts on four-component sublattice
spinors, ∆q(k) denotes pairing potential, and ΣHF can
be incorporated in H(k) via Eq. (6). The self-consistent
gap equation then reads as

∆q(k) =
∑

k′∈MBZ

V (k,k′)Fq(k′), (11)

where V (k,k′) is the total interaction matrix including
both optical phonon-mediated attraction and Coulomb
repulsion (see Eqs. (8) and (9)), Fq(k′) is Gorkov’s
anomalous Green’s function58, and the summation of k′

is over the MBZ. The chemical potential µq is determined
self-consistently by particle number conservation.

Given a self consistent BdG solution, the free energy
of superconducting state

Fs(q) = Cq +An0µq +
1

2β
Tr
∑
k

ln f [−Eq(k)], (12)

where n0 is the carrier density measured from charge
neutrality, A is the sample area, f(ε) is the Fermi-Dirac
distribution function, Eq(k) are the eigenvalues of the
BdG Hamiltonian, and Cq = − 1

2Tr(F†qV Fq) is a double-
counting correction. The superconducting condensation
energy is defined as δF (q) = Fs(q)−Fn, where Fn is the
normal-state free energy calculated by Eq. (12) for zero
pair potential. We use numerical results for the conden-
sation energy as a function of q, band filling ν, and model
parameters to connect with experimental observables.

B. Critical magnetic field

The critical magnetic field can be extracted from mean-
field calculations of the critical pairing wavevector qc
(see details in Appendix B). In the phenomenological
Ginzburg Landau theory of an isotropic superconductor,
the superconducting condensation energy at finite pair-
ing wavevector q is given by

δF (q) = δF0

[
1− (q/qc)

2
]2
, (13)
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FIG. 3. (a)-(c) Zero-q critical temperature Tc, perpendicular critical magnetic field Hc2, and average Fermi velocity v∗F as
functions of band filling ν for several strengths of reduced Coulomb repulsion u in units of meV·nm2. These results are
calculated for a bare MATBG band-structure model with θ = 1.07◦, η = 0.7, and ξ = 0. (See main text.) The dotted lines
indicate the values of ν at which VHSs occur, as plotted in (c). v∗F in (c) exhibits a minimum where Tc in (a) is maximized.

where δF0 is the condensation energy at q = 0 and qc is
defined as the wavevector where ∆q vanishes. Our mi-
croscopic calculations are in close agreement with this
expression and can be fit to determine δF0 and qc. As
explained in Appendix B, the critical perpendicular mag-
netic field is related to qc by

Hc2 = Φsq
2
c/2π, (14)

with Φs the magnetic quantum flux. In addition, the
supercurrent density as a function of pairing wavevector
can be calculated via j = (2e/~)[∂F (q)/∂q].

IV. RESULTS

A. Bare band structure models

We first discuss results calculated with bare band
structure models. Since the interaction is local, the real-
space pair potential is conveniently paramaterized by
performing a Fourier expansion. The coefficients of re-
ciprocal lattice vectors in this expansion are plotted as a
function of pairing wavevector in the MBZ in Fig. 2(a),
where the homogeneous pairing potential (Q0) exhibits
a largest magnitude. In the insert of Fig. 2(a), the asym-
metric behavior of ∆PQ1 is due to rotational symme-
try breaking at finite-wavevector pairing. Figures 2(b)
and (c) delineate the pairing wavevector dependence of
δF (q), which possesses a minimum at q = 0, indicating
that the zero-q pairing state is the ground superconduct-
ing state. Moreover, δF (q) is nearly isotropic and van-
ishes at a critical pairing wavevector qc, which is small
compared to the MBZ, indicating that the superconduct-
ing coherence length is many times of the moiré period.

