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Kuzkin’s angular momentum balance method is implemented in the LAMMPS SPIN package for
atomistic spin-lattice dynamics, along with shifted-force exchange and Néel Hamiltonians parame-
terized to minimize energy drifts in the simulations. Angular momentum contributions arising from
two mechanisms are quantified using this method: particle transport across the boundaries of a
periodic simulation domain and external torques applied to the domain by periodic image atoms.
When these mechanisms are accounted for, lattice angular momentum is exactly conserved in lattice
systems and in spin-lattice systems with isotropic exchange interactions. The calculations show that
spin-lattice angular momentum exchange only occurs when the Néel anisotropy energy is added to
the exchange energy, and that with this addition, total angular momentum is approximately con-
served in the magnetization direction but not in other directions. Inclusion of the Néel anisotropy
increases the energy drifts observed in simulations of iron nanoparticles. These drifts are linearly
proportional to the magnitude of the anisotropy energy and the simulation time step.

I. INTRODUCTION

Spin-lattice dynamics (SLD) [1–8] is a classical atom-
istic simulation method for modeling magnetic materi-
als that combines aspects of molecular dynamics (MD)
[9, 10] and spin dynamics [11, 12]. In SLD, atomic dis-
placements, velocities, and magnetic moment orienta-
tions are advanced in time by integrating the equations
of motion. The ability of SLD to track spin and lattice
degrees of freedom have made it an attractive method to
investigate thermal-magnetic energy conversion processes
in a variety of applications, including nanoparticle hyper-
thermia therapy [7–14], heat assisted magnetic recording
for data storage [15–19], and spin caloritronic devices for
energy harvesting [20–22].
Angular momentum is an important quantity in SLD

simulations. The total angular momentum in SLD, J ,
is the sum of the system’s lattice and spin angular mo-
menta:

J (t) = L(t) + S(t). (1)

The lattice angular momentum of the system is given by

L(t) =

N
∑

i

Li (2)

whereN is the number of atoms in the simulation domain
and Li is the angular momentum of atom i about the
center of mass

Li = (ri − rc)×mivi. (3)

Here rc is the position of the center of mass of the domain,
and ri, vi, andmi are the the position, velocity, and mass
of atom i. The spin angular momentum of the system is
written as

S(t) =
N
∑

i

Si. (4)

where Si is the spin angular momentum associated with
atom i by virtue of its magnetic moment µi. This is
expressed as

Si = −h̄si (5)

where si = µi/µi is a unit vector that points in the di-
rection of atom i’s magnetic moment vector, µi , and µi

is the magnitude of the magnetic moment. Here we note
that we follow Evans et al. [11] in defining si as a unit
vector in the direction of the magnetic moment and not
a unit vector in the direction of the spin angular momen-
tum. The two unit vectors are oppositely directed and
thus differ by a negative sign. Had we defined si as a
unit vector in the direction of the spin angular momen-
tum, as is done in Refs [2] and [3], Eq. (5) would have
no negative sign.
The transfer of angular momentum between L and S

is necessary to ensure thermalization of spin and lattice
subsystems to the same temperature [3, 6] and to capture
magnetostrictive behavior [5]. While the importance of
angular momentum transfer has been discussed by sev-
eral groups [3, 5–7, 13], only two [7, 13] directly calculate
angular momentum and analyze its exchange between
spin and lattice systems. Both these studies were per-
formed on isolated nanoparticles. Aßmann and Nowak
[7] applied a 50 T magnetic field to a cubical cobalt par-
ticle with free boundaries, and observed particle rotation
consistent with the Einstein-de Haas effect. They also
calculated the time-dependent angular momenta of spin
and lattice systems and showed that their sum, total an-
gular momentum J , was conserved in the direction of
the applied magnetic field. Dednam et al. [13] calcu-
lated J , L, and S for a prolate spheroid-shaped iron
nanoparticle. They found that the magnitude of angular
momentum was conserved in the absence of a magnetic
field.
Calculations of angular momentum exchange have not

yet been reported for bulk magnetic materials despite
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the prevalence of these materials in the SLD literature
[1, 3, 6, 8]. It is well known that MD simulations em-
ploying periodic boundary conditions, which are required
to model bulk materials, do not conserve lattice angular
momentum [9, 14] due to the interaction of the main com-
putational cell with its periodic images [14]. Kuzkin [14]
addressed the lack of lattice angular momentum conser-
vation in bulk MD simulations by treating the main sim-
ulation domain as an open system. Angular momentum
is transported into and out of the domain by atoms that
cross its boundaries, and angular momentum is gener-
ated in the domain by atoms in the periodic images that
apply forces that torque it about its center of mass. By
accounting for boundary transport and periodic image
source terms, Kuzkin showed that lattice angular mo-
mentum is conserved in an open MD system context.
In contrast, SLD algorithms currently used in the lit-

erature do not include these terms, although they do
include a different source of lattice angular momentum
that arises from the magnetic anisotropy: spin-lattice
coupling. Without the boundary and periodic image
terms, the angular momentum bookkeeping in bulk sys-
tems is not properly handled. Owing to these terms, the
increase in lattice angular momentum is not in general
equal to the decrease in spin angular momentum, unlike
the nanoparticles studied in Refs. [7, 13]. Handling these
terms correctly will enable a clear understanding of the
precise amount of angular momentum transfer between
spin and lattice systems, which is important for model-
ing thermalization rates [3] and ultrafast magnetization
dynamics [6].
Here we implement Kuzkin’s method in SLD for the

first time, to enable proper accounting of lattice angular
momentum in bulk systems. Specifically, we implement
it in the SPIN package [1] in LAMMPS [15], and analyze
the spin and lattice angular momentum in iron systems
governed by embedded atom method (EAM), exchange,
and Néel interactions. The equations of motion for SLD
are shown in Section II, along with the details of the
parameterization and “shifted force” magnetic Hamilto-
nians used in this work. The theoretical foundation of
the angular momentum calculations and the implemen-
tation of Kuzkin’s method in the Suzuki-Trotter decom-
position used in the SPIN package’s explicit solver are
given in Section III. Angular momenta calculated with
our method for lattice and spin-lattice systems are dis-
cussed in Sections IV and V, respectively, for both bulk
materials and nanoparticles. The energy stability of our
SLD method is reported in Section VI and the conclu-
sions are presented in Section VII.

