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Abstract 

Viscous fluid in an ultrahigh-mobility two-dimensional electron gas (2DEG) in GaAs/AlGaAs 

quantum wells is systematically studied through measurements of negative magnetoresistance 

(NMR) and photoresistance under microwave radiation, and the data are analyzed according 

to recent theoretical work by e.g., Alekseev, Physical Review Letters 117,166601 (2016). Size-

dependent and temperature dependent NMR are found to conform to the theoretical predictions. 

The size dependence of microwave induced resistance oscillations and that of the ‘2nd 

harmonic’ peak indicate that 2DEG in a moderate magnetic field should be regarded as viscous 

fluid as well. Size-dependent radiation heating effect is found by using NMR as electron 

thermometry. Our results suggest that the hydrodynamic effects must be considered in order to 

understand semiclassical electronic transport in a clean 2DEG. 
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Introduction. - Hydrodynamic charge transport in high-mobility 2D electron systems has been 

discussed theoretically for decades [1–8], but it does not arouse great attention until recently, 

as evidence of viscous liquid has been discovered in 2D metal PdCoO2 [9], graphene [10, 11] 

and GaAs/AlGaAs quantum well (QW) [12-17]. As the cleanest electron system available so 

far, GaAs/AlGaAs QW is a natural material manifesting rich hydrodynamic properties through 

NMR [18–26], exotic photoresistance (PR) induced by microwave radiation [18, 20, 21], 

nonlocal resistance measurement [13, 17], Hall viscosity [14] and other method such as 

geometric control[16] and scanning gate microscopy[15]. However, NMR and PR, as the 

focusing point of this paper, were not understood with respect to viscosity of electron fluid in 

the early prints, rather, e.g., as that of an interplay between smooth long-range disorder and 

rare strong scatterers [27], until theories of viscous flow in moderate magnetic field (when 

Landau levels are not well resolved) in 2DEG were proposed by e.g., Alekseev, and others 

[28–33]. 

For 2DEG with sample width 𝑊, hydrodynamic regime is defined to be 𝑙𝑒𝑒 ≪ 𝑊2/𝑙𝑒𝑒 ≪

𝑙0. Respectively, 𝑙𝑒𝑒, 𝑙0 is the mean free path (MFP) for momentum conserving collisions 

between quasiparticles (electrons), and momentum relaxing bulk collisions between electrons 

and impurities or phonons. Under this condition, sheer stress among electrons may result in 

hydrodynamic transport with many intriguing effects to be explored. Together with ballistic 

transport, viscosity of electron fluid gives rise to a charged Poiseuille flow with enhanced zero-

field resistivity 𝜌𝑥𝑥(0) ∝ 𝑊−2 and temperature-dependent NMR [28]. Moreover, giant PR 

peak at microwave (MW) frequency 𝜔 = 2𝜔𝑐 (‘2nd harmonic’ for short) observed in [18, 20], 

where 𝜔𝑐 = 𝑒𝐵/𝑚∗ is cyclotron frequency, can be explained qualitatively by the theory of 

transverse magnetosonic waves caused by shear stress in Fermi liquid [30]. More recently, 

hydrodynamics in 2DEG has been applied to microwave-induced resistance oscillations 

(MIRO) [34–36], and significant predictions were proposed in [33]. The present experiments, 

specifically using ultrahigh-mobility GaAs/AlGaAs QW samples, are partly promoted by these 

theoretical works. 

In this letter, hydrodynamics of 2DEG in modulation-doped GaAs/AlGaAs QW is 

systematically studied in low temperature transport experiments performed in a 3He 

refrigerator with three ultrahigh-mobility wafers (with a nominal mobility 𝜇  above 2 ∗

107𝑐𝑚2/𝑉𝑠 at 0.3 K), carrier density 𝑛 of which ranges from 2.0 ∗ 1011 𝑐𝑚−2 to 4.2 ∗

1011 𝑐𝑚−2. Each sample consists of five sections of Hall bars with different sample widths 

(𝑊 = 400, 200, 100, 50, 25 𝜇𝑚) and the same length-to-width ratio 𝐿/𝑊 = 3, defined by 
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photolithography and wet etching. Electrical contacts were made by In/Sn alloy. For details of 

each sample and structure of Hall bars, please refer to Table SI [46] and inset of Fig.1(a).  