Figures 3(a)-(b) show mean-field calculations of the
zero-q critical temperature Tc, and the critical perpen-
dicular magnetic field Hc2 extracted from finite-q cal-
culations. As expected, Tc decreases monotonously upon

strengthening the repulsive Coulomb interaction between
electrons. Dome-like features are revealed in Tc as a
function of band filling, which are reminiscent with the
superconducting domes seen experimentally, but are as-
sociated here with maxima centered on the flat-band
VHSs. Hc2 possesses sharp peaks at the VHSs consistent
with the phenomenological argument that Hc2 is propor-
tional to the effective mass of the paired electrons (see
details in Appendix B). Away from the VHSs, Hc2 de-
creases quickly and approaches zero when Tc becomes
zero. Figure 2(c) shows the average Fermi velocity ex-
tracted from the mean-field results of Tc and Hc2 via
v∗F = kBTc/~qc. The average velocities are a hundred
or more times smaller than the Dirac velocity of isolated
graphene sheets vD ∼ 106 m/s, in agreement with exper-
iment. In particular, v∗F exhibits two prominent features:
First, v∗F is nearly independent of the pairing interaction
strength and is therefore almost perfectly a pure band
structure property. Secondly, v∗F possesses a negative
correlation with Tc characterized by V-shaped minima
near the VHSs, where Tc exhibits maxima.

B. Band structure model with HF self energy

As illustrated in Fig. 1(b), the HF self energy correc-
tion results in band-filling dependent band structures.
We next examine the influence of HF self energy cor-
rections on v∗F by performing similar mean-field calcu-
lations using the band structures given in Fig. 1(b).
Figures 4(a)-(c) show the mean-field calculations of Tc,
Hc2, and v∗F , respectively. As indicated in the DOS in
Fig. 4(c), the particle-hole asymmetry induced by the
nonlocal interlayer tunneling is further enhanced by the
interaction effect. On the hole doping side, the VHS
moves to a larger hole filling close to ν = −3. If we take
account of the flavor symmetry breaking near ν = −2
indicated experimentally, this result is consistent with
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FIG. 4. (a)-(c) Zero-q critical temperature Tc, perpendicular critical magnetic field Hc2, and average Fermi velocity v∗F as
functions of band filling ν for several strengths of Coulomb repulsion u in units of meV·nm2. These results are calculated for
a MATBG bands that take account of HF self-energy corrections with θ = 1.05◦, η = 0.7, and ξ = 0.1. The corresponding
band-filling dependent band structures are depicted in Fig. 1(b). No flavor symmetries are broken. The dotted lines indicate
the values of ν at the dressed band VHSs occur. The dashed line in (c) is the dressed band DOS. v∗F in (c) exhibits minimum
vs. ν near each maximum in Tc vs. ν.

the observation22,23 that the VHS usually appears for
ν ∈ (−4,−3). HF band renormalization leads to mul-
tiple VHSs on the electron doping side. The emergence
of a VHS around ν = 1 may explain the property that
flavor symmetry breaking appears around ν = 1, but is
usually absents around ν = −122,51. The stronger VHS
close to ν = 4 is mainly caused by the Hartree potential
that flattens the top of conduction band, as discussed
in Sec. II B. Comparing to the results for the rigid band
structure model, the richer structure of the DOS for the
HF model leads to richer structure for Tc and Hc2 as
functions of band fillings, as illustrated in Figs. 4 (a)-(b).
Nevertheless, as shown in Fig. 4 (c), we find that the
two prominent features of v∗F revealed in the rigid band
structure model remain valid: (i) v∗F is nearly indepen-
dent of the pairing interaction strength; (ii)v∗F possesses
a V-shaped minimum near each VHS. Therefore, we con-
clude that the correlation between Tc maxima and v∗F
minima is robust.

C. The effect of Zeeman field

So far we have neglected both the possibility of fla-
vor symmetry breaking and the role of Zeeman cou-
pling to the electronic spin. Indeed, this assumption
can be questioned since there is strong experimental evi-
dence that the strongest superconducting dome occurs
in a region of band filling where only two flavors are
partially occupied and the moiré flat-bands have con-
sequently reconstructed1–15,41–43,51. If we were to as-
sume that the superconducting state near ν = −2.3 is
spin-polarized, with partially occupied valence bands for
two different valleys with the same spin, the neglect of
Zeeman coupling would be appropriate because pairing
breaking arises from the orbit effect of applied perpendic-
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 (T
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FIG. 5. Critical magnetic fields calculated at zero pairing
wavevector by only including Zeeman coupling (HP ), and ex-
tracted from the critical pairing wavevector qc with (w/t) and
without (w/o) Zeeman coupling. In the presence of Zeeman
coupling, Hc2 = (Φs/2π)qx,cqy,c, where qx,c and qy,c are the
critical pairing wavevectors along x and y directions. These
results are obtained by choosing θ = 1.07◦, η = 0.7, ξ = 0,
and u = 30 meV·nm2 without including the HF self energy
correction.