II. THEORY

A. Equations of Motion

The SLD equations of motion solved in the micro-
canonical ensemble are [1, 2]

dri
dt

= vi (6)

dvi

dt
=

fi

mi

(7)

dsi
dt

= ωi × si. (8)

The variables ri, vi, and mi are the position, velocity,
and mass of atom i. The force acting on atom i, fi, is
calculated from the negative gradient of the total Hamil-
tonian, H, with respect to ri:

fi = −∂H
∂ri

. (9)

Here ωi is the spin precession angular frequency vector
for atom i. This vector is calculated by taking the nega-
tive gradient of the Hamiltonian with respect to si:

ωi = − 1

h̄

∂H
∂si

. (10)

As in Eq. (5), the negative sign in Eq. (10) arises from
the definition of si as a unit vector in the direction of the
magnetic moment.
The total Hamiltonian for a spin lattice dynamics sys-

tem is comprised of the energies from the atomic lattice
and the spin systems [1, 2]:

H = Hlattice +Hspin. (11)

The Hamiltonian for the lattice system is defined as

Hlattice = HPE +HKE (12)

where HPE is the lattice potential energy and HKE is
the kinetic energy of the atoms. In this work, the lat-
tice potential energy is described by the embedded atom
method (EAM) potential of Chamati et al. [16] and the
kinetic energy of the system is calculated by summing
the kinetic energy over all N atoms:

HKE =
1

2

N
∑

i

mi(vi · vi). (13)

In the present work, Hspin includes energetic contribu-
tions from exchange and Néel anisotropy

Hspin = Hexch +HNeel. (14)
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B. Parameterization of Magnetic Hamiltonian

Energy drift is a known issue in SLD simulations [1, 5].
In MD this issue has been mitigated by performing a
“shifted force” modification to the potential to ensure
that both the energy and force go smoothly to zero at the
cutoff radius [9, 17]. We extend this idea to the exchange
and Néel Hamiltonians in order to avoid discontinuities
in magnetic energies and forces at the cutoff. For the
exchange Hamiltonian, the shifted force modification is
implemented by replacing the Bethe-Slater distance de-
pendent exchange energy term used previously [1, 5, 18]

J(rij) = 4αe

(

rij
δe

)2(

1− γe

(

rij
δe

)2)

e
−

(

rij

δe

)

2

(15)

with the shifted force exchange energy JSF (rij)

JSF (rij) =

[

J(rij)− J(rc)

−
[

dJ(rij)

drij

]

rij=rc

(rij − rc)

]

Θ(rc − rij).

(16)

In Eq. 16, the energy shift is performed by subtracting
the energy of the function at the cutoff, and the force
shift is performed by subtracting the product of rij −
rc and the first derivative of energy at the cutoff [4].
Other shifted force potentials have been applied for the
exchange energy, either by selecting a functional form
whose value and first derivative are automatically zero at
the cutoff [2], or by using a smoothing function [5]. The
exchange Hamiltonian with the shifted force exchange
energy is thus written as

Hexch = −1

2

N
∑

i,j=1,i6=j

JSF (rij)(si · sj − 1). (17)

The second term in Eq. (17) represents the ground state
magnetic energy (fully aligned spins) at the given atomic
configuration. It is subtracted from the combined spin-
lattice Hamiltonian because it is already accounted for
in the lattice potential energy [1–3]. Following Ma et
al. [2], we subtract the ground state exchange energy
from the exchange Hamiltonian, rather than from the
potential energy [1, 3]. The implication of this is that
the exchange Hamiltonian captures the effect of atomic
spin orientations on energy, while the EAM captures the
effect of atomic displacements on energy.
The Néel anisotropy energy [1, 5, 18] is used in this

work because it has been shown to accurately represent
the magnetocrystalline anisotropy energy in cubic crys-
tals [18], and because it has been used in other recent
studies to model anisotropy [5, 6]. Including a pseudo-
dipole term, l1(rij), and two pseudo-quadrupole terms,

q1(rij) and q2(rij), it is expressed as

HNeel = −1

2

N
∑

i,j=1,i6=j

(

l1(rij)

[

(eij · si)(eij · sj)−
si · sj
3

−2

3

]

+ q1(rij)

([

(eij · si)2 −
si · sj
3

][

(eij · sj)2 −
si · sj
3

]

−4

9

)

+ q2(rij)[(eij · si)(eij · sj)3

+(eij · sj)(eij · si)3]− 2

)

.

(18)

where eij = rij/rij = (ri − rj)/rij is the normalized
unit vector from atom j to atom i. As with the exchange
energy, we subtract the ground state Néel anisotropy en-
ergy from the usual Néel Hamiltonian. This gives rise to
the -2/3, -4/9, and -2 terms in Eq. 18. The individual
energy terms are defined as

l1(rij) = lSF (rij) +
12

35
qSF (rij) (19)

q1(rij) =
9

5
qSF (rij) (20)

q2(rij) = −2

5
qSF (rij) (21)

where lSF (rij) and qSF (rij) are the shifted force dipole
and quadrupole energies

lSF (rij) =

[

l(rij)− l(rc)

−
[

dl(rij)

drij

]

rij=rc

(rij − rc)

]

Θ(rc − rij)

(22)

and

qSF (rij) =

[

q(rij)− q(rc)

−
[

dq(rij)

drij

]

rij=rc

(rij − rc)

]

Θ(rc − rij).

