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The thermal equation of states for fcc iridium (Ir) is obtained from first-principles molecular
dynamics up to 3000 K and 540 GPa. The equation of state (EoS) is globally fitted to a simpli-
fied free energy model and various parameters are derived. The theoretical principal Hugoniot is
compared with shockwave experiments, where discrepancy suggests formation of new Ir phases. A
few representative EoS parameters, such as bulk modulus KT , thermal expansivity α, Grüneisen
parameter γ, and constant pressure capacity CP , Debye temperature, ΘD are computed to compare
with experimental data.

I. INTRODUCTION

Iridium (Ir) is a 5d transition metal of the platinum
group. It is the second-densest metal with a density of
22.56 g/cm3 at ambient condition, only slightly lower by
about 0.12% than the densest metal osmium (Os). It has
the largest shear modulus, G=210 GPa among the face-
centered cubic (fcc) metals. The solid Ir remains in the
fcc structure up to the melting point of 2719 K[1]. Due to
its prominent thermophysical and mechanical properties
and high corrosion resistance, it is used in many tech-
nological applications, such as crucibles, thermocouples,
spark plugs, aircraft engine parts, and deep water pipes.
The lack of phase transitions, simple fcc structure, high
melting temperature, and non-reactivity, makes it ideal
for experiments as a heater, absorber, or standard for
example in diamond-anvil cell (DAC) experiments, and
ideal for studying effects of compression on noble metals.
Our understanding of the properties of Ir is still limited,
and fundamental research on it remains of great interest.

With the advances in lab technologies, extreme con-
ditions (P > 200 GPa, T > 2000 K) become more and
more amenable to study. Fundamental to all studies at
extreme conditions is the equation of state (EoS) that
relates P, V, T , and U or F , where symbols of P, V, T, U ,
and F stand for pressure, volume, temperature, internal
energy, and Helmholtz free energy. The earliest investiga-
tion of iridium EoS dates back to 1937 by P.W. Bridgman
up to 7 GPa[2, 3], followed by work of Schock and John-
son [4] and then of Akella[5] up to 30 GPa. Cerenius and
Dubrovinsky [6] measured the compressibility of Ir using
DAC up to 65 GPa. Later, Cynn et al. found that Ir
has the second-lowest compressibility of any element af-
ter Os from their DAC experiment up to 65 GPa, which
was corroborated by first-principles calculations[7].

For the EoS diagrams, zero-temperature first-
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principles EoS can be supplemented with finite-
temperature vibrational entropies from the phonon dis-
persions. Phonon frequencies can be calculated from fi-
nite differences, or with the density-functional perturba-
tion theory (DFPT) [8]. Thanks to the development in
the density functional theory toolkit, theoretical EoS for
Ir appeared in several experimental work [7, 9–12]. How-
ever, these theoretical EoS’s were limited to low tem-
peratures (around 300 K) using static calculations fitted
to Birch-Murnaghan (BM) EoS [13]. Anharmonic lattice
vibrations were considered in Ref.[9], but the focus was
the phase diagram and phase stability. Anzellini et al.
studied Ir up to 80 GPa and 3100K combining in situ
synchrotron X-ray diffraction using laser-heating DACs
and density functional theory calculations [14]. A com-
prehensive study covering a larger range of temperatures
and pressures has not been performed. Indeed, studying
other phases would be interesting, but in applications as
a standard in experiments, we focus on the fcc phase.
In this work, we aim to provide the EoS for fcc Ir up to
3000 K and 540 GPa in first-principles molecular dynam-
ics (FPMD).

II. THEORETICAL EOS FROM FPMD

First principles methods have been widely adopted in
the simulation of condensed phases where no phenomeno-
logical parameters are needed. They give access to a
space of thermodynamic conditions, which are hard to
reach for experimental efforts and can be used to help cal-
ibrate experiments, where, for example temperature data
are not sometimes available at the desired conditions.
FPMD takes into account of anharmonic vibrations of
ions directly at finite temperatures through thermostat-
ting. The electronic free energy is given by the Mermin-
Kohn-Sham density functional theory (DFT) [15, 16].
FPMD becomes the most used tool for predicting the
thermal EoS, subject to the exchange-correlation free en-
ergy functional approximations[17–19]. Classical molec-
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FIG. 1. Static equations of state from GBRV pseudopoten-
tial planewaves (QE) and LAPW (elk) calculation are com-
pared. The Vinet EoS was used to fit the energy-volume
curve. Inset figure shows the pressure difference and the max-
imum is less than 10 GPa.

ular dynamics is suitable for high temperatures above the
Debye temperature as it includes anharmonicity exactly,
unlike other approaches. At lower temperature devia-
tions from the P −V −T equation of state are small, but
heat capacities and high order properties such as thermal
expansivity which show strong quantum effects at tem-
perature below the Debye temperature are indeed less
accurate.