ular magnetic field. The only difference between the spin-
polarized and spin-unpolarized calculations then, would
be a change in how the intervalley electron-phonon inter-
actions enter the gap equation, leading simply to a change
in the effective pairing interaction strength which would
not alter our conclusions. On the other hand, if the su-
perconducting state is spin-singlet, the pair-breaking ef-
fect of Zeeman coupling would need to be considered. In
Table I, we have listed Pauli critical fields extracted from
experimental data by using HP ≈ 1.85Tc (T) . Since the
Pauli limiting fields are much larger than Hc2 for large Tc,
experiments support the conclusion that orbital coupling
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is the dominant pair-breaking mechanism for perpendic-
ular fields and justify our neglect of Zeeman.

Since the inclusion of HF self energy does not change
the correlation that peak values of Hc2 occur at VHSs,
we take the rigid band structure model as an example
to study the effect of Zeeman field on Hc2. As shown in
Fig. 4(a), we compare the critical magnetic fields calcu-
lated by including only the Zeeman effect (dashed line
manifesting as Pauli limit), only the orbital effect (solid
line), and both effects (circles). Close to the VHS, HP

is comparable to Hc2 because the orbital effect is sup-
pressed due to the small Fermi velocities associated with
large effective mass of the paired electrons. Away from
the VHSs, however, HP is much larger than Hc2, consis-
tent with experimental observations summarized in Ta-
ble I. The two peaks in HP on the two sides of the VHS
arises from Zeeman splitting of the flat bands. The criti-
cal fields calculated including both of Zeeman and orbital
effects show that Hc2 is nearly unchanged by Zeeman
coupling except when the Fermi level is very close to the
VHS, where HP and Hc2 become comparable.

D. Acoustic phonons

We have so far not explicitly included acoustic-phonon
mediated interactions, which may compete more success-
fully with Coulomb interactions because they are re-
tarded. We consider the in-plane longitudinal acous-
tic phonons and adopt a Debye approximation for the
phonon energy dispersion ωq = vph|q|, where vph =
2×104 m/s is the phonon velocity in an isolated graphene
sheet. We further use the deformation potential approx-
imation and the electron-phonon coupling described by
Hamiltonian

Hep =
−iD√
2Aρm

∑
l,q

√
~
ωq

(q · êq)ρl(q)[al(q) + a†l (−q)],

(15)
where A is the area of sample, êq is the displacement unit
vector of the longitudinal phonon, ρl(q) denotes the layer

resolved electron density operator, al(q) and a†l (−q) are
phonon annihilation and creation operators. In the fol-
lowing calculations, we choose the deformation potential
D = 25 eV and the mass density of monolayer graphene
ρm = 7.6× 10−8 g/cm259–62.

The dimensionless electron-acoustic-phonon coupling
constant

λ = 2

∫
dωα2F (ω)/ω, (16)

where the Fermi surface averaged electron-phonon spec-
trum function is defined as

α2F (ω) =
1

NεF

∑
nm

∑
Q

∑
kk′∈MBZ

|gnm(Q;k,k′)|2

× δ(εnk − εF )δ(εmk′ − εF )δ(ω − ωph).

(17)

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

0

1

2

3

4

0 5 10 15 20 25
 (meV)

0

0.2

0.4

0.6

0.8

2  F
 (

)

(b)(a)

FIG. 6. (a) Fermi-surface averaged electron-acoustic phonon
spectral function α2F (ω) at the the valence band VHS. The
dotted and solid lines are results obtained without (w/o) umk-
lapp processes and with (w/t) umklapp processes up to the
fourth shell characterized by Q4 in Fig. 1(a). (b)Electron-
acoustic phonon coupling strength λ and the estimated Tc for
MATBG with θ = 1.07◦ and η = 0.7. The dotted vertical
lines in (b) show the positions of the VHSs.