(23)

The Bethe-Slater functions l(rij) and q(rij)

l(rij) = 4αl

(

rij
δl

)2(

1− γl

(

rij
δl

)2)

e
−

(

rij
δl

)2

(24)

q(rij) = 4αq

(

rij
δq

)2(

1− γq

(

rij
δq

)2)

e
−

(

rij

δq

)

2

(25)

have unique parameterization constants αl, δl and γl for
l(rij) and αq, δq and γq for q(rij).
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We obtained the parameters in Eqs. (24) and (25)
following a similar procedure to that of Nieves et al. [18],
who fit Bethe-Slater dipole and quadrupole energies to
experimentally measured magnetostriction data for iron.
First, δl and δq were set to the nearest neighbor distance
r0:

δl = δq = r0. (26)

Then, to obtain the values of αl, γl, αq, and γq, lSF (rij),
qSF (rij), dlSF (rij)/drij , and dqSF (rij)/drij were eval-
uated at the nearest neighbor distance and equated to
terms containing the experimentally measured magne-
toelastic coupling constants b1 and b2:

lSF (r0) = −3V0b1
8N (27)

(

∂lSF

∂rij

)

r=r0

=
3V0

8N r0
(b1 − 3b2) (28)

qSF (r0) = −
√
3

4
r30K1(r0) (29)

(

∂qSF

∂rij

)

r=r0

= −3
√
3

4
r20K1(r0)

[

1− B

K1

∂K1

∂P

]

r=r0

.

(30)
In the above equations, which are appropriate for body-
centered cubic crystals, the other parameters are defined
as follows. V0 is the equilibrium volume of the unit cell,
N is the number of atoms in the unit cell, K1 is the
lowest order cubic magnetocrystalline anisotropy energy,
B is the bulk modulus, and P is the pressure [18].
This process results in two equations containing αl and

γl, and two equations containing αq and γq. Solving this
system of equations yields

αl = −
e
(

−2r5c (l0 − r0l
′
0) + 4r20r

3
c (l0 − r0l

′
0) + r50e

[( rc
r0

)2−1] (r0l
′
0 − 2l0)− 2r6c l

′
0 + 3r20r

4
c l

′
0

)

8
(

e[(
rc
r0

)2−1]r50 − r40rc + r30r
2
c − r20r

3
c − 2r0r4c + r5c

(

1 + e−[( rc
r0

)2−1]
)) (31)

γl =
r20

(

2r20rc (l0 − r0l
′
0)− 2r3c (l0 − r0l

′
0) + r40e

[( rc
r0

)2−1]
l′0 + r20r

2
c l

′
0 − 2r4c l

′
0

)

−2r5c (l0 − r0l′0) + 4r20r
3
c (l0 − r0l′0) + r30e

[( rc
r0

)2−1] (r30l
′
0 − 2l0r20)− 2r6c l

′
0 + 3r20r

4
c l

′
0

. (32)

αq = −
e
(

−2r5c (q0 − r0q
′
0) + 4r20r

3
c (q0 − r0q

′
0) + r50e

[( rc
r0

)2−1] (r0q
′
0 − 2q0)− 2r6cq

′
0 + 3r20r

4
cq

′
0

)

8
(

e
[( rc

r0
)2−1]

r50 − r40rc + r30r
2
c − r20r

3
c − 2r0r4c + r5c

(

1 + e
−[( rc

r0
)2−1]

)) (33)

γq =
r20

(

2r20rc (q0 − r0q
′
0)− 2r3c (q0 − r0q

′
0) + r40e

[( rc
r0

)2−1]q′0 + r20r
2
cq

′
0 − 2r4cq

′
0

)

−2r5c (q0 − r0q′0) + 4r20r
3
c (q0 − r0q′0) + r30e

[( rc
r0

)2−1] (r30q
′
0 − 2q0r20)− 2r6cq

′
0 + 3r20r

4
cq

′
0

. (34)

In the above expressions, l0, q0, l′0, and q′0 are
shorthand for lSF (r0), qSF (r0), (dlSF /drij)rij=r0 , and
(dqSF /drij)rij=r0 and e is Euler’s number.
Table I shows the parameterizations obtained with this

procedure, using the iron parameters in Ref. [18]. Note
that in the present work, the shifted force energies lSF

(Eq. 22) and qSF (Eq. 23) have been parameterized,
rather than the unshifted Bethe-Slater curves used in
Ref. [18], to ensure that energy and force smoothly ap-
proach zero at the cutoff. The exchange parameters JSF

were obtained from the shifted force parameterization in
Ref. [4]. Figure 1 displays the energy scale and distance

dependence of the dipole and quadrupole energies com-
puted using the values in Table I.

Magnetic Energy α [meV] γ [-] δ [Å] rc [Å]

JSF 56.57 0.1505 1.72 4.5

lSF 115.651 1.58147 2.4690386 2.6

qSF -7.47376 1.47921 2.4690386 2.6

TABLE I: Shifted force parameterizations for exchange
[4], pseudo-dipole, and pseudo-quadrupole energies.
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FIG. 1: The exchange, pseudo-dipole, and pseudo-
quadrupole energies graphed using the parameterization
from Table I.

III. ANGULAR MOMENTUM

A. Theory

The lattice angular momentum balance equation for
an open system is

dL

dt
= T+Q (35)

where dL/dt is the rate of change of lattice angular mo-
mentum, T is the torque applied to the system by atoms
in the periodic images, and Q is the net transport of lat-
tice angular momentum across the boundaries into the
system.
While appropriate for pure MD systems, this expres-

sion does not include the lattice angular momentum
source term that results from coupling to the spin system.
For SLD, the expression is amended to read

dL

dt
= Tspin +T+Q (36)

where Tspin = −dS/dt represents the torque exerted on
the lattice as a result of angular momentum loss from
the spin system. Note that Eq. (36) applies generally to
MD and SLD systems, whether they are bulk materials
or isolated nanoparticles. For pure MD, the Tspin term is
zero since no spins are included, and for isolated particles,
the T and Q terms are zero because there are no periodic
images to add external torques or to act as reservoirs
for particles that enter or leave the system through the
boundary.
Integration leads to the following expression for the

lattice angular momentum at time t+∆t

L(t+∆t) = L(t)−∆S+

∫ t+∆t

t

(T+Q)dt, (37)

where ∆S = S(t + ∆t) − S(t). A forward difference is
used in this expression instead of the central difference
used by Kuzkin [14] to enable implementation in the ex-
plicit integration scheme in LAMMPS. This allows these
quantities to be calculated on the fly in the simulations.
The spin torque term Tspin arises automatically in