A. FPMD details

First, we computed the static EoS of Ir at zero temper-
ature. We used Quantum Espresso ver. 6.7 throughout
this work [20]. We used the scalar-relativisitic (Garrity-
Bennett-Rabe-Vanderbilt) GBRV ultrasoft pseudopoten-
tial [21] with Perdew-Burke-Erzernhorf (PBE) exchange-
correlation (xc) functional [22, 23]. The electronic con-
figuration for the pseudopotential is [Xe]5p6.05d8.5. EoS
was derived by fitting energy-volume curve in the 3rd-
order BM equation. To validate the range of applicabil-
ity of the pseudopotential, we performed similar calcula-
tions in linearized augmented planewave (LAPW) code
Elk [24] and above two P −V curves agree well up to 550
GPa (see Fig.1).

For the FPMD calculation, we prepared a cubic box
containing 108 atoms in the fcc structure. The en-
ergy cutoffs for planewaves and density are 80 Ry and
320 Ry, respectively. Energy is converged within 5
meV per atom. Only Γ point was sampled. The
bands are occupied according to the Fermi-Dirac dis-
tribution at each temperature, and the number of
bands are large enough to guarantee the occupation
number is smaller than 10−7 for the highest occupied
state. Early studies showed that the spin-orbit cou-
pling does not affect the EoS and hence we used spin-

unpolarized DFT neglecting spin-orbit coupling. Then
conditions at a combination of lattice constants a/a0 =
0.86, 0.88, 0.90, 0.92, 0.96, 1.00 (a0 = 3.801 Å) and tem-
peratures T = 300, 1000, 1500, 2000, 2500, 3000 K were
used in the simulations (see conditions in Table I). The
time step is 20 a.u. (0.9676 fs). The equilibrated time
steps are more than 2000 to get the statistical means
and standard deviations, which give less than 1% stan-
dard deviation. The ionic temperature is regulated by
the stochastic-velocity rescaling thermostat [25] and no
quantum corrections to the ionic motion are included.

B. Free energy model

We fit the Helmholtz free energy (F ) as a function of V
and T , F (V, T ). In FPMD, we have direct access to the
variables of volume (V ), temperature (T ), pressure (P ),
and internal energy (U). Cohen and Gülseren [26] stud-
ied the thermal EoS of tantalum (Ta) in full potential
LAPW and mixed-basis pseudopotential methods. An
accurate high-temperature global EoS was formed from
the T = 0 K Vinet isotherm and the thermal free-energy
was fitted by the polynomial expansion in V and T (see
Eq. (11) in Ref. [26]). de Koker and Stixrude [27] com-
puted the free energy of MgO periclase and MgSiO3 per-
ovskite using FPMD, where the excess free energy was
fitted in a similar expansion. Incorporating the Debye
model [28], the total free energy is approximated by the
polynomial expansion up to order Ni, Nj ,

F (V, T ) =

Ni,Nj∑
i,j=0

AijT
i(V −

2
3 )j + F0 . (1)

Neglecting the zero-point motion, F0 =
kBT [−D3(x) + 3 ln(1− e−x)] where a dimensionless
parameter x = ΘD

T with Debye temperature ΘD. kB
is the Boltzmann constant. D3(x) is the third order
Debye function (see Appendix B). Aij are fitting co-
efficients yet to be determined. For comparison, we
mention the classical model, where F0 = −3kBT lnT ,
with T lnT giving the proper classical behavior at low
temperatures. That is CV = 3kB and S = −∞ at 0 K.
The Debye temperature ΘD cannot be determined from
the U(T, V ), P (T, V ) data from the classical molecular
dynamics, so we obtain ΘD from the RMS displacements
(see below). For simplicity, the Debye temperature at
P = 0 GPa, T=300 K, is used.

III. RESULTS

We obtained the equilibrated quantities from FPMD,
where U,P includes the ionic kinetic energy and ideal
gas pressure, respectively. We subtracted each internal
energy by the global minimum, as only the energy dif-
ference matters. The pressure and internal energy are
P = −

(
∂F
∂V

)
T
, U = F + TS = F − T

(
∂F
∂T

)
V

. (U,P )
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TABLE I. Pressure P and internal energy per atom U and its standard deviation of the means Perr and Uerr are extracted from
FPMD simulations of fcc Ir for a given temperature T and atomic volume V (or the mass density ρ). The global minimum of
U is underlined.