In Eq. (17), NεF denotes the Fermi-level density of states,
εnk is the electron band energy with flat band index
n. The flat bands projected electron-phonon coupling
matrix is given by gnm(Q;k,k′), where the reciprocal
moiré lattice vector Q 6= 0 corresponds to umklapp
electron-phonon scattering processes with phonon energy
ωph = vph|k − k′ − Q|. The in-plane acoustic phonon
modes in the two graphene layers can be combined into
symmetric and asymmetric modes. Earlier study show
that the interlayer moiré potential breaks the asymmet-
ric phonon mode into moiré phonon mini bands with gap
opening at MBZ boundaries, while does not affect the
linear dispersion of the symmetric phonon mode63. For
simplification, we calculate gnm(Q;k,k′) in this study
by directly folding the in-plane acoustic phonon mode of
isolated graphene into the MBZ and ignoring the renor-
malization effect of moiré potential on the asymmetric
phonon mode.

As illustrated in Fig. 6(a), the electron-acoustic
phonon coupling is dominated by umklapp scatter-
ings consistent with the earlier study64. Figure 6(b)
shows the band filling dependence of electron-phonon
coupling constant λ and the superconducting critical
temperatures estimated by McMillan formula Tc =
~ωln

1.2kB
exp

[
− 1.04(1+λ)
λ−µ∗(1+0.62λ)

]
, where the averaged phonon

frequency ωln = exp [(2/λ)
∫
dω ln (ω)α2F (ω)/ω]65, and

the reduced Coulomb coupling strength is chosen as
µ∗ = 0.339. In contrast to the optical-phonon-mediated
interaction, retardation does supply a formal justification
for reduced Coulomb coupling66, but since the phonon
and flat band electronic energy scales are comparable, it
still does not justify the large reduction needed to match
experimental Tc scales by including only the low-energy
flat band of MATBG. That aside, it is clear in Fig. 6(b)
that the association of Tc maxima with flat-band VHSs
applies equally well to acoustic-phonon-mediated super-
conductivity.
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In the above calculations, we choose rigid band struc-
ture model as an example for the illustration of acoustic
phonon-mediated superconductivity. Although the HF
self energy tends to renormalize the flat band structures,
the conclusion that Tc maxima is associated with flat-
band VHSs does not change as long as the pairing is in the
weak coupling BCS regime characterized by kBTc � EF .

It has been argued that the deformation potential is
strongly screened by Coulomb interaction in graphene
systems because the corresponding phonon mode cou-
ples to charge67. In contrast, the interaction be-
tween electrons and chiral combination of longitudi-
nal and transverse acoustic phonon modes, or gauge
phonons, is unscreened because gauge phonons act as
pseudo vector potential and couples to current instead of
charge68. Based on the symmetry analysis of electron-
acousti phonon coupling69, the gauge phonon-mediated
electron-electron attraction possesses identical form as
the electron-electron attraction (first line on the right
hand side of Eq. (8)) mediated by optical phonon around
the BZ center. Since the electron-gauge phonon interac-
tion is almost independent of band fillings, it is unlikely
to alter the correlation between Tc and VHSs, and there-
fore the correlation between Tc maxima and v∗F minima.

V. SUMMARY AND DISCUSSION

For a given pairing glue, weak-coupling BCS theory
predicts that superconducting Tc’s are positively corre-
lated with the DOS at Fermi level, which is determined
by the Fermi surface size and the typical quasiparticle
velocity. In experiment1,2,20 these quantities are often
extracted from measurements of the frequency and tem-
perature dependence of weak-field magnetic oscillations,
which respectively measure Fermi surface area and cy-
clotron effective masses. Magnetic oscillation measure-
ments have been of limited value in MATBG because of
the quasiparticle masses are large and the samples are
somewhat disordered. In this study we have proposed
that it is possible to gain insight into superconductivity
in MATBG by extracting the average Fermi velocities
of the quasiparticles that participate in pairing from a
combination of measured Tc and Hc2 values.