Our experiments found some intriguing hydrodynamic effects of the 2D electron fluid. 

NMR induced by both viscoelastic effect and ballistic transport is perfectly consistent with 

theoretical work [28, 32]. For instance, zero-field resistivity linear with 1/𝑊2 was verified at 

the first time, and temperature dependence of the NMR conformed to some theoretical work 

so well that crossover of viscous gas and viscous liquid could be distinguished. As for PR, ‘2nd 

harmonic’ peaks observed in all our samples reaffirmed the hydrodynamic effect in moderate 

magnetic field. Additionally, 𝑊 -dependence of the MIRO amplitude conforms to the 

predictions by [33], which might pose a challenge to the non-hydrodynamic theories proposed 

to explain MIRO. Size-dependent radiation heating effect further demonstrates how 

hydrodynamics influences MIRO. Altogether, the experimental results affirmatively and 

consistently support the viscous liquid theory of 2DEG [28–33]. 

 

FIG. 1. NMR of Sample B as an example with Hall bar width ranges from 400 μm to 25 μm at 

0.3 K. BNMR and NNMR can be distinguished in all five traces. Inset (a) shows configuration 

of the Hall bar in our experiment. Inset (b) demonstrates linear relation between zero-field 

resistivity and 1/𝑊2 in all the four samples. For clarity, respective data for sample A, B, C1, 

C2 is consecutively shifted upward by 1 Ω. 
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FIG. 2. (a) NNMR is not affected by in-plane magnetic field, but BNMR is. The data is 

measured from 50 μm Hall bar of Sample B at 0.3 K. The inset shows the relation between 𝛽 

from Eq. (4) and the in-plane field. (b) Higher temperature suppresses BNMR more quickly 

than NNMR. The data is measured from 100 𝜇𝑚 Hall bar of Sample C1. The blue dashed 

curve is fit to the data at 0.48 K as an example. The inset demonstrates temperature 

dependence of 𝛽 with three different widths in Sample C1.  

Negative magnetoresistance.  -As an example, Fig.1 demonstrates the key feature of NMR 

for different sample widths. The NMR consists of two distinct parts: a narrow, sensitively 

sample-size-dependent peak (NNMR) dominating within ±100 G and a broad ‘bell-shaped’ 

NMR (BNMR) whose maximum resistivity hardly depends on 𝑊. These two coexisting parts 

were also reported in previous experiments[18–24, 26] and can be discriminated from each 

other, for BNMR is easily suppressed by adding a moderate in-plane magnetic field (𝐵∥ <

10 𝑘𝐺) or warming up to several kelvins[22], as clearly shown in Fig. 2(a) and (b). However, 

these early reports suggested that NNMR is caused by weak localization or oval defects in 

GaAs/AlGaAs QWs. In hindsight, this was partly because their samples were too wide to form 

a distinguished NNMR.  

Recently, NMR in a high density 2DEG of GaAs/AlGaAs QW has been reported and 

explained within the framework of hydrodynamics[12-14], but BNMR was not observed there. 

This led to a question whether NNMR and BNMR are both related to viscosity. A theoretical 

work[37] suggested that NNMR is probably the result of ballistic transport and BNMR is 

caused by viscosity. Our experiments, however, partly contradicted with their analysis, proving 
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that NNMR is caused by viscoelastic dynamics together with ballistic transport of 2D electron 

fluid and BNMR seems do not originate from any known hydrodynamic effect.  

