
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Crystalline responses for rotation-invariant higher-order
topological insulators

Julian May-Mann and Taylor L. Hughes
Phys. Rev. B 106, L241113 — Published 28 December 2022

DOI: 10.1103/PhysRevB.106.L241113

https://dx.doi.org/10.1103/PhysRevB.106.L241113


Crystalline Responses for Rotation-Invariant Higher-Order Topological Insulators

Julian May-Mann and Taylor L. Hughes
Department of Physics and Institute for Condensed Matter Theory,

University of Illinois at Urbana-Champaign,
1110 West Green Street, Urbana,

Illinois 61801-3080, USA
(Dated: December 20, 2022)

Two-dimensional higher-order topological insulators can display a number of exotic phenomena,
such as half-integer charges localized at both corners and disclination defects. In this paper, we
analyze these phenomena, focusing on the paradigmatic example of the quadrupole insulator with C4

rotation symmetry, and present a topological field theory description of the mixed geometry-charge
responses. Our theory provides a unified description of the corner and disclination charges in terms
of a physical geometry (which encodes disclinations), and an effective geometry (which encodes
corners). We extend this analysis to interacting systems, and predict the response of fractional
quadrupole insulators, which exhibit charge e/2(2k + 1) bound to corners and disclinations.

Higher-order topological insulators (HOTIs) are forms
of crystalline topological phases that host gapped sur-
faces, which are connected by anomalous corner or hinge
modes. The first example of a HOTI was the 2D model
constructed in Ref. 1, which was dubbed the topologi-
cal quadrupole insulator (QI). The QI is protected by C4

lattice rotation symmetry, and is characterized by having
half-integer corner charges when defined on a lattice with
boundary. The QI has vanishing electric polarization,
but, due to its corner modes, harbors a non-vanishing xy
quadrupole moment. Additionally, when chiral symme-
try is present, the QI has zero energy corner modes as
well. In addition, it has been shown that this insulating
phase is sensitive to the presence of π/2 disclinations on
which half-integer charges are bound2. After this initial
development, the family of HOTIs has expanded to in-
clude other 2D HOTIs with corner modes, and various
3D HOTIs with either hinge modes or corner modes3–10.
There have also been a number of experimental realiza-
tions of HOTIs11–20.

Despite the rapid advances, our understanding of HO-
TIs still pales in comparison to our understanding of
(first-order) topological insulators. While a number of
detailed works analyze and classify HOTIs based on
their symmetries21–24, the field theoretic understanding
of HOTI responses is incomplete25–27 . Historically topo-
logical response theories have been a powerful tool with
which to probe the physics of topological insulators, and,
in turn, topological insulators have helped to provided
new contexts in which one can realize topological field
theories28,29. Motivated by this, we consider the charge
response properties of the QI with C4 rotation symme-
try, especially its corner and disclination bound charge
responses. Although we only consider the C4 symmetric
QI here, our analysis can be straightforwardly generalized
to other Cn symmetric HOTIs that have a Dirac fermion
description in the continuum. We also discuss extensions
to HOTIs protected by magnetic point groups6 in the
supplementary material30 (see, also, Ref. 31 therein).

To analyze the C4 symmetric QI, we consider a 4-band
model of fermions on a square lattice at half filling. The

Bloch Hamiltonian is:

hq(~k) = sin(kx)Γ1 + sin(ky)Γ2 + ∆1Γ3

+ 1√
2

[∆2 + cos(kx)− cos(ky)] Γ4

+ 1√
2

[∆3 + cos(kx) + cos(ky)] Γ0,

(1)

where, Γ1 = σ3 ⊗ σ2, Γ2 = −σ3 ⊗ σ1, Γ3 = σ1 ⊗ σ0,
Γ4 = σ2⊗σ0, Γ0 = σ3⊗σ3, σ1,2,3 are Pauli matrices, and
σ0 is the 2×2 identity. This Hamiltonian is related to the
original model presented in Ref. 1, by a unitary trans-
formation (see supplemental material30). Before consid-
ering the continuum limit, we first recall some known
features of this model (see Ref. 3 for more details). The
energy bands derived from Eq. 1 are doubly degenerate,
and there is a gap between the upper and lower pairs
of bands which closes when (∆1,∆2,∆3) = (0, 0,±2), or
(0,±2, 0). The Bloch Hamiltonian has time-reversal sym-
metry T = Γ2Γ4K (K is complex conjugation), and when
∆1 = 0, the lattice model has chiral symmetry, Π = Γ3.
When ∆1 = ∆2 = 0 there is a C4 rotation symmetry:

Û4h
q(~k)Û−14 = hq(R4

~k)

Û4 = diag(ei3π/4, eiπ/4, e−iπ/4, e−i3π/4),
(2)

where R4 rotates ~k by π/2. In the presence of C4 sym-
metry, there are two topologically distinct phases: the
QI, which occurs when |∆3| < 2, and a trivial insulator,
which occurs when |∆3| > 2.

To pass to the continuum, we consider the system close
to a transition between the two C4 symmetric phases.
Without loss of generality, let us restrict our attention
to the band crossing at (∆1,∆2,∆3) = (0, 0,+2). At
this point, a pair of Dirac cones form at lattice moment
~k = (π, π). The low energy degrees of freedom near this
critical point can be written in terms of Dirac fermions,
with the continuum Lagrangian

Lquad = Ψ̄[γ0i∂t + γ1i∂x + γ2i∂y +m · τ ]Ψ (3)

where Ψ and Ψ̄ = Ψ†γ0 are 4 component spinors, and
m·τ = m1τ

1+m2τ
2+m3τ

3, withm1 ∝ ∆1, m2 ∝ 1√
2
∆2,
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m3 ∝ 1√
2
(∆3 − 2). The γ and τ matrices are defined as

γ0 = σ0⊗σ3, γ1 = iσ3⊗σ1, γ2 = iσ3⊗σ2, τ1 = −σ2⊗σ3,
τ2 = −σ1 ⊗ σ3, τ3 = −σ3 ⊗ σ0. The γ and τ matrices
each generate a representation of SU(2). We will refer
SU(2) generated by the γ matrices as the spin of the Dirac
fermions32, and the SU(2) generated by the τ matrices
as the isospin. Eq. 3 therefore describes a pair of two-
component 2D Dirac fermions with isospin coupled to a
mass vector m.

When m is constant (which occurs in the bulk of an
insulator), the mass terms m1 and m2 break C4 rotation
symmetry (see Eq. 2). Based on the lattice model, we
can identify the Lagrangian where m = (0, 0,m3) as the
QI for m3 < 0, and the trivial insulator for m3 > 0. Both
of these phases consist of a pair of 2 component Dirac
fermions with opposite masses. Intuitively we can think
of this as a bilayer system where the layers, which are
indexed by τ3, have opposite (integer) Hall conductance.
In addition to the “light” fermions in Eq. 3, this theory
also includes a pair of two component “heavy” regulator
fermions, which will be left implicit for brevity.33 Since
we have specified ∆3 ∼ 2 for our continuum limit we
avoid the parameter regime of the model where the heavy
fermions become massless.

To analyze the corner physics of the QI, we will con-
sider the responses of the continuum Lagrangian Eq. 3
in the presence of a background gauge field A and a non-
constant m, about which much is already known34–37.
In the context of the QI, the spatial variation of m
encodes domain walls and corners. For non-constant
m, the space of C4-symmetric mass vectors m(x) ≡
(m1(x),m2(x),m3(x)) satisfies

m(x) = (−m1(R4x),−m2(R4x),m3(R4x)), (4)

where x = (t, x, y) is the space-time coordinates and R4

rotates the spatial component of x by π/2. Assuming
that m varies slowly over length scales ∝ |m|−1, the
fermions can be integrated out at one loop order, which
leads to the topological response term

Ltop =
εµρκ

8π
n · (∂µn× ∂ρn)Aκ, (5)

where n = (n1, n2, n3) is defined such that m ≡ mn and
|n|2 = 1. The value of m does not affect the topological
responses we are interested in, and will be taken to be
a constant. Here, jµsky = 1

4ε
µρκn · (∂ρn × ∂κn) is the

skyrmion density of n, and the response indicates that
charge is bound to skyrmions, jµ = 1

2π j
µ
sky.