An experimental approach to Fermi velocity estima-
tion is needed in MATBG because quasiparticle band
structures are not reliably predicted by theory. The the-
ory problem is very challenging because i) the cancella-
tion effects that lead to very flat bands, also lead to ex-
treme dependence on band-structure model details and
on twist angle, ii) interactions lead to strong and filling-
factor dependent band dispersion renormalization that is
imperfectly understood, and iii) quasiparticle bands are
qualitatively sensitive to flavor symmetry breaking, also
imperfectly understood, in the states from which super-
conductivity emerges.

In support of our proposal, we have performed mean-
field calculations of the superconducting critical temper-

atures Tc and critical magnetic fields Hc2 using a vari-
ety of plausible band structure and pairing models. We
find that the averaged Fermi velocity defined by ~v∗F ≡
kBTc

√
Φ0/2πHc2 is nearly independent of the pairing in-

teraction, verifying that it is almost entirely a property
of the quasiparticles present at the Fermi level. For a
fixed pairing glue model we find that v∗F is always nega-
tively correlated with Tc and that it has a V-shaped cusp
when the Fermi level is placed at the flat-band VHS. By
varying different types of model parameters (Sec. IV and
Appendix D), we find that the such a Tc-v

∗
F correlation is

independent of the details of band structure, which is sen-
sitive to electrostatic doping, twisting angle48, strain21,49,
substrate environment17,22,23. Since the experimental
values of v∗F , summarized in Table I, do not show any
indication of a such correlation between v∗F and Tc as the
band filling is varied, we conclude that it is the pairing
glue that is mainly responsible for the shape and position
of the superconducting domes. The dependence of the
pairing glue on band filling factor is likely due to short-
range spin and/or valley order fluctuations that are opti-
mized for superconductivity near the peaks of the exper-
imental superconducting domes40. A number of interest-
ing possibilities for these fluctuations have already been
proposed theoretically, including ferromagnetic fluctua-
tions in systems with interaction-enhanced inter-valley
scattering36,40,53,74,75 and skyrmion-mediated pairing18

in systems with enhanced inter-valley coherence.
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Appendix A: Non-local interlayer tunneling model

Here we rederive the BM model of MATBG by includ-
ing the momentum dependence of the interlayer tunnel-
ing matrix, which takes the following form

[Tpk]σ′σ =
1

N

∑
RR′

tσ′σ(R+ τσ −R′ − τ ′σ′)

× eik·(R+τσ)−ip·(R′+τ ′
σ′ )

=
1

Ω

∑
g1g2

tσ′σ(k − g1)δk−g1,p−g′2

× ei(g1·τσ−g2·τσ′ )

, (A1)

where σ = A,B are sublattice indices, k and p are wave
vectors measured from the center of the graphene BZ, R
are the real-space positions of the graphene unit cells, τσ
denotes the sublattice position within a unit cell, the area
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of which is Ω =
√

3a2
0/2 with graphene lattice constant

a0 = 2.46 Å, and g1,2 are graphene reciprocal lattice
vectors. In Eq. (A1), labels with (without) primes are
defined in the top (bottom) graphene layer in MATBG.
By keeping the dominant contribution of the Fourier co-
efficient of the interlayer tunneling, we have

[Tpk]σ′σ =
1

Ω

2∑
j=0

tσ′σ(R̂2jπ/3kD + δk)

× δk,p+R̂2jπ/3kθ
ei(kD−R̂2jπ/3kD)·(τσ−τσ′ ),

(A2)

where kD is the wavevector of K point of the BZ of the
bottom layer graphene, δk is measured from K point,
and the two-dimensional rotational operator is defined
as

R̂θ =

(
cos θ − sin θ
sin θ cos θ

)
. (A3)

In the original BM model, tσ′σ(R̂2jπ/3kD + δk) ≈
tσ′σ(R̂2jπ/3kD) = tσ′σ(kD) due to C3 symmetry. By
keeping the momentum dependence of tσ′σ up to linear
term,

tσ′σ(R̂2jπ/3kD + δk) = tσ′σ(kD) + (R̂2jπ/3ekD ) · (k − kD)

× (∂tσ′σ/∂k)|k=kD .
(A4)

where ekD = kD/kD is a unit vector along Γ-K direc-
tion within graphene BZ. For simplification, we define a
dimensionless parameter ξ = (kθ/tσ′σ)(∂tσ′σ/∂k)|k=kD .
Therefore, the interlayer tunneling can be organized as
Eq. (3), where the hopping energies are given by w0 =
Ω−1tAA(kD) and w1 = Ω−1tAB(kD).