From theoretical perspectives, Poiseuille flow of electrons results in an effective relaxation 

time 𝜏∗ = 𝑊2/12𝜂, where 𝜂 = (𝑣𝐹
𝜂

)2𝜏2/4 represents viscosity of electron fluid[28]. 𝑣𝐹
𝜂
 is 

the Fermi velocity corrected by viscosity 𝜂 [30]. 𝜏2  is the relaxation time of the second 

moment of the electron distribution function, including contributions from quasiparticle-

quasiparticle (electron-electron) collision part 𝜏2,𝑒𝑒 and temperature-independent part 𝜏2,0 

determined by electrons scattered on sample edge, which is related to ballistic transport. 𝜏2 

satisfies reciprocal rule 1/𝜏2 = 1/𝜏2,𝑒𝑒 + 1/𝜏2,0 . With a finite magnetic field, viscosity is 

attenuated due to loss of shear stress and magnetoresistivity is represented approximately as 

[28]  

                                                      𝜌𝑥𝑥(𝐵)

=
𝑚∗

𝑒2𝑛
(

1

𝜏0

+
1

𝜏∗(1 + (2𝜔𝑐𝜏2)2)
),                                 (1)  

where 𝑚∗ = 0.067𝑚𝑒 for GaAs and 𝑚𝑒 is the mass of free electron. Inset (b) of Fig.1 

shows that zero-field resistivity 𝜌𝑥𝑥(0) is linear with 1/𝑊2 in all the four samples, which 

is in correspondence with Eq.(1). This result indicates that NNMR matches the viscosity-

related NMR described in [28]. 𝑣𝐹
𝜂
 fitted in this method is smaller than Fermi velocity 

(Table. SI). This can be remedied if we consider that when boundary scattering becomes 

important in narrow samples, further correction 𝜏∗ = 𝑊(𝑊 + 6𝑙𝑠)/12𝜂 is more 

appropriate, where 𝑙𝑠 is boundary slip length[26]. A recent work acquiring a controllable 

boundary slip condition confirmed this conjecture [16].  
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FIG. 3. (a) Magnetoresistivity of Sample C2 at different temperatures from 0.8 K to 11.9 K, 

with 1/𝜏2 extracted from the full width half maximum of NNMR. (b) Zoom in of Fig. 3 (a) 

shows details of NNMR near zero field. Gray squares in (c)(d)(e) are the extracted data from 

25 μm Hall bars of Sample B, C1 and C2 respectively. The data is fitted assuming 1/𝜏2(𝑇) =

1/𝜏2,𝑒𝑒(𝑇) + 1/𝜏2,0, with three different functions of 1/𝜏2,𝑒𝑒: Eq. (2) in black, Eq. (3) in blue, 

and 1/𝜏2,𝑒𝑒 ∝ 𝑇2 in red. (c) For Sample B with 𝑟𝑠 = 1.09, Eq. (2) fits quite well. (d) For 

Sample C1 with 𝑟𝑠 = 0.92, 1/𝜏2,𝑒𝑒 is proportional to 𝑇2. (e) For Sample C2 with 𝑟𝑠 = 0.86, 

Eq. (3) fits well below 10 K. Difference among these samples shows density related crossover 

between viscous fluid and viscous gas.  

At higher temperature (𝑇 > 4𝐾), NNMR is dominated by hydrodynamic charge transport, 

which is proved in Fig. 3 showing temperature dependence of 1/𝜏2 in wafer B and C. Paper 

[32] suggested that electron systems in the two hydrodynamic regimes (liquid or gas) should 

crossover depending on the strength of Coulomb interactions. For low density 2DEG, 

interparticle interaction parameter 𝑟𝑠 = 1/(√𝜋𝑛𝑎𝐵) is on the order of 1 (𝑎𝐵 =  10 𝑛𝑚, is 

Bohr radius in GaAs), and electron-electron scattering relaxation time [7]  
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1

𝜏2,𝑒𝑒

∝
𝑇2

ln2(𝜖𝐹/𝑘𝐵𝑇)
,                                                       (2) 

where 𝑇 is electron temperature, 𝑘𝐵 refers to Boltzmann constant, and 𝜖𝐹 is Fermi energy 

of 2DEG. This regime is called viscous liquid for the strong interaction between particles. 