SLD from Suzuki-Trotter [1–3, 5, 6, 19] or implicit [4, 20]
integration schemes. The time-dependent torque from
the periodic images is calculated as

T(t) =

N
∑

i

(ri − rc)× fimage,i (38)

where the image force on atom i is computed by summing
the pair forces fij exerted on i by the subset of atoms j
that are in the periodic images Λim:

fimage,i =
∑

j∈Λim

fij . (39)

The center of mass position rc is recalculated at each
time step. The torque is integrated using the trapezoidal
rule

∫ t+∆t

t

T(t)dt =
∆t

2
(T(t) +T(t+∆t)) (40)

and the transport term is integrated as follows [14]

∫ t+∆t

t

Q(t)dt =
∑

i∈Λ+

ri ×mivi −
∑

i∈Λ
−

ri ×mivi. (41)

The first term in this expression is summed over all atoms
(Λ+) that re-enter the main simulation domain after ex-
iting the opposite side of the domain. It represents the
transport of angular momentum into the domain that
arises from the “wrapping” of atomic positions due to
the periodic boundary conditions. Similarly, the second
term, which is summed over all atoms (Λ−) that exit
the domain, represents the transport of angular momen-
tum out of the domain. Note that the positions in the
first and second terms differ by a periodic box length in
the wrapping direction(s), with ri in the first term be-
ing evaluated after the wrapping of the atom and ri in
the second being evaluated before wrapping. The veloc-
ities in both terms are the same, and are evaluated at
t + ∆t/2, which is when the atoms cross the boundary.
We note that there is no spin angular momentum trans-
port term equivalent to Eq. (41). While atoms do carry
spin angular momentum as they cross boundaries, this
angular momentum is independent of the atom’s posi-
tion. The spin angular momentum leaving one boundary
is the same as that entering on the other side, so the net
spin angular momentum flux is zero.
The term L(t + ∆t) in Eq. (37) represents the true

angular momentum of the computational cell at time t+
∆t. It is convenient to modify this angular momentum
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by removing the periodic boundary effects embodied by
the integral terms:

Lcorr(t+∆t) = L(t+∆t)−
∫ t+∆t

t

(T+Q)dt. (42)

This modified angular momentum, which represents the
updated lattice angular momentum arising solely from
coupling with the spin system in the absence of open sys-
tem effects, will be compared to spin angular momentum
in Section IV.

IV. LATTICE ANGULAR MOMENTUM

CONSERVATION IN MOLECULAR DYNAMICS

To demonstrate the validity of our implementation of
Kuzkin’s method, which is discussed in the Appendix, we
first performed a pure MD simulation with the Chamati
EAM potential for iron, neglecting spin interactions.
Three geometries were investigated and compared in this
study: a periodic array of cubes of side length 6a (lattice
constant a = 2.8665 Å) and periodicity 12a, a periodic
array of cubes of side length 10a and periodicity 12a,
and a bulk system with periodicity 12a. The intent of
this comparison is to illustrate the contributions of the
T and Q terms in the lattice angular momentum balance
equation. Figs. 2(a)-(c) depict these geometries, show-
ing the extent of the main simulation box (black line),
the EAM cutoff distance with respect to the outermost
layer of atoms (purple line), the atoms inside the main
simulation box (blue markers), and atoms in the peri-
odic images (orange markers). It is evident that the 6a
cubes in Fig. 2(a) are isolated from one another, as the
shortest distance between cube faces exceeds the cutoff
distance. In contrast, the 10a cubes in Fig. 3(b) interact
with each other because their faces are within the cutoff
distance. However, their face-face spacing is too large
for atoms to be transported from one cube to the next.
Finally, the main simulation box in Fig. 3(c) experiences
both interactions with and atomic transport to/from the
surrounding bulk in which it is embedded.
Simulations of the three geometries were performed on

a single processor using a time step of 0.1 fs. Each ge-
ometry was initialized by thermostatting to 100 K for
5 ps with a Langevin thermostat. After 5 ps the ther-
mostat was turned off and the system was run in the
NVE ensemble. The angular momentum is calculated
for each of the configurations and plotted after the 5 ps
thermalization period in Figs. 2 (d) - (f). The angular
momentum components start with small nonzero values
because the Langevin thermostat does not conserve an-
gular momentum, but after the thermostat is turned off
at 5 ps the angular momentum for the purely isolated
cube in Fig. 2(d) is conserved. For the other geometries
in Figs. 3(e) and 3(f), the angular momentum changes
with time. These changes come from the torque exerted
on the main simulation box by the image atoms and, for
the bulk geometry, atomic transport across the periodic

boundaries arising from oscillation of surface atoms back
and forth across the faces of the main simulation box.
These results are qualitatively similar to Kuzkin’s results
for bulk liquids, whose angular momentum also oscillates
around an initial value.. Figs. 2(g)-(i) show the torque
contributions to angular momentum (Eq. (40)) for each
geometry. This contribution is zero for the isolated par-
ticle (Fig. 2(g)) because T = 0 for that case, and is
nonzero for the other two configurations. Figs. 2(j)-(l)
show the transport contributions to angular momentum
(Eq. (41)) for each geometry. This contribution is zero
for the isolated and 10a particles (Figs. 2(j) and 2(k))
because Q = 0 for those cases, and is nonzero for the
bulk configuration (Fig. 2(l)). Figs. 2(m)-(o) show the
modified angular momentum Lcorr computed using Eq.
(42). For all geometries, it is seen that Lcorr is constant,
which means that angular momentum is conserved in an
open system context.