Appendix B: Ginzburg-Landau theory of
superconductivity

The Ginzburg-Landau (GL) theory of superconductiv-
ity is based on the expansion of free energy of a system
in powers of superconducting order parameter70. In the
presence of magnetic field, the free energy

Fs = Fn +

∫
dr

[
~2

2m∗
|(∇− i2e

~c
A)ψ|2 + α(T )|ψ|2

+
β(T )

2
|ψ|4 +

B2

8π

]
,

(B1)
where ψ =

√
nse

iφ is the complex order parameter, φ
is the phase of order parameter, ns, m

∗, and 2e are the
density, effective mass, and total charge of electron pair.
By varying the GL free energy with respect to magnetic
vector potential A and order parameter ψ∗, the super-
current density

j =
2~ens
m∗

(∇φ− 2e

~c
A), (B2)

and the GL equation

1

2m∗
(−i~∇− 2e

c
A)2ψ+ α(T )ψ+ β(T )|ψ|2ψ = 0. (B3)

The GL coherence length or magnetic length `c is defined
as

`c =
√

~2/2m∗|α|. (B4)

The upper critical magnetic field Hc2 of type-II supercon-
ductor can be estimated from Eq. (B3). When the exter-
nal applied magnetic field is close to Hc2, the supercon-
ducting order parameter ψ becomes small, and Eq. (B3)
can be linearized into

1

2m∗
(−i~∇− 2e

c
A)2ψ + αψ = 0, (B5)

which resembles the Schrödinger equation for a particle
with mass m∗ and charge 2e subject to magnetic field
B = ∇×A. The solution of Eq. (B5) are Laudau levels
with |α| = ~ωc(n+1/2), where n are positive integers and
ωc = 2eB/m∗c is the cyclotron frequency. Upper critical
magnetic field Hc2 is defined as the maximum magnetic
field that validates the solution, thus

Hc2 = m∗c|α|/~e =
Φs

2π`2c
, (B6)

where Φs = π~c/e ≈ 2.067× 10−15 T·m2 is the magnetic
(superconducting) quantum flux.

We next show that `c and Hc2 can be extracted from
the free energy for finite-momentum pairing supercon-
ducting state. For pairing wavevector q, the real-space
order parameter can be written as ψ =

√
ns(q)eiq·r. In

the absence of external magnetic field, the superconduct-
ing condensation energy is reduced to

δF (q) =
~2q2

2m∗
ns(q) + αns(q) +

1

2
βn2

s(q), (B7)

and Eq. (B3) reduces to

~2q2

2m∗
+ α+ βns(q) = 0. (B8)

Therefore, we have

δF (q) = − 1

2β
(|α|− ~2q2

2m∗
)2 = δF (0)[1− (q/qc)

2]2, (B9)

where qc =
√

2m∗|α|/~2 = 1/`c is the critical pairing
wavevector defined by δF (qc) = 0. Eqs. (B4) and (B6)
lead to

Hc2 = Φsq
2
c/2π. (B10)

The supercurrent density of Eq. (B2) is reduced to

j = 2~ens(q)q/m∗ = 2ens(q)v, (B11)
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where v = ~q/m∗ is the velocity of Cooper pair. In
this work, we can calculate the free energy as a func-
tion of pairing wavevector within mean-field theory. By
employing the relation given in Eq. (B7), we have the
supercurrent density

j = (2e/~)∂F (q)/∂q. (B12)

In the above derivations, α and β are assumed to be in-
dependent of pairing wavevector q. Such a assumption in
MATBG can be justified by Fig. 2(b), where our numer-
ical calculations of δF (q) can be well fitted by Eq. (B9).