However, for high density 2DEG with 𝑟𝑠 ≪ 1, which is described as viscous gas, 𝜏2,𝑒𝑒 can 

be expressed with a different logarithmic factor [32]:  

                                                        
1

𝜏2,𝑒𝑒

=
8𝜋

3ℏ

(𝑘𝐵𝑇)2𝑟𝑠
2

𝜖𝐹
ln (

1

𝑟𝑠 + 𝑇 𝜖𝐹⁄
 ),                                      (3)  

where ℏ represents Planck constant divided by 2𝜋. Despite the fact that density of ordinary 

ultrahigh-quality 2DEG in GaAs QW lies in the regime of viscous liquid and thus 𝜏2,𝑒𝑒 should 

obey Eq. (2), viscous-gas-like temperature dependence of 𝜏2 of Sample C1 with 𝑟𝑠 = 0.92 

and C2 with 𝑟𝑠 = 0.86 seems to indicate electrons in it are within a crossover phase between 

the viscous liquid and gas described by Eq. (2) and (3). In Fig.3(c), Sample B possesses a 

stronger Coulomb interaction ( 𝑟𝑠 = 1.09 ) and its 𝜏2,𝑒𝑒  is fitted quite well with Eq. (2), 

confirming the hydrodynamic nature of NNMR. For wafer C (Fig. 3(d) and (e)), 𝜏2,𝑒𝑒 is fitted 

precisely with Eq. (3) as long as 1 − 𝑟𝑠 ≫ 𝑇/𝜖𝐹  (so that temperature dependence in 

logarithmic factor of Eq. (3) can be ignored) but much off with Eq. (2). This means at low 

temperatures Eq. (3) accurately describes the interparticle relaxation time in wafer C. This 

result clearly confirms the viscoelastic dynamics theory in [32] but, a caveat should be noted 

here. Despite its viscous gas like temperature dependence of 𝜏2, Sample C1 and C2 cannot be 

classified into viscous gas because strong ‘2nd harmonic’ peaks are discovered in them (to be 

presented in Fig.4(b)), which is a typical feature of viscous liquid. Our results present an 

interesting case for further studies into the crossover region where existing theory does not 

fully address. 

As for BNMR, its shape (Fig. 1) is a parabolic curve[22]: 
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                                                        𝜌𝑥𝑥(𝐵)

= 𝜌𝑥𝑥(0)(1 − 𝛽𝐵2),                                                       (4) 

attributed to a field-independent correction to longitudinal magnetoconductance Δ𝜎𝑥𝑥 in 

previous work [40]. Here 𝜌𝑥𝑥(0) does not contain contribution from NNMR and, according 

to our analysis, only depends on momentum relaxing scatterings. Similar ‘bell-shaped’ NMR 

[41, 42] in lower mobility samples was explained through interaction correction theories [27, 

40, 43] and Δ𝜎𝑥𝑥 was proved to be proportional to − ln(𝑇) or 1/√𝑇 in different regimes. 

However, in recent reports [22-24], the existing theory is unable to explain BNMR in high 

purity samples for its peculiar relation between 𝛽 and 𝑇, and, more importantly, the influence 

of in-plane magnetic field (Fig. 2(a)). We confirm that BNMR is a size-dependent effect since 

𝛽 is approximately proportional to sample width 𝑊 (Inset of Fig. 2(b)) and this explains why 

BNMR was not observed in narrow samples (𝑊 ∼ 5𝜇𝑚) [12]. BNMR is hardly the result of 

viscosity because (i) its 𝜌𝑥𝑥(0) is almost independent of 𝑊 and (ii) relation between 𝛽 and 

𝑊 qualitatively contradicts with the characteristics of Poiseuille flow, i.e., Eq. (1). 
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FIG. 4. (a) SdH oscillations of Sample C1 without MW at 0.3 K. For clarity, each 𝜌𝑥𝑥 trace 

except that of 25 μm is consecutively shifted upwards by 20 Ω. (b)(c)(d) Traces of PR at 0.3 

K with different colors are taken from Hall bars with different widths: 200 𝜇𝑚 (black), 

100 𝜇𝑚 (red), 50 𝜇𝑚 (green), 25 𝜇𝑚 (blue). Gray dashed line indicates the ‘2nd 

harmonic’ peak at exactly 𝜔 = 2𝜔𝑐 and first five MIRO peaks are marked with gray arrows. 