V. TOTAL ANGULAR MOMENTUM

CONSERVATION IN SPIN-LATTICE DYNAMICS

A. EAM and Exchange

Next, we investigate open system angular momentum
conservation in isolated cubes and bulk materials when
spin interactions are included in addition to the lattice
interactions. The geometries modeled in SLD differ in
size from those for MD shown in Fig. 2. Larger sizes
were used because it was found that the stencil used to
decompose the geometry spatially in the SPIN package
did not work well below dimensions of 10a when an ex-
change cutoff of 4.5 Å was used. Accordingly, the isolated
cube edge length and periodicity were set to 10a and 20a,
respectively. The bulk system periodicity was set to 10a.
We study two SLD cases with different types of spin

interactions: one with exchange only and one with ex-
change and Néel interactions. All SLD simulations un-
less otherwise stated are run on a single processor with a
timestep of 0.1 fs using the Chamati EAM potential, and
are initialized with all moments magnetized in the z di-
rection and all atoms placed on the 0 K lattice positions.
Langevin thermostats are used to heat both the spin and
lattice systems to 100 K for the first 5 ps. For the first
SLD case we use the shifted force exchange Hamiltonian
in Eq. (17). We monitor the time dependence of three
types of angular momentum: modified lattice angular
momentum Lcorr, spin angular momentum S, and total
angular momentum Lcorr +S. These momenta are mea-
sured relative to a datum value taken as the value at 5
ps, and their components are plotted for both isolated
cube (Figs. 3(a)-(c)) and bulk periodic (Figs. 3(d)-(f))
systems.
For both the isolated cube and the bulk system, spin

angular momentum shows much larger fluctuations than
lattice angular momentum. ∆Lcorr appears constant in
Fig. 4, with fluctuations on the order 10−13 to 10−12
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(a-c). All results are based on the EAM Hamiltonian.
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eV ps. Spin angular momentum should be conserved un-
der the isotropic exchange interaction, and we attribute
the fluctuations in ∆S to errors in the numerical integra-
tion algorithm. The fact that these fluctuations are not
mirrored by fluctuations in ∆Lcorrof similar magnitude
indicates that the spin and angular momenta are not cou-
pled when only the exchange interactions are considered.
This is a consequence of the rotational symmetry of the
exchange Hamiltonian [3, 6, 13]. Since the exchange in-
teraction is isotropic, the magnetic forces that it exerts
on atoms have no effect on lattice angular momentum be-
cause they are central forces pointed along the i-j bond.
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FIG. 3: Different types of relative angular momentum
∆X = X(t)−X(5ps): modified lattice angular momen-
tum, spin angular momentum, and total open system
angular momentum. The x-, y-, and z-components are
plotted for isolated cube (a-c) and bulk geometries (d-f)
using the EAM and shifted force exchange Hamiltonians.

B. EAM, Exchange, and Néel

The addition of anisotropy to the magnetic Hamilto-
nian enables coupling of spin and lattice angular momen-
tum [3, 5, 7]. Anisotropy energy depends on the vector
between atoms i and j and thus can produce magnetic
forces with components normal to rij , which are able
to torque the bonds and alter the lattice angular mo-
mentum. Here the Néel anisotropy energy (Eq. (18),
with parameters taken from Table I) is added to the to-
tal Hamiltonian using the same geometries as in Section
VA. The results for the cube geometry are displayed in
Figs. 4(a-c). In contrast to the exchange-only result, it
is now observed that lattice angular momentum changes
with time. In particular, these changes occur in concert
with and roughly opposite to those of the spin angular
momentum. It is observed that the total angular momen-
tum is not perfectly conserved, with varying amounts of
drift in the x, y, and z directions, but that it is better
conserved in the z spatial direction.
The isolated particle displays total angular momen-

tum drifts that are larger than those in previous reports
[7, 13]. The source of this discrepancy is not understood,
but might be related to the different functional forms for
anisotropy or to the unspecified time steps used in these
works. We note that the drifts are strongly affected by
the magnitude of the anisotropy energy. When dipole
and quadrupole anisotropy energies αl and αq are re-
duced to 10% of the fitted value in Table I (Figs. 4(d-f)),
they are strongly reduced, and when αl and αq are re-
duced to 1% of the fitted value in Table I (Figs. 4(g-i)),
they become negligible. The bulk periodic system (Fig.
5) displays similar behavior to that of the isolated parti-
cle, albeit with weaker fluctuations that may arise from
the lack of a free surface.
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FIG. 4: Relative values of modified lattice angular mo-
mentum, spin angular momentum, and total open system
angular momentum for an isolated cube using the EAM,
shifted force exchange, and shifted force Néel Hamiltoni-
ans. The x-, y-, and z components of angular momentum
are shown for (a-c) the fitted Néel energy scale given in
Table I, (d-f) 10% of the fitted Néel energy, and (g-i) 1%
of the fitted Néel energy.
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angular momentum for a periodic system using the EAM,
shifted force exchange, and shifted force Néel Hamiltoni-
ans. The x-, y-, and z components of angular momentum
are shown for (a-c) the fitted Néel energy scale given in
Table I, (d-f) 10% of the fitted Néel energy, and (g-i) 1%
of the fitted Néel energy.

In the previous two sets of studies, it was observed
the angular momentum tends to be better conserved in
the z direction. To investigate why, we examined the
effect of initial magnetization direction on the total an-
gular momentum and magnetization for three different
initial magnetizations: [100] (x direction), [001] (z direc-
tion), and [111] (mixed direction). EAM, shifted force
exchange, and shifted force Néel with the fitted αl and αq

values were used for this study. Figs. 6 and 7 show the re-
sults for an isolated cube and for a bulk periodic system,
respectively. For both geometries it is evident that that
angular momentum is best conserved in the direction of
initial magnetization. For example, Figs. 6(d) and 7(d)
indicate that samples with an initial [100] magnetization
remain strongly magnetized in the x direction even after
thermalization, and Figs. 6(a) and 7(a) show negligible
drift of the x-component of angular momentum. In con-
trast, the y and z directions are almost demagnetized,
with evident drifts in the y- and z-direction magnetiza-
tion. Figs. 6(e), 7(e), 6(b), and 7(b) tell a similar story
for samples with initial [001] magnetization: angular mo-
mentum is well conserved in the z direction. For samples
with [111] initialization, Figs. 6(f), 7(f), 6(c), and 7(c)
show that there is no preferred magnetization direction
after initialization and that angular momentum drifts are
present in all coordinate directions.
A trend similar to the one observed in Figs. 6(b) and