Appendix C: Self-consistent Hartree-Fock
calculations

The effects of Coulomb interaction on superconductiv-
ity comprise of two aspects, renormalizing single-particle
band structure and breaking Cooper pair. Since the en-
ergy scale of band renormalization is much larger than
that of superconducting order parameter, the two effects
may be treated independently. In this section, we focus
the band renormalization within the self-consistent HF
approximation. For MATBG, the Coulomb interaction
can be organized as

Hee =
1

2

∑
αβ

∑
nmn′m′

∑
kk′k1k′1

vαβ(k′ − k +Gn′ −Gn)

× ψ†n′α(k′)ψ†m′β(k′1)ψmβ(k1)ψnα(k)

× δk′−k+Gn′−Gn,k1−k′1+Gm−G′m ,
(C1)

where the summation of wavevectors are over MBZ, the
lumped notation α = (lτsσ) with l, τ , s, and σ specifying
layer, valley, spin and sublattice, and n,m, n′,m′ label
moiré reciprocal lattice vectors. The Coulomb potential

vαβ(q) =
2πe2

ε0ε(q)q
e−qd(1−δll′ ), (C2)

which is assumed to be independent of valley, spin and
sublattice. Here ε0 is the vacuum permittivity, d is the
interlayer distance, and the dielectric function ε(q) cap-
tures the screening effects, including the external and
internal screening as detailed below.

For external environment screening, we consider the
MATBG sample sandwiched by hexagonal born nitride
(h-BN) with a typical thickness of ds terminated by dual
metallic gates. Therefore, the screened Coulomb poten-
tial in the MATBG layer can be obtained by solving the
following Poisson’s equation

∇ · [ε(r)∇Φ(r)] = −4πeδ(z), (C3)

where the permittivity ε(r) takes a general matrix
form. In the present study, we approximate ε(r) =
diag(ε‖, ε‖, ε⊥) with ε‖ ≈ 6.9 and ε⊥ ≈ 3.48 being the

in-plane and perpendicular permittivity of h-BN71. By
solving Eq. (C3),

1

εen
=

1
√
ε‖ε⊥

tanh (
√
ε‖/ε⊥qds), (C4)

where anisotropic permittivity of h-BN leads to a re-
duction on the Coulomb potential in the sandwiched
MATBG layer.

For the internal screening, random-phase calculations
show that the static dielectric function possess a nontriv-
ial momentum structure and is strongly enhanced near
magic twisting angle72,73, where the active bands become
extremely flat. For simplification, in this study, we adopt
a constant dielectric function to mimic the effect of in-
ternal screening. Therefore, the Coulomb potential takes
the following form

vαβ(q) =
2πe2

ε0ε̃q
e−qd(1−δll′ ) tanh (

√
ε‖

ε⊥
qds), (C5)

where the constant ε̃ contains contributions from
√
ε‖ε⊥

and the internal static screening effect.
Based on the above screened interaction model, the

Hartree self energy

ΣHnα,mα(k) =
1

A

∑
n′α′,k′

vαα′(Gn −Gm) [ρ(k′)]m′α′,n′α′

(C6)
where ρ(k) is the density operator and m′ = n+ n′ −m.
The Hartree self energy ΣHnα,mα is independent of the
moiré wavevector k, and is diagonal in the layer, valley,
spin, and sublattice subspace. The Fock self energy

ΣFnα,mβ(k) =− 1

A

∑
n′k′

vαβ(k − k′ +Gn −Gn′)

× [ρ(k′)]n′α,(n′+m−n)β ,

(C7)

where the minus sign stems from exchange of fermions.
The Hartree-type energy correction

EHc = −1

2
Tr
[
ρΣH

]
, (C8)

where ρ =
∑
k ρ(k). The Fock-type energy correction

EFc = −1

2

∑
k

Tr
[
ρ(k)ΣF (k)

]
. (C9)

The total mean-field energy correction

Ec = EHc + EFc = −1

2

∑
k

Tr [ρ(k)Σ(k)] , (C10)

where Σ(k) = ΣH + ΣF (k) is the HF self energy. In
the numerical calculations, we choose the isolated bilayer
graphene with a relative rotation angle equaling to that
of MATBG as a reference system, and replace the density
operator ρ(k) appeared in the above equations by