T (K) V (bohr3) ρ (g/cm3) P (GPa) Perr (GPa) U (Ry) Uerr (Ry)
300 61.01 35.31 527.6 0.01 -181.353 0.00004
300 63.14 34.12 451.6 0.01 -181.423 0.00004
300 67.54 31.89 326.1 0.02 -181.538 0.00005
300 72.14 29.86 229.5 0.01 -181.624 0.00004
300 81.97 26.28 99.3 0.02 -181.729 0.00005
300 92.65 23.25 25.0 0.03 -181.770 0.00006

1000 61.01 35.31 531.3 0.04 -181.339 0.00012
1000 63.14 34.12 455.3 0.06 -181.410 0.00021
1000 67.54 31.89 330.0 0.04 -181.524 0.00014
1000 72.14 29.86 233.4 0.06 -181.611 0.00017
1000 81.97 26.28 103.5 0.06 -181.715 0.00016
1000 92.65 23.25 29.5 0.07 -181.756 0.00018

1500 61.01 35.31 533.9 0.08 -181.329 0.00039
1500 63.14 34.12 458.0 0.06 -181.400 0.00022
1500 67.54 31.89 332.8 0.07 -181.514 0.00021
1500 72.14 29.86 236.6 0.09 -181.600 0.00033
1500 81.97 26.28 106.4 0.09 -181.705 0.00027
1500 92.65 23.25 32.6 0.13 -181.746 0.00034

2000 61.01 35.31 536.9 0.10 -181.318 0.00037
2000 63.14 34.12 461.0 0.08 -181.389 0.00027
2000 67.54 31.89 335.6 0.08 -181.504 0.00027
2000 72.14 29.86 239.2 0.11 -181.591 0.00034
2000 81.97 26.28 109.4 0.17 -181.694 0.00054
2000 92.65 23.25 35.6 0.22 -181.735 0.00076

2500 61.01 35.31 539.5 0.14 -181.308 0.00038
2500 63.14 34.12 463.7 0.14 -181.379 0.00051
2500 67.54 31.89 338.6 0.10 -181.493 0.00032
2500 72.14 29.86 242.3 0.17 -181.579 0.00058
2500 81.97 26.28 112.5 0.15 -181.683 0.00046
2500 92.65 23.25 38.7 0.19 -181.725 0.00053

3000 61.01 35.31 542.5 0.11 -181.298 0.00037
3000 63.14 34.12 466.6 0.20 -181.368 0.00072
3000 67.54 31.89 341.1 0.16 -181.484 0.00057
3000 72.14 29.86 245.6 0.22 -181.568 0.00075
3000 81.97 26.28 115.1 0.23 -181.674 0.00068
3000 92.65 23.25 41.7 0.45 -181.714 0.00141

data are grouped as a pair and fitted together to avoid
bias between these two quantities. The fitting was per-
formed using the weighted least-square fit with the lm
function including offset in R language. Internal energy
U and pressure P were fitted simultaneously to F (V, T ).
w = 1/∆2 is set for the weight, where ∆ is the stan-
dard deviation of U and P . We fitted Eq. (1) with
Ni = 2, Nj = 3. We analyzed the MD trajectories us-
ing the code VMD, and computed the root-mean-square
displacement (RMSD) for each run. From this we can
obtain the effective Debye temperature ΘD using:

〈u2〉 =
3h2

4π2MkBΘD

(
D1(ΘD/T )

ΘD/T
+

1

4

)
, (2)

where ~u,M, h are the displacement vector, the ion mass,
the Planck constant, and D1 is the first order Debye func-
tion. The quantum correction term 1

4 shall be omitted
in the classical treatment. Since the phonon density of
states is not exactly Debye-like, this is the effective De-
bye temperature for the second moment of the vibrational
density of states (VDOS) , not exactly equal to the ther-
modynamic Debye temperature [29].

The residual is the deviation between the target func-
tion and the sample mean. From Fig. 2, we observe that
the residuals are randomly distributed across the volume
range. The absolute value of residuals for U and P are
less than 0.002 Ry and 1.0 GPa (except for data point at
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FIG. 2. The residuals of the fit to Eq. (1) for the EoS of
fcc iridium are shown in a) and b). ∆U = U − Umin, where
Umin is the minimum in the dataset underlined in Table I.
The fitted curves are compared against the dataset in c) and
d). ∆U and thermal pressure P − P300K from the fit align
well against the dataset.

3000 K). For the internal energy, a global minimum Umin

is subtracted from the dataset. On the scale of half Ry,
the internal energy is well represented. As for the pres-
sure, we computed the pressure differences with respect
to the T = 300 K reference and the fitted curves aligned
with the dataset. Only the T = 3000 K fit is slightly off.
The resultant fitting coefficients in atomic unit for both
the Debye model and the classical model are tabulated
(see Table II). The statistical summary from lm function
is included in the Appendix A (see Fig. 12).