(b) MIRO of Sample C2 with attenuation equal to -24 dB shows a sharp ‘2nd harmonic’ peak 

for 100 𝜇𝑚 Hall bar. (c) and (d): MIRO of Sample C1 and C2 without MW attenuation. 

The inset of (d) shows the relation of MIRO amplitude and sample width when 𝜔 > 2𝜔𝑐. 

The amplitude is fitted with the field-dependent term removed, following the method of 

paper[44]. 

Microwave-induced resistance oscillations and ‘second harmonics’. - Providing further 

evidence for the hydrodynamic theory, this section focuses on 𝑊-dependence of MIRO. In 

our experiment, MW with a frequency of 102.4 GHz was produced by a Gunn oscillator, 

whose power was attenuated by a programmable rotary vane attenuator.  

Fig. 4(c) and (d) demonstrate the 𝑊-dependence of the PR. For Hall bar with different 

𝑊, Shubonikov-de Hass (SdH) oscillation is shown in Fig. 4(a) with almost invariant 

quantum scattering time and oscillation magnitude. Compared with SdH oscillation, MIRO of 

all samples markedly depends on 𝑊 in an opposite way of NNMR. In a Poiseuille flow, 

sample width determines the maximum of electron velocity, and therefore, there’s a positive 

correlation between zero-field conductance/photoconductance and 𝑊. However, zero-field 

resistance is reciprocal of conductance, while PR is proportional to photoconductance 

because of large Hall resistance, giving rise to opposite 𝑊-dependence between NNMR and 

MIRO.  

The amplitude of PR peak near 𝜔 = 𝜔𝑐, i.e., the first peak, is approximately linear with 

𝑊, strongly favoring the theoretical prediction [33]. The amplitude ∆ρmax in lower field (𝜔 >

2𝜔𝑐) is found to be proportional to 𝑊0.64 (Inset of Fig. 4 (d)), which approximately follows 

the linear dependence of 𝑊 for wide samples, i.e., 𝑊 ≫ 𝑣𝐹
𝜂

𝜏2. 𝑊-dependence of the PR 
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contradicts with most of the existing theories explaining MIRO, except the hydrodynamic 

theory. 

As a concomitant phenomenon, the ‘2nd harmonic’ peak could be viewed as evidence 

for the hydrodynamic theory of MIRO. As examples shown in Fig. 4, ‘2nd harmonic’ peak 

located precisely at 𝜔 = 2𝜔𝑐 is observed in all the four samples, more clearly in relatively 

narrow Hall bars. In particular, strong ‘2nd harmonic’ is observed in 100𝜇𝑚 Hall bar of 

wafer C2 (Fig. 4(b)). There’s always a tiny peak at 𝜔 = 2𝜔𝑐 when MIRO almost disappears 

in Fig. 4(b). This is due to the fact that the amplitude of MIRO declines faster when MW 

power is weakened. According to the viscosity theory [30, 33], we can understand the 

competition between MIRO and the ‘2nd harmonic’ when 𝑊 is varied. On one hand, 

transverse magnetosonic waves, origin of ‘2nd harmonic’, prevail only when viscoelastic 

resonance overweighs magnetoplasmon effect. So relevant upper limit for 𝑊 is the 

characteristic wavelength of magnetoplasmons. On the other hand, the dc PR peak 

originating from ac viscoelastic resonance at 𝜔 = 2𝜔𝑐 is size-dependent just like MIRO, 

i.e., narrower sample corresponds to weaker PR. On balance there exists an optimal sample 

size for ‘2nd harmonic’ peak and the value appears to be around 100 𝜇𝑚 for Sample C. 

Our data strongly support the viscoelastic nature of both MIRO and the ‘second harmonic’ 

for ultrahigh-mobility 2DEG under microwave radiation.    