6(e) was reported in Ref. [7]. In that study, a 50 T
field applied to an isolated nanoparticle in the z direc-

tion yielded angular momentum conservation in the z di-
rection, but not in x or y directions due to symmetry
breaking. Interestingly, no external field was necessary
to achieve this result in our case. It appears that the
internal effective field ωi acting on each atom as a re-
sult of exchange and Néel interactions is strong enough
to magnetize the sample in the z direction and achieve a
similar effect.
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FIG. 6: Dependence of total open system angular mo-
mentum and magnetization on initial magnetization di-
rection for an isolated cube. Magnetizations initialized
in (a,d) [100] direction, (b,e) [001] direction, (c,f) [111]
direction.
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FIG. 7: Dependence of total open system angular mo-
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rection for a bulk periodic system. Magnetizations ini-
tialized in (a,d) [100] direction, (b,e) [001] direction, (c,f)
[111] direction.

C. Theoretical Justification of Total Angular

Momentum Conservation with Néel Anisotropy

Dednam et al. [13] showed theoretically that exchange
and uniaxial Hamiltonians conserve total angular mo-
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mentum J . Here we follow the approach in [13] to do the
same for Néel anisotropy. We analyze the pseudo-dipole
term below. The pseudo-quadrupole term is more com-
plicated and produces qualitatively similar results (one
force component perpendicular to the bond and one par-
allel to the bond), so it is omitted for clarity.
The rate of change of the spin angular momentum of

particle i is dSi/dt. Substituting Eqs.(5), (8), and (10)
yields

dSi

dt
=

∂H
∂si

× si. (43)

Substituting the Hamiltonian for the pseudo-dipole Néel
term from Eq. (18)

HNeel,d = −1

2

N
∑

i,j=1,i6=j

l1(rij)

(

(eij · si)(eij · sj)

−si · sj
3

− 2

3

)

(44)

and taking the derivative with respect to si yields

∂HNeel,d

∂si
= −

[ N
∑

j=1,i6=j

l1(rij)

(

(eij · sj)eij −
sj

3

)]

(45)

and

dSi

dt
= −

[ N
∑

j=1,i6=j

l1(rij)

(

(eij · sj)eij −
sj

3

)]

× si. (46)

The above expression shows that the rate of change of
atom i’s spin angular momentum has contributions from
all atoms that interact with i. The contribution of a
single atom j to atom i’s spin angular momentum rate,
denoted here as dSij/dt, is written as

dSij

dt
= −l1(rij)

(

(eij · sj)eij −
sj

3

)

× si. (47)

Similarly, the contribution of a single atom i to atom j’s
spin angular momentum rate can be written as

dSji

dt
= −l1(rji)

(

(eji · si)eji −
si

3

)

× sj . (48)

Recognizing that rij = rji and that (eji · si)eji = (eij ·
si)eij due to cancellation of negative signs yields

dSji

dt
= −l1(rij)

(

(eij · si)eij −
si

3

)

× sj . (49)

The sum of these two expressions represents the rate of
change of spin angular momentum of the i-j pair caused
by Néel anisotropy interactions between atoms i and j:

dSij

dt
+

dSji

dt
= −l1(rij)

(

(eij · sj)eij × si

+(eij · si)eij × sj

)

.

(50)

The contribution of Néel anisotropy to the lattice an-
gular momentum is discussed next. The rate of change
of lattice angular momentum of the i-j pair caused by
pairwise forces acting between atoms i and j is written as
[13]

dLij

dt
+

dLji

dt
= (ri − rj)× fij (51)

where fij is defined as the force exerted on atom i by atom
j. Substituting the Néel pseudo-dipole Hamiltonian into
Eq. (9) yields

fi,Neel,d =

N
∑

j=1,j 6=i

[(

∂l1(rij)

∂rij
− 2l1(rij)

rij

)

(eij · si)(eij · sj)−
∂l1(rij)

∂rij

(

si · sj
3

+
2

3

)]

eij

+
l1(rij)

rij
(eij · sj)si +

l1(rij)

rij
(eij · si)sj .

(52)

Considering only a single term from the summation yields

fij =

[(

∂l1(rij)

∂rij
− 2l1(rij)

rij

)

(eij · si)(eij · sj)

−∂l1(rij)

∂rij

(

si · sj
3

+
2

3

)]

eij

+
l1(rij)

rij
(eij · sj)si +

l1(rij)

rij
(eij · si)sj .

(53)

Recognizing that the cross product (ri − rj)× eij is zero
because the vectors are parallel reduces the above equa-
tion to:

dLij

dt
+

dLji

dt
= (ri − rj)×

(

l1(rij)

rij
(eij · sj)si

+
l1(rij)

rij
(eij · si)sj

)

.

(54)

Factoring out l1(rij) and substituting eij = (ri − rj)/rij
leads to

dLij

dt
+

dLji

dt
= l1(rij)

(

(eij · sj)eij × si

+(eij · si)eij × sj

)

.

(55)

Combining the pairwise rates of change of spin and lattice
angular momentum from Eqs. (50) and (55) gives

dSij

dt
+

dSji

dt
+

dLij

dt
+

dLji

dt
=

dJ ij

dt
+

dJ ji

dt
= 0. (56)

The pairwise total angular momentum is thus conserved
for Néel anisotropy.
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VI. ENERGY CONSERVATION IN