A. P − V − T EoS

The equilibrium atomic volume (P = 0 GPa) at 300
K is 14.559 Å3, 2.9% larger than the experimental value
14.145 Å3. The overestimation of the lattice constants
is expected for the PBE exchange-correlation functional.
Experimental P − V curves of 300 K isotherm are read-
ily compared with our theoretical predictions. Pressures
measured by Akella et al. [5] are underestimated for
compression (see Fig. 3), ∆V/V0 larger than 0.05 with
∆V = V0 − V . Overall the theoretical 300 K isotherm
agrees well with the experiments within the uncertainty
especially when the compression is smaller than 0.15
(P < 70 GPa) [6, 10, 30]. In contrast, the 3rd order BM
fit done by Monteseguro et al. [10] sits along our 1000 K

isotherm for compression > 0.15, and reflects the inade-
quecy of BM EoS at high compression. For comparison,
we have also included the FPMD and experimental study
of Anzellini et al. [14]. Their P−V −T curves (both the-
ory and experiments) below 80 GPa are obtained using
the EoSFit7 package with ingredients such as the third-
order BM EoS for the isothermal part. Their FPMD used
the local density approximations and smaller energy cut-
off (300 eV). Isotherm of 0 K compared well against our
300 K curve at low compression but not at high com-
pression (compression > 0.90). Similar for the isotherms
of 1000 K and 3000 K. The shock-wave experiment by
Al’tshuler et al. [31–33] exhibits quite distinct behavior
in the P −V curve. Around compression of 0.1, the tem-
perature is pinned slightly above the isotherm of 1000
K and at compression of 0.22 the temperature is close
to the 3000 K isotherm. The high compression pressure
(≈ 600 GPa) of Al’tshuler et al. was mistakenly reported
in Ref. [10]. The recent shockwave experimental work by
Khishchenko [34] is also compared. We observe the room
temperature isotherm of recent work by Khishchenko et
al. align almost perfectly with our EoS data. The data
by Monteseguro et al. runs along our 1000 K isotherm for
compression over 0.1. It is well-known that dynamic com-
pression experiment lead to a temperature rise. Contrary
to the claim that the temperature effect is negligible by
Monteseguro et al., [10] we believe the temperatures in-
crease (not measured) along the shock compression P−V
curve is significant from our predicted EoS.

Thermal pressure measures the pressure change upon
temperature increase at constant volume, Pth(V, T ) =
P (V, T )− P (V, T0). The thermal pressure is quite linear
in T given that αKT (α and KT are the thermal expan-
sivity and the bulk modulus) is constant in the classical
regime (above the Debye temperature), expressed as

Pth(V, T ) =

∫ T

T0

dT

(
∂P

∂T

)
V

=

∫ T

T0

dT αKT . (3)

An oversimplified linear equation (see Fig.4) could be
given to the thermal pressure Pth(T ) = λT , with λ =
0.0056 GPa/K for the equilibrium volume. One could
also see the volume dependence is weak from the bottom
right panel of Fig. 2.

The equilibrium bulk modulus B0 (or inverse com-
pressibility at room temperature and zero pressure) is
an important parameter in the EoS formula, such as the
Vinet EoS [35, 36]. The fitted bulk modulus is com-
pared against earlier studies (see Table. III). We note
that Cerenius and Dubrovinsky [6] obtained similar bulk
modulus, 354 GPa versus 306 GPa, by fitting the second
order BM EoS with constraint B′0 = 4, or third-order BM
EoS without constraint both using experimental equilib-
rium volume. Park et al. obtained the bulk modulus of
399 GPa and 344 GPa for the LDA and GGA functional
in DFT, respectively [37]. We note that B0 from our
fit is close to the accepted value of about 365 GPa and
evidently smaller than Cynn’s value 383 GPa [7]. The
parameter B′0 from our model is 5.3.
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TABLE II. Coefficient matrix A in atomic units for the choice of F0, the Debye model and the classical model. The root mean
squared errors (RMS) in the fitting for the pressure P (in GPa) and the internal energy U (in mRy) are listed.

Aij P RMS (GPa) U RMS (mRy)

Debye model
1.904 -62.84 88.81 8175

0 0.008698 -0.1175 0.5574
6.681× 10−09 −3.752× 10−07 6.321× 10−06 −3.439× 10−05

0.5380 0.706

Classical model
1.902 -62.83 88.68 8176

0 0.008676 -0.1171 0.5549
6.567× 10−09 −3.667× 10−07 6.166× 10−06 −3.347× 10−05

0.5378 0.661

TABLE III. Experimental equilibrium volume V0 (Å3 per atom), bulk modulus B0 (GPa), and B′0 at room temperature are
compared against reported theoretical results. Data and method are briefly summarized, and the original references are given.