For our purposes, it will be useful to switch to a gauge
field description of the skyrmions of n38 by defining a lo-
cal SU(2) transformation Ω, which rotates the unit vector
n to an arbitrary constant unit vector N at each point
in space:

Ω−1(x)n(x) · τΩ(x) = N · τ . (6)

The choice of N is inconsequential, and can be changed
via a global isospin rotation. The transformation in Eq.

6 modifies the Lagrangian by rotating the mass vector
m = mn→ mN , and generating a covariant derivative,
Dµ = ∂µ − iAµ − ibµ · τ , where bjµ = i

4 Tr
[
τ jΩ−1∂µΩ

]
.

Despite the fact that there are 3 gauge fields, biµ (one per

generator τ i of SU(2)) there is only a U(1) gauge symme-
try, which corresponds to the local U(1) ⊂SU(2) isospin
rotations that leave the mass vector mN invariant. In
terms of the gauge fields, bµ we can rewrite Eq. 5 as

Ltop =
1

2π
εµρκbNµ ∂ρAκ, bNµ ≡N · bµ (7)

where bN is the U(1) gauge field, which corresponds to
the aforementioned U(1) ⊂SU(2) gauge symmetry, and
should be regarded as a background field that encodes the
skyrmions of n. Here, jµ = − 1

2π ε
µρκ∂ρb

N
κ , from which

we see that charge is bound to the vortices of bN . The
coefficient of 1

2π in Eq. 7 is quantized due to the U(1)

charge and the U(1) isospin gauge symmetries39.
Now we are ready to consider the corner charges of

the C4 symmetric QI. As we shall show, domain corners
between the QI and trivial insulator correspond to π-
vortices of bN , and these π-vortices bind a half-integer
charge. To see this, we consider a square sample of the
QI embedded in a trivial insulator in a C4 symmetric
fashion. In the bulk of the QI n = (0, 0,−1), while
deep in the trivial region n = (0, 0, 1). The gapped do-
main walls between the QI and the trivial insulator corre-
spond to regions where n spatially interpolates between
(0, 0,−1) and (0, 0, 1). For simplicity, we will consider
the situation where n1 = 0 near the domain walls. The
model has additional chiral symmetry for this configu-
ration of domain walls, although only C4 symmetry is
necessary to protect the corner charges. Since n1 = 0
everywhere, it is convenient to switch to polar coordi-
nates, n = (0, n2, n3) = (0, sin(ϕ), cos(ϕ)), such that in
the bulk of the QI ϕ = π, in the trivial region ϕ = 0,
and at the domain walls ϕ smoothly winds between π
and 0. Based on Eq. 4, C4 symmetry requires that,
ϕ(x) → −ϕ(R4x). So, C4 symmetry requires that if do-
main walls normal to the ±y-direction have ϕ winding by
+π + 2qπ (q ∈ Z), then domain walls normal to the ±x-
direction must have ϕ winding by −π−2qπ. If we rotate
n according to Eq. 6, bNµ = 1

2∂µϕ, and, based on our dis-
cussion above, the charge located at the domain corner is
Qcorner = − 1

2π

∮
bNi ·dli = − 1

4π

∮
dϕ = 1

2 mod (1) where
the integral is over a loop that encircles the corner and
is much larger than the width of the domain wall. We
therefore find that the response theory correctly predicts
the characteristic half-integer corner charge of the QI.

For the aforementioned domain corner configuration
where n = (0, n2, n3), the Dirac equation has a lo-
calized zero-energy corner34. This mode is exactly the
zero-energy corner mode of the QI with additional chiral
symmetry1, and acquires a gap if we break chiral sym-
metry and set n1 6= 0 at the corner. The corner mode
can shift the corner charge by an integer. Indeed, it is
generically possible to shift any bound charge by an inte-
ger via local perturbations, and so we are only concerned
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Figure 1: Left: A sample (gray) without a disclination, which
has 4 corners (•). Right: A sample with a π/2 disclination (?),

which has 5 corners.

with the fractional part of the charge throughout this
manuscript.