SPIN-LATTICE DYNAMICS

A. EAM and Exchange

In Section V, we investigated angular momentum con-
servation in SLD, and found that angular momentum
exchange between spin and lattice systems only occurs
when an anisotropic energy term is included in the Hamil-
tonian. We also found that total angular momentum
is approximately conserved in the magnetization direc-
tion, even in the absence of an external applied field,
and that reducing the magnitude of the anisotropic en-
ergy improves the angular momentum conservation. Here
we investigate energy conservation, which can be an is-
sue when using the explicit Suzuki-Trotter decomposition
method to solve the equations of motion for SLD [1, 5].
To understand how energy is exchanged between spin
and lattice systems governed by purely isotropic interac-
tions, we first investigate systems with only EAM and
shifted force exchange terms in the Hamiltonian. Us-
ing the same simulation procedure and cube geometry
described in Section V, we computed energy per atom
∆E = [E(t)−E(5 ps)]/N separately for lattice and mag-
netic systems. As with angular momentum, these ener-
gies were measured relative to their values at 5 ps, which
was when the spin and lattice thermostats were turned
off. They are plotted in Fig. 9 for a simulation whose
Langevin thermostats were initialized with a seed value
of 21.
Unlike Fig. 3 for EAM and shifted force exchange,

which shows that the lattice and spin systems do not
exchange angular momentum, Fig. 8 shows that energy
is exchanged between the two systems. The mirror image
plots of lattice energy (blue) and spin energy (orange),
along with the flat line for total energy, illustrate that
energy is well conserved. A linear fit to the total energy,
performed between 5 and 45 ps using the package sci-kit
learn [21], yields a slight energy drift of −2.38 × 10−11

eV/ps/atom. The total energy change over the 45 ps of
the simulation is estimated from this drift as−1.07×10−9

eV/atom, which is 6 orders of magnitude smaller than
the lattice and spin energy fluctuations in Fig. 8. An
important takeaway from the comparison between Figs.
3 and 8 is that energy coupling between spin and lattice
systems is not sufficient to guarantee angular momentum
coupling or angular momentum conservation.
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FIG. 8: Relative values of lattice energy, spin energy,
and total energy for an isolated cube using the EAM and
shifted force exchange Hamiltonians.

B. EAM, Exchange, and Néel

Next, the Néel anisotropy energy was added to the
Hamiltonian. The results (Fig 9a) are similar to those
that did not include the Néel term: spin and lattice en-
ergies are well coupled and total system energy is con-
served. A noteworthy point here is that the energy drift
(−1.58 × 10−7 eV/ps/atom) is much larger than that
without the Néel anisotropy term, although the total en-
ergy change over 45 ps is still negligible compared to the
lattice and spin energy fluctuations. This energy drift is
also larger than that observed in Ref. [7], which analyzed
cobalt nanocubes in a 50 T field using the Suzuki Trotter
decomposition method.
We hypothesize that this may arise from the different

functional forms of the Néel anisotropy energy used in
the two studies. This is explained as follows. The mag-
netic anisotropy energy depends on atomic positions, and
thus exerts forces on the atoms. These forces are usually
calculated using Eq. (1) [1, 3, 6, 7, 13], but this process
is not fully justified for for Eq. (18) because it does not
produce purely central forces. The Néel energy depends
on both the magnitude and direction of the position vec-
tor between atomic pairs, and the application of Eq. (1)
to it generates forces whose directions are determined by
a weighted vector sum of rij , si, and sj . This is shown in
Eq. (52). The noncentral forces arising from the compo-
nents of si and sj that are perpendicular to rij are non-
conservative and they torque the atomic bonds to drive
angular momentum transfer between spins and lattice in
the simulations.
Our Néel anisotropy energy differs from the anisotropy

used in Ref. [7] in two ways: the si · sj/3 + 2/3 term,
which is missing in Ref. [7], and the energy scale l1,
which here is given by the sum of shifted force Bethe-
Slater functions in Eq. (19) and which in Ref. [7] varies
as r−4

ij . Either difference could potentially lead to differ-

ences in energy drift. In particular, the si · sj/3 + 2/3
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term is generally positive for most atom pairs because
the samples are strongly magnetized. Subtraction of this
positive term in Eq. (52) leads to a weaker conservative
(eij -directed) force component such that the nonconser-
vative force is a larger fraction of the total atomic force
in our simulations relative to Ref. [7]. Nonconservative
forces may pose challenges for Suzuki-Trotter integration,
which is rigorously only applicable to conservative sys-
tems [22]. It is possible that the larger energy drifts in
our simulations are related to the increased contribution
of nonconservative forces.
This is supported by studies in which we varied the

strength of the Néel energy term to 10% and 1% of
the Neel dipole and quadrupole energy scales in Table
I. While energy was still well conserved on the scale
of lattice and magnetic energy fluctuations (Figs. 9(b-
c)), we discovered that energy drifts scale linearly with
the strength of the Neel term. The 10% and 1% cases
yielded 1 and 2 order of magnitude reductions in energy
drifts (−1.85× 10−8 and −1.70× 10−9 eV/ps/atom, re-
spectively.)
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FIG. 9: Relative values of lattice energy, spin energy, and
total energy for an isolated cube using the EAM, shifted
force exchange, and shifted force Néel Hamiltonians for
different Néel energy parameterizations αl and αq . (a)
Néel energy values from Table I, (b) 10% of Néel values
in Table I, (c) 1% of Néel values in Table I.

C. Timestep Effects

The Suzuki-Trotter method [19] suffers from energy
drifts that arise from errors in the numerical integration
scheme [5]. These errors scale as ∆t3 [4, 19].To under-
stand the present energy drifts better, we examined their
time step dependence for four cases of Hamiltonian. Fig-
ure 11 shows the results for EAM and shifted force ex-
change Hamiltonians with shifted force Néel anisotropy
energy strengths of 0%, 1%, 10%, and 100%. The results
for each case are averaged over three different initializa-
tions.
The timestep dependence of energy drift in the case of

EAM and exchange follows the expected ∆t3 behavior.
However, addition of the Néel anisotropy energy, even at
levels as small as 1% of the nominal strength, results in a
linear rather than cubic dependence of drift on time step.
This drift, as discussed in the previous section, also scales
linearly with the strength of the Néel interaction. We

believe that the linear dependence on timestep for cases
that include Néel anisotropy energy is a consequence of
the nonconservative forces it introduces. Similar linear
drifts have been found in numerical simulations of the
evolution of galaxies [22].

FIG. 10: Total energy drifts for SLD simulations of an
isolated cube using the EAM, shifted force exchange, and
shifted force Néel Hamiltonians with different Néel en-
ergy scales.