Method description V0 B0 B′0 References
(Å3/at) (GPa)

Exp. data fitted to 3rd-order BM EoS 14.120 339 5.3 Monteseguro et al. [10]
Exp. data fitted to 3rd-order BM EoS 14.145 383 3.1 Cynn et al. [7]

Exp. data fitted to Cerenius and Dubrovinsky[6]
2nd-order BM EoS, with B′0 = 4 14.173 (exp. value) 354 4.0

3rd-order BM EoS, without constraint 14.173 (exp. value) 306 6.8
DFT data fitted to BM EoS Park et al. [37], Table 1 and 2

PAW LDA 13.925 399
PAW GGA 14.524 344

FPMD data fitted to 3rd-order BM EoS 14.150 366 5.0 Burakovsky et al. [9]
FPMD data fitted to our EoS 14.559 361 5.3 This work

B. Shock compression

High pressure high temperature conditions are gener-
ated by laser heating [38] or resistive heating [39] in a
DAC or by laser or gas gun [40] driven shock compres-
sion. Strong shocks obey the Rankine-Hugoniot,

U − U0 +
1

2
(P + P0)(V − V0) = 0 . (4)

Since the analytical expression for U,P as a function of
V, T is known, for each volume V , we solve Eq. (4) by
searching its root T given the experimental value V0, T0.

We compared our predicted principle Hugoniot with
available shock experimental data from several facilities
[41, 43] (Fig. 5). Our theoretical principle Hugoniot
agrees well with that from earlier data of Al’tshuler and
LANL March, as well as more recent data of STAR Hugo-
niot, for P < 200 GPa. Above 200 GPa, our predicted
pressure is higher than that of LANL and STAR but
lower than Al’tshuler’s. Our theoretical Hugoniot below
3000 K (shock temperature) are fairly reliable which cor-
respond to pressure less than 200 GPa. The shock tem-
perature, calculated as the solution to Eq. (4), is shown.

C. Equation of state parameters

Thermal EoS parameters such as thermal expansivity
α, isothermal compressibility βT , Grüneisen parameter
γ, and the heat capacity CV and CP are obtained by

differentiation and algebraic manipulation of Eq. (1). We
now discuss some of these parameters. As expected from
the thermal pressure, αKT is weakly dependent on the
volume and temperature (see Fig. 6). The Grüneisen
parameter

γ = V

(
∂P

∂U

)
V

= V
αKT

CV
(5)

is another important parameter. It is used in the Mie-
Grüneisen EoS, where γ is assumed independent of tem-
perature. The span of γ as a function of temperature
reduces when the pressure increases (see Fig. 7). For
high compressions, it is indeed fairly temperature inde-
pendent.

The volumetric thermal expansivity α =
−1/V (∂V/∂T )P for isotropic materials is three times the
linear thermal expansivity coefficient αL, α = 3αL. α in
Fig. 8 is essentially temperature independent but rather
volume sensitive. Our theoretical prediction is below the
reported experimental value [44], but it is noted that
around room temperature, our theory prediction gives
the right thermal expansion coefficient. The expansivity
has downsized by a factor of 4 when the pressure goes
to 300 GPa. The heat capacity at high pressures are
almost linear above 500 K, see Fig. 9. The higher the
temperature, the slope of CP is smaller. At 0 GPa, the
predicted value 25.68 J K−1 mol−1is fairly accurate and
only 2.3% larger than the experimental heat capacity
25.10 J K−1 mol−1[45], given that we used the formula,
CP = CV (1 + Tαγ) (see Appendix A) with errors in
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FIG. 8. The volumetric thermal expansivity α of fcc iridium
as a function of pressure at various temperatures. Halvor-
son and Wimber measured the linear thermal expansion as
αt = a0 + a1t + a2t

2 + a3t
3 with a0 = 6.167 × 10−6, a1 =

3.038×10−9, a2 = −0.8448×10−12, a3 = 0.5852×10−15, for t
expressed in ◦C [44] at ambient pressure (see inset solid line),
where one can show α = 3(L0/Lt)αt for isotropic materials
with reference length L0.

agrees particularly well with their experimental findings.
Their reported 〈u2〉 at higher temperatures (T=673 K
and 823 K, see Table I of Ref. [46]) however, are higher
than our FPMD predictions. This is reasonable since
our NVT ensembles at these temperatures lead to higher
pressure and confined vibrations. It is worth to note
that their phonon density of states (PDOS) integrates
to 1, and is not fitted well at higher energies. Further
investigation of PDOS with a FPMD simulation to com-
pare against the experiments may give insight to the an-
harmonic effects. Debye temperatures of isochores using
Eq. (2) exhibit weak temperature dependence(see Fig.
11).