Let us now move on to another notable feature of the
QI: half-integer charge bound to π/2 disclinations of a
C4 symmetric lattice. It is useful to think of this ef-
fect as the electromagnetic response to singular sources
of curvature, which are fluxes of C4 symmetry. This can
be interpreted as the bulk response of the QI, similar
to how the charge bound to magnetic vortices is a bulk
response of quantum Hall insulators. As we shall explic-
itly show, this response is described by a Wen-Zee-like
term8,40,41. Before deriving the response term, it will be
useful to first discuss the connection between the corner
and disclination responses in rotation-invariant HOTIs2.
To demonstrate this connection, we will again consider a
square sample of the QI embedded in a trivial insulator.
The boundary of the QI traces out an angle of 2π with
respect to the center of the sample, indicating that there
are 4 corners at which the orientation of the boundary
changes by π/2. If a single disclination with Frank angle
π/2 is added to the bulk of the QI, the boundary will
instead trace out an angle of 5π/2, and the sample must
have 5 corners (see Fig. 1). Thus, adding a disclina-
tion in the bulk requires the addition of an extra corner
on the boundary. Since the QI has half-integer corner
charges, there will be an extra, anomalous, half-integer
of charge at the boundary of the disclinated 5-corner sam-
ple. In order to have a total integer charge, there must
also be a half-integer charge bound to the disclination
in the bulk. This argument indicates that charge con-
servation at the boundary is anomalous with respect to
C4 symmetry, since inserting a flux of C4 symmetry into
the bulk of the QI increases the charge at the boundary.
This anomaly is canceled by the topologically non-trivial
bulk of the QI. Here, we have only considered the C4

symmetric QI, but it is straightforward to generalize this
argument to other Cn symmetric HOTIs.

We now consider coupling the continuum theory in Eq.
3 to curvature. Here we will consider a translationally in-
variant C4 symmetric system (m = (0, 0,m3)). The first
observation we make is that in the continuum theory of
the C4 symmetric phases, the discrete C4 rotation sym-
metry is enlarged to a continuous SO(2) 'U(1) rotation

symmetry. Under this symmetry, Ψ → Û(θ)Ψ, where

Û(θ) = exp
(
iθ[ 12γ

0 + τ3]
)
. This U(1) symmetry is explic-

itly broken down to the C4 rotation symmetry of the lat-
tice by subleading terms that are not included in the con-
tinuum description. To include curvature/disclinations
in our description, we gauge the rotation symmetry and
introduce the background gauge field (spin connection)
ω42. Here, the gauge symmetry is C4, although the con-
tinuum Lagrangian has an enlarged U(1) symmetry. Be-
cause of this, the fluxes of ω are quantized in multiples
of π/2 (i.e. the possible Frank angles of a square lattice).

To physically motivate the introduction of the spin
connection ω, we can consider two orthonormal vectors
(frame-fields AKA vielbeins), eiµ (i = x, y) and their in-

verses, Eµi and identify the latter with the primitive vec-
tors of the underlying lattice43 (in units of the lattice
constant). The spin connection is then ωµ ≡ exρ∂µE

ρ
y .

Therefore, ωµ measures the local rotation of the lattice
in the µ-direction. The field strength of the spin connec-
tion, ∂µων − ∂νωµ, encodes the curvature of the lattice
that arises from discliantion defects, and should not be
confused with the curvature of external spacetime, which
we are not considering in this work.

The fermions in Eq. 3 couple to ω via a term pro-
portional to the generator of spatial rotations in the co-
variant derivative: Dµ = ∂µ − iAµ − i 12ωµγ

0 − iωµτ
3.

The response theory for the minimally coupled fermions
is given by the Wen-Zee term

Lgeo =
sgn(m3)− 1

2π
εµρκωµ∂ρAκ, (8)

where the addition of the −1/2π in the coefficient comes
from the heavy fermions, which also couple to curvature.
For the QI (m3 < 0), jµ = 1

π ε
µρκ∂ρωκ, and C4 discli-

nations of the lattice (π/2 vortices of ω), bind a half-
integer charge, while for the trivial phase (m3 > 0) the
Wen-Zee term vanishes. For C4 symmetric systems, the
coefficient of the Wen-Zee term is quantized in units of
1/2π, and defined modulo 2/π2,40,41. When boundaries
are present, the Wen-Zee term is not gauge invariant.
This indicates that the boundary of the QI is anomalous,
with a mixed anomaly between spatial rotations and the
U(1) charge symmetry. The anomalous conservation law
is ∂µj

µ|boundary = − 1
π ε
µρ∂µωρ|boundary, where both sides

of the equation are evaluated at the 1D boundary of the
QI. According to the integrated form of this equation,
if we add Ndis disclinations to the bulk of the QI, the
charge localized at the boundary of the QI changes by
∆Qboundary = − 1

2Ndis. Hence, the charge localized at
the boundary is not conserved if C4 symmetry is gauged,
in agreement with our earlier argument.