Size-dependent radiation heating effect. -The sensitive temperature-dependence of BNMR 

can be used as a natural electron thermometry in the temperature range of 0.3 𝐾 to 2 𝐾. 

With MW irradiated onto 2DEG, electrons are warmed up to a temperature 𝑇𝑒 higher than 

that of the surroundings 𝑇𝑠 = 0.3 𝐾, inducing a MW-dependent BNMR before MIRO takes 

place. This effect is due to relatively low thermoconductance between 2DEG and 

surroundings. 
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FIG. 5. (a) Temperature dependence of BNMR can be used to calibrate 𝑇𝑒. MIRO with MW 

attenuation equal to -12 dB (-42 dB) is shown in the black (gray) line. MW frequency is 

about 30 GHz and the data is obtained from the 100 𝜇𝑚 section of another sample of 

Wafer B. (b) 𝑇𝑒 in Hall bar with 𝑊 = 200 𝜇𝑚, 100 𝜇𝑚, 50 𝜇𝑚 shows that electrons in 

narrower section are hotter than those in wider section. 

An example of the heating effect is demonstrated in Fig.5(a). Despite 𝑇𝑠 remaining 

0.3K, however, the MIRO trace is lifted up when MW power is enhanced. Compared with 

BNMR traces without MW, the MIRO trace shows its 𝑇𝑒. 𝑇𝑒 of the 𝑊 = 100 𝜇𝑚 section 

is above 1K with MW attenuation equal to -12 dB, while remains almost the same as 𝑇𝑠 

when attenuation is -42 dB.  

In Fig.5(b), temperature-dependence of MW power in three different sections is 

demonstrated, which unambiguously indicates that narrower section of Hall bar features 

higher 𝑇𝑒. This effect, suggesting that narrower section of 2DEG absorbs more amount of 

MW, is found in all the samples and could be understood together with Drude model and 

hydrodynamic theory. The absorbed power of MW is Δ𝑃𝑎 =< 𝑅𝑒(�̂�∗𝜎�̂�) >, where ac 

conductivity of 2DEG is 𝜎± = 𝑒𝑛𝜇/(1 − 𝑖(𝜔 ± 𝜔𝑐 )𝜏) and ± represents circularly 

left/right polarized radiation. The absorption rate Δ𝑃𝑎/𝑃𝑖   is [45] 
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Δ𝑃𝑎

𝑃𝑖
= Σ±

𝑅𝑒(𝜎±𝑍0)

[1 + 𝜅 + 𝑅𝑒(𝜎±𝑍0)]2 + [𝐼𝑚(𝜎±𝑍0)]2
, 

where the refractive index 𝜅 is 3.6 for GaAs and 𝑍0 = √𝜇0/𝜖0 is the impedance of free 

space. For narrower width 𝑊, hydrodynamic flow of electrons gives rise to a smaller 

mobility 𝜇, thus resulting in a higher MW absorption rate. This indicates that the size-

dependent radiation heating effect is also in accord with hydrodynamic nature of the 2DEG. 

With more MW absorption, narrower section of 2DEG still features much weaker MIRO. In 

this way, the smaller exponent 0.64 of size-dependent MIRO ∆ρmax is partly explained. 

Conclusion. -Width-dependence and temperature-dependence of NMR in ultrahigh-mobility 

2DEG is in accordance with recent viscoelastic dynamics theory. Furthermore, existence of 

‘2nd harmonic’ peak and width-dependence of MIRO also indicates that 2DEG in semi-

classical regime (B < a few kG) should be taken as viscous fluid. Overall, the intriguing 

experimental findings reported here strongly support viscous fluid theory of electrons in 

ultrahigh-mobility GaAs/AlGaAs QWs, not only in the regime of weak magnetic field but also 

in moderate magnetic field. It is interesting to note that, as the GaAs/AlGaAs QWs have 

reached the ultrahigh-mobility regime, it becomes necessary to consider the hydrodynamic 

effect in assessing the quality of the 2DEG, in addition to the Drude mobility from impurity 

scatterings.   
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