IV. CONCLUSIONS

We have performed a series of FPMD simulations for
the fcc Ir at conditions up to 3000 K and 540 GPa. By
using a simplified model for the free-energy as a func-
tion of temperature and volume and the statistical av-
erage quantities internal energy and pressure (U,P ), the
thermal EoS is obtained by globally fitting to the model.
We have compared previous experimental EoS’s and pro-
vided the thermal EoS up to 3000 K, and 540 GPa. The
P − V − T curve is reasonably agreeing with the fitted
BM EoS at low compression but differs at high com-
pression. Our first-principles EoS accords with the most
recent shockwave experiment work by Khishchenko We
find that αKT and the thermal pressure is quite constant
from its dependence in temperature and which turns out
to be true for a wide range of materials. We have shown
some representative derived thermal parameters against
available experiments and found agreements and discrep-
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FIG. 9. Constant pressure heat capacity CP as a function of
temperature (top panel) and pressure (bottom panel). Exper-
imental value at ambient condition is 25.10 J K−1 mol−1[45].
The classical model (blue dash-dotted) for 0 GPa starts to
deviate for T below 500 K, and approaches the classical limit
as T → 0 K. Inset shows the constant volume heat capacity
CV . Heat capacity largely reduces when pressure goes up.
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FIG. 10. RMSD as a function of temperature. Experimental
data was obtained by Moseley et al. [46] for constant pressure.

ancies. Further work might resolve these discrepancies.

V. ACKNOWLEDGMENTS

The work was done under the auspices of the US Na-
tional Science Foundation CSEDI grant EAR-1901813 to



8

0 500 1000 1500 2000 2500 3000 3500 4000
T (K)

300

400

500

600

700

Θ D
 (K

)

a/a0
1.00
0.96
0.92
0.90
0.88
0.87

FIG. 11. Debye temperature ΘD as a function of tempera-
ture. Zero point motion is not included to obtain the Debye
temperature. In the high temperature, classical region, our
RMSD are classical from classical FPMD (Fig. 10) but when
an effective classical Debye temperature is derived to model
the RMSD, there is a large change with decreasing tempera-
ture into to quantum regime in the Debye model. A 4th order
polynomial fit is done only for higher temperature due to the
classical treatment to the ions.

R.E.C. and the National Natural Science Foundation of
China (Grant No. 12104230) to K.L.; R.E.C. is sup-
ported by the Carnegie Institution for Science and grate-
fully acknowledges the Gauss Centre for Supercomputing
e.V. for funding this project by providing computing time
on the GCS Supercomputer Supermuc-NG at Leibniz Su-
percomputing Centre. All the FPMD calculations were
performed on Supermuc-NG.

Appendix A: Thermodynamic relations

Once the Helmholtz free energy F = F (V, T ) is known
as a function of volume (V ) and temperature (T ), the fol-
lowing thermodynamical quantities can be obtained from

it [47]:

P = −
(
∂F

∂V

)
T

, (A1)

S = −
(
∂F

∂T

)
V

, (A2)

KT = β−1
T = −V

(
∂P

∂V

)
T

= V

(
∂2F

∂V 2

)
T

, (A3)

CV = T

(
∂S

∂T

)
V

= −T
(
∂2F

∂T 2

)
V

, (A4)

αKT = −
(
∂2F

∂T∂V

)
, (A5)

γ = V

(
∂P

∂U

)
V

= V
αKT

CV
, (A6)

CP

CV
=
KS

KT
= 1 + Tαγ , (A7)

U = F + TS , (A8)

where pressure, entropy, isothermal compressibility (its
inverse is the bulk modulus KT ), constant volume
molar heat capacity, volumetric expansion coefficient,
Grüneisen parameter, internal energy are denoted by
P, S, βT , CV , α, γ, U . CP is the constant pressure molar
heat capacity. The parameter B′0 (or K ′0 = ∂K

∂P

∣∣
P=0

) can
thus be computed using above relations:

K ′ =
∂K

∂P

=

(
∂K

∂T

)
V

(
∂T

∂P

)
V

+

(
∂K

∂V

)
T

(
∂V

∂P

)
T

=

(
∂K

∂T

)
V

1(
∂P
∂T

)
V

+

(
∂K

∂V

)
T

1(
∂P
∂V

)
T

=

(
∂K

∂T

)
V

1(
∂P
∂T

)
V

−
(
∂K

∂V

)
T

V

KT
. (A9)

Appendix B: Debye Model

The Helmholtz free energy F of a vibrating lattice at
volume V and temperature T , can be approximated as

F (V, T ) = E(V ) + Fvib(V, T ) + Fel(V, T ) , (B1)

where Fvib is the vibrating energy of the lattice and Fel

is the thermal electronic free energy which is typically
negligible. Moruzzi et al. [28] proposed an empirical
Debye model with

Fvib = kBT
[
−D3(x) + 3 ln(1− e−x)

]
+

9

8
kBΘD , (B2)

with Debye temperature ΘD and dimensionless param-
eter x = ΘD

T . The last term is the zero-point energy.
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FIG. 12. The fit summary plot from the lm function in R.