δρ(k) = ρ(k)− ρ0(k), (C11)
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(a) (b) (c)

FIG. 7. The effects of (a) Hartree, (b) Fock, and (c) Hartree-Fock self energies on the flat bands of MATBG with θ = 1.05◦ at
band filling ν = ±4. The dashed curves show the non-interacting flat bands, where the particle-hole asymmetry is attributed to
the nonlocal interlayer tunneling described by Eq. (3). These calculations are performed by choosing η = 0.7, ξ = 0.1, ds = 30
nm, and the effective dielectric constant ε = 25.

with ρ0(k) the density operator of the reference system.

Figure 7 shows the effects of HF self energy on the
single-particle band structure of MATBG. The results
for ν = ±4 are obtained by solving Eqs. (C6) and (C7)
self consistently until convergences are reached. As illus-
trated in Fig. 7(a), the Hartree self energy tends to shift
the flat bands near MBZ corners to lower (higher) ener-
gies upon emptying (filling) the flat bands. The bands
around γ point are almost unchanged. In contrast, the
Fock self energy tends to influence the band structure in
an opposite way as illustrated in Fig. 7(b). The syner-
gistic effects of Hartree and Fock self energies on band
structure are shown in Fig. 7(c), where the band edges be-
come more flatter comparing to the non-interacting sing-
particle bands. The linear interpolation of the results
shown in Fig. 7(c) are given in Fig. 1(b).

Appendix D: Other model parameters

To further explore the correlation between Tc and ν∗F ,
we perform similar mean-field calculations by varying

twisting angle (θ) and inter-layer tunneling ratio (η). In
Sec. IV B, we show that the inclusion of HF self energy in
the band structure model does not alter the correlation
between Tc and ν∗F . In order to facilitate the numeri-
cal calculations, here we calculate Tc and v∗F within the
bare band structure model upon varying η and θ. We
note that, in order to indicate the changes of the flat-
band width, Tc, Hc2, and v∗F are plotted versus chemical
potential µ instead of band filling factor. Over the illus-
trated parameter range studied in Fig. 8, the flat-band
width is larger at smaller η and larger θ. Accordingly
decreasing η or increasing θ tends to reduce Tc as shown
in Fig. 8 (a) and (d), where dome-like features in Tc are
peaked around the shifting VHSs. As illustrated in Fig. 8
(b) and (e), sharp peaks of Hc2 are also found at VHSs,
and the magnitude of Hc2 is dramatically suppressed for
models with larger flat-band width. The extracted v∗F are
plotted in Fig. 8 (c) and (f), and are as expected larger for
larger flat-band widths. For every band-structure model,
v∗F possesses a V-shaped minimum near each VHS, which
is always coincident with the maximum of Tc. Overall,
these results further demonstrate that the correlation be-
tween Tc maxima and ν∗F minima are robust.
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and P. Törmä, Superfluid weight and Berezinskii-

Kosterlitz-Thouless transition temperature of twisted bi-
layer graphene, Phys. Rev. B 101, 060505(R) (2020).

13 F. Xie, Z. Song, B. Lian, and B. A. Bernevig, Topology-
bounded superfluid weight in twisted bilayer graphene,
Phys. Rev. Lett. 124, 167002 (2020).

14 D. Wong, K. P. Nuckolls, M. Oh, B. Lian, Y. Xie, S.
Jeon, K. Watanabe, T. Taniguchi, B. A. Bernevig, and A.
Yazdani, Cascade of electronic transitions in magic-angle
twisted bilayer graphene, Nature 582, 198 (2020).

15 U. Zondiner, A. Rozen, D. Rodan-Legrain, Y. Cao, R.
Queiroz, T. Taniguchi, K. Watanabe, Y. Oreg, F. von Op-
pen, A. Stern, E. Berg, P. Jarillo-Herrero, and S. Ilani,
Cascade of phase transitions and Dirac revivals in magic-
angle graphene, Nature 582, 203 (2020).

16 L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young,
Superconductivity and strong correlations in moiré flat
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