VII. CONCLUSIONS

The Suzuki-Trotter explicit integrator used in the
SPIN package in LAMMPS has been updated to account
for transport and generation of lattice angular momen-
tum in periodic systems. Inclusion of these mechanisms
yields exact conservation of angular momentum in molec-
ular dynamics simulations with periodic boundary con-
ditions. However, simulations of bulk systems and cu-
bic nanoparticles show that total angular momentum is
not conserved in spin-lattice dynamics systems that only
have isotropic exchange interactions, because the central
magnetic forces generated in such systems are unable to
torque the bonds of the lattice. The addition of a Néel
anisotropy energy term generates noncentral, nonconser-
vative forces that couple the spins and the lattice, but
that also generate energy drifts significantly higher than
those found in simulations with only exchange interac-
tions. These drifts, which scale linearly with the magni-
tude of Néel anisotropy energy, may be a consequence of
applying the Suzuki-Trotter integrator to a system with
nonconservative forces.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation MRSEC program (grant number DMR-
1720530) and the Department of Education GAANN pro-
gram (grant number P200A160282). This work used
the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE) [23], which is supported by National
Science Foundation grant number ACI-1548562. Specifi-
cally, it used the Bridges system [24], which is supported
by NSF award number ACI-1445606, at the Pittsburgh
Supercomputing Center (PSC).



13

Appendix: Implementation in SLD Solver

The conservation of angular momentum theory out-
lined in Section III A for open systems was imple-
mented in the SPIN package [1] of the 3Mar20 release
of LAMMPS [15], which uses the Suzuki-Trotter decom-
position method to integrate the equations of motion.
The pseudo code that outlines the implementation of this
method is outlined in Figure 11.
The modified angular momentum method is imple-

mented in the Suzuki-Trotter decomposition integrator
as follows. Initially, the torque T on each atom i in the
simulation box is computed using forces from the image
atoms, and the lattice angular momentum is also com-
puted. The variable rp in this calculation is a wrapped
atom coordinate vector advanced at each time step along
with the corresponding unwrapped coordinate vector r.
Differences between r and rp are used to identify which
atom crosses the boundary and the exact time step at
which the crossing occurs. This information is used to
update the vector rid, which is used to store image flags.
If an atom wraps around the simulation box as it moves
in a positive (negative) coordinate direction, its image
flag is set to 1 (-1). Otherwise it is set to zero. The value
of rid is used to calculate the particle transport term Q.
Then, following the procedure in the SPIN package, the
Suzuki-Trotter decomposition advances the velocities a
half time step, the spins two quarter time steps, the un-
wrapped and wrapped positions a full time step, and the
spins the final two quarter time steps. In this decomposi-
tion, the angular frequency vector is updated every quar-
ter time step to compute spins at the subsequent quarter
time step. The total (f) and image (fimage) forces im-
parted on the atoms are calculated using the updated
positions at time t + ∆t. Newton’s third law has been
turned off via the LAMMPS setting ”newton off off” to
facilitate the separate computation of f and fimage. The
net lattice angular momentum influx during ∆t is then
calculated using the velocity at time t + ∆t/2 because
that is the velocity with which the atoms cross the bound-
ary. The velocity at t+∆t is then computed, completing
the Suzuki-Trotter decomposition method. Finally, the
torque and angular momentum are computed at t+∆t,
the torque is integrated from t to t + ∆t, the modified
angular momentum is found using the trapezoidal rule,
and the modified angular momentum Lcorr is calculated.

% Initialization (t = 0)
for all atoms do

T[t] = compute torque(fimage[t], rp[t]) ⊲ Eq. (38)
L[t] = compute angular momentum(rp[t],v[t],m)
⊲ Eq. (3)

% Initial Integration
for all atoms do

v[t+∆t/2] = compute velocity(v[t], f [t], m)
s[t+∆t/4] = compute spin(s[t],
compute omega(s[t], r[t]));

s[t+ 2∆t/4] = compute spin(s[t+∆t/4],
compute omega(s[t +∆t/4], r[t]));

r[t+∆t] = compute position(r[t], v[t+∆t/2]);
rp[t+∆t] = compute position(rp[t], v[t+∆t/2]);
s[t+ 3∆t/4] = compute spin(s[t+ 2∆t/4],
compute omega(s[t + 3∆t/4], r[t+∆t]));

s[t+∆t] = compute spin(s[t+ 3∆t/4],
compute omega(s[t + 3∆t/4], r[t+∆t]));

% Periodic Wrapping
for all atoms do

if rp[t+∆t] > 0.0 & rp[t+∆t] < Box then
rid[t+∆t] = 0;

if rp[t+∆t] < 0.0 then
rp[t+∆t] = rp[t+∆t] +Box;
rid[t+∆t] = −1;

if rp[t+∆t] > Box then
rp[t+∆t] = rp[t+∆t]−Box;
rid[t+∆t] = 1;

% Force Calculation
for all atoms do

f [t+∆t],fimage[t+∆t] = compute force(rp[t+∆t])

% Wrapping Momentum Flux
for all atoms do

Qdt[t+∆t] = compute flux(rp[t+∆t], rid[t+
∆t],v[t+∆t/2], m); ⊲ Eq. (41)

% Final Integrate
for all atoms do

v[t+∆t] = compute velocity(v[t+∆t/2],
f [t +∆t], m);

% Image Atom Torque & Angular Momentum
Calculation

for all atoms do
T[t+∆t] =
compute torque(fimage[t+∆t], rp[t+∆t]); ⊲ Eq.
(38)

Tdt[t+∆t] = compute torque integral(T[t],
T[t+∆t]); ⊲ Eq. (40)

L[t+∆t] = compute angular momentum(rp[t+
∆t],v[t+∆t],m); ⊲ Eq. (3)

Lcorr[t+∆t] =
compute modified angular momentum(L[t+∆t],
Qdt[t+∆t], Tdt[t+∆t]); ⊲ Eq. (42)

FIG. 11: Overview of the Suzuki-Trotter decomposition
method with conservation of momentum tracking.
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