D3(x) is the third order Debye function. The nth order
Debye function is defined as

Dn(x) =

∫ x

0

tn

et − 1
dt, x ≥ 0 , (B3)

where n, a non-negative integer, is the order of the Debye
function. The vibrational entropy is

Svib = 4kBD(x)− 3kB ln(1− e−x) . (B4)

Neglecting the zero-point motion, the vibrational internal
energy Uvib thus can be obtained

Uvib = Fvib + TSvib = 3kBTD(x) . (B5)
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[18] V. V. Karasiev, L. Caldeŕın, and S. B. Trickey, Phys.
Rev. E 93, 063207 (2016).

[19] V. V. Karasiev, J. W. Dufty, and S. B. Trickey, Phys.
Rev. Lett. 120, 076401 (2018).

[20] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-
cioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris,
G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis,
A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P.
Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcov-
itch, Journal of Physics: Condensed Matter 21, 395502
(2009).

[21] K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Van-
derbilt, Computational Materials Science 81, 446 (2014).

[22] J. P. Perdew, K. Burke, and M. Ernzerhof, Physical
Review Letters 77, 3865 (1996).

[23] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.
Lett. 78, 1396 (1997).

[24] http://elk.sourceforge.net/,.
[25] G. Bussi, D. Donadio, and M. Parrinello, The Journal

of Chemical Physics 126, 014101 (2007).
[26] R. E. Cohen and O. Gülseren, Phys. Rev. B 63, 224101

(2001).
[27] N. De Koker and L. Stixrude, Geo-

physical Journal International 178, 162
(2009), https://academic.oup.com/gji/article-
pdf/178/1/162/5992596/178-1-162.pdf.

[28] V. L. Moruzzi, J. F. Janak, and K. Schwarz, Phys. Rev.
B 37, 790 (1988).

[29] D. C. Wallace, Phys. Rev. 139, A877 (1965).
[30] K. V. Yusenko, S. Khandarkhaeva, T. Fedotenko,

A. Pakhomova, S. A. Gromilov, L. Dubrovinsky, and

http://www.jstor.org/stable/20023239
http://www.jstor.org/stable/20023239
http://www.jstor.org/stable/20023677
http://www.jstor.org/stable/20023677
http://www.jstor.org/stable/20023677
http://www.jstor.org/stable/20023677
https://doi.org/https://doi.org/10.1016/0022-3697(82)90045-2
https://doi.org/https://doi.org/10.1016/0022-3697(82)90045-2
https://doi.org/ https://doi.org/10.1016/S0925-8388(00)00767-2
https://doi.org/ https://doi.org/10.1016/S0925-8388(00)00767-2
https://doi.org/10.1103/PhysRevLett.88.135701
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/PhysRevB.94.094112
https://doi.org/10.1103/PhysRevB.94.094112
https://doi.org/https://doi.org/10.1016/j.physb.2009.09.096
https://doi.org/https://doi.org/10.1016/j.physb.2009.09.096
https://doi.org/10.1007/s10853-014-8627-z
https://doi.org/10.1103/PhysRev.71.809
https://doi.org/10.3390/cryst11040452
https://doi.org/10.3390/cryst11040452
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/ 10.1103/PhysRevLett.112.076403
https://doi.org/10.1103/PhysRevE.93.063207
https://doi.org/10.1103/PhysRevE.93.063207
https://doi.org/10.1103/PhysRevLett.120.076401
https://doi.org/10.1103/PhysRevLett.120.076401
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/https://doi.org/10.1016/j.commatsci.2013.08.053
https://doi.org/10.1103/PhysRevLett.78.1396
https://doi.org/10.1103/PhysRevLett.78.1396
https://doi.org/10.1063/1.2408420
https://doi.org/10.1063/1.2408420
https://doi.org/10.1103/PhysRevB.63.224101
https://doi.org/10.1103/PhysRevB.63.224101
https://doi.org/10.1111/j.1365-246X.2009.04142.x
https://doi.org/10.1111/j.1365-246X.2009.04142.x
https://doi.org/10.1111/j.1365-246X.2009.04142.x
http://arxiv.org/abs/https://academic.oup.com/gji/article-pdf/178/1/162/5992596/178-1-162.pdf
http://arxiv.org/abs/https://academic.oup.com/gji/article-pdf/178/1/162/5992596/178-1-162.pdf
https://doi.org/10.1103/PhysRevB.37.790
https://doi.org/10.1103/PhysRevB.37.790
https://doi.org/10.1103/PhysRev.139.A877


10

N. Dubrovinskaia, Journal of Alloys and Compounds
788, 212 (2019).

[31] L. V. Al'tshuler and A. A. Bakanova, Soviet Physics Us-
pekhi 11, 678 (1969).

[32] L. Al’Tshuler, A. Bakanova, I. Dudoladov, E. Dynin,
R. Trunin, and B. Chekin, Journal of Applied Mechanics
and Technical Physics 22, 145 (1981).

[33] V. Nemoshkalenko, V. Y. Mil’Man, A. Zhalko-Titarenko,
V. Antonov, and Y. L. Shitikov, Soviet Journal of Exper-
imental and Theoretical Physics Letters 47, 295 (1988).

[34] K. V. Khishchenko, Journal of Physics: Conference Series
2154, 012009 (2022).

[35] P. Vinet, J. Ferrante, J. R. Smith, and J. H. Rose, Jour-
nal of Physics C: Solid State Physics 19, L467 (1986).

[36] P. Vinet, J. R. Smith, J. Ferrante, and J. H. Rose, Phys.
Rev. B 35, 1945 (1987).

[37] J. Park, B. D. Yu, and S. Hong, Current Applied Physics
15, 885 (2015).

[38] Y. Meng, G. Shen, and H. K. Mao, J. Phys.: Condens.
Matter 18, S1097 (2006).

[39] R. Boehler, Nature 363, 534 (1993).
[40] A. C. Mitchell and W. J. Nellis, Review

of Scientific Instruments 52, 347 (1981),

https://doi.org/10.1063/1.1136602.
[41] C. Seagle, W. Reinhart, S. Alexander, J. Brown, and J.-

P. Davis, “Shock compression of iridium,” 21st Biennial
Conference of the APS Topical Group on Shock Com-
pression of Condensed Matter (2019).

[42] S. P. Marsh, LASL shock Hugoniot data (University of
California press, 1980).

[43] V. Fortov, L. Altshuler, R. Trunin, and A. Funtikov,
High-Pressure Shock Compression of Solids VII: Shock
Waves and Extreme States of Matter , Shock Wave and
High Pressure Phenomena (Springer New York, 2013).

[44] J. J. Halvorson and R. T. Wimber, Jour-
nal of Applied Physics 43, 2519 (1972),
https://doi.org/10.1063/1.1661553.

[45] D. R. Lide, CRC handbook of chemistry and physics,
Vol. 85 (CRC Press, 2004).

[46] D. H. Moseley, S. J. Thébaud, L. R. Lindsay, Y. Cheng,
D. L. Abernathy, M. E. Manley, and R. P. Hermann,
Phys. Rev. Materials 4, 113608 (2020).

[47] H. B. Callen, Thermodynamics and an Introduction
to Thermostatistics (American Association of Physics
Teachers, 1998).

https://doi.org/ 10.1070/pu1969v011n05abeh003741
https://doi.org/ 10.1070/pu1969v011n05abeh003741
https://doi.org/10.1088/1742-6596/2154/1/012009
https://doi.org/10.1088/1742-6596/2154/1/012009
https://doi.org/10.1088/0022-3719/19/20/001
https://doi.org/10.1088/0022-3719/19/20/001
https://doi.org/10.1103/PhysRevB.35.1945
https://doi.org/10.1103/PhysRevB.35.1945
https://doi.org/ https://doi.org/10.1016/j.cap.2015.03.028
https://doi.org/ https://doi.org/10.1016/j.cap.2015.03.028
https://doi.org/10.1088/0953-8984/18/25/s17
https://doi.org/10.1088/0953-8984/18/25/s17
https://doi.org/10.1063/1.1136602
https://doi.org/10.1063/1.1136602
http://arxiv.org/abs/https://doi.org/10.1063/1.1136602
https://www.osti.gov/servlets/purl/1640840
https://books.google.com.hk/books?id=aFHuBwAAQBAJ
https://books.google.com.hk/books?id=aFHuBwAAQBAJ
https://doi.org/10.1063/1.1661553
https://doi.org/10.1063/1.1661553
http://arxiv.org/abs/https://doi.org/10.1063/1.1661553
https://doi.org/ 10.1103/PhysRevMaterials.4.113608

	First-principles thermal equation of state of fcc iridium
	Abstract
	Introduction
	Theoretical EoS from FPMD
	FPMD details
	Free energy model

	Results
	P-V-T EoS
	Shock compression
	Equation of state parameters

	Conclusions
	Acknowledgments
	Thermodynamic relations
	Debye Model
	References