Having separately discussed the continuum interpre-
tations of the corner responses and the disclination re-
sponses, we are now in a position to present a unified
description of both of these features. To do this, we first
note that the spatial variation of a vector can be inter-
preted as the parallel transport of a constant vector in
the presence of an effective curvature. Indeed, if we con-
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sider a spatially varying mass vector m(x), then using
Eq. 6, we find that

mi(x+ dx) = mi(x) + 2bjµε
ijkmk(x)dxµ. (9)

Eq. 9 can be interpreted as the parallel transport of m
with respect to a new effective affine connection 2bjµε

ijk

that encodes a new effective curvature. Let us now con-
sider the effects of background curvature on m. For a
local patch of curved space, m satisfies

mi(x+ dx) = mi(x) + 2[bjµ +ωµδ
j,3]εijkmk(x)dxµ, (10)

where delta function, δj,3, originates from the fact that
the spin connection only couples to the isospin τ3. There-
fore, the variation of m in curved space receives contri-
butions from a combination of the physical background
geometry ω and the effective geometry, b. Importantly,
the effective geometry is induced by the domain walls and
corners of the QI, and is independent of the curvature of
the underlying lattice.

We will now consider coupling the fermions in Eq. 3
to background curvature, and allowing the mass vector
m = mn to vary. As before, we consider rotating the
Lagrangian using Ω, such that the theory has a constant
mass vector mN . After performing this rotation, the co-
variant derivative becomes Dµ = [∂µ − iAµ − iωµ 1

2γ
0 −

ibµ ·τ − iωµs ·τ ], where sj = 1
4 Tr

[
τ jΩ−1τ3Ω

]
is the j-th

projection of the isospin τ3 after the local rotation by
Ω. The theory therefore describes a system of fermions
coupled to both physical lattice curvature and the effec-
tive curvature (the latter induced by the variation of m).
After integrating out the fermions, the response theory
is

Lfull =
εµρκ

2π

[
bNµ + sωµ

]
∂ρAκ. (11)

where s = (N ·s−1) (the −1 is from the heavy regulator
fermions, which are only coupled to the physical curva-
ture). This response equation is a central result of this
paper and indicates that charge is bound to fluxes of the
combination bN +sω. The fluxes of bN correspond to do-
main corners of the QI, which are sources of the effective
curvature. The fluxes of ω correspond to lattice disclina-
tions, which are sources of the physical lattice curvature.

For locally C4 symmetric systems, s = 0 (trivial) or
2 (QI). However, if C4 symmetry is locally broken, such
as near domain walls, s is not quantized and can fluc-
tuate. Because of this, it is possible for sω to have a
non-vanishing flux even when the flux of ω vanishes. In-
deed, fluxes of sω can naturally appear on boundaries,
far from any bulk disclinations, as we shall show below.

Previously, we pointed out that adding a disclination
to the bulk of a QI with boundaries leads to an addi-
tional corner and its corresponding half integer corner
charge. This behavior can be explicitly examined using
Eq. 11. Let us start with a curvature free system (ω = 0)
where a domain wall located at x = xdw separates a QI

Figure 2: Left: A domain wall separating a trivial insulator and
a QI which hosts a π/2 disclination (?). The disclination induces

a half-integer charge (•) on the domain wall, and rotates the
vielbeins (ex and ey). Right: The orientation of the domain wall

relative to the vielbeins.

(x < xdw) and a trivial insulator (x > xdw)–we will im-
plicitly assume that there are other domain walls located
significantly far away such that the system has a global
C4 symmetry. As before, we shall consider boundary con-
ditions such that n = (0, sin(ϕ), cos(ϕ)) where ϕ winds
by π+2qπ at the domain wall. In terms of the polar vari-
ables, bNµ = 1

2∂µϕ, and s = cos(ϕ)− 1. In the absence of
curvature, there are no localized charges in this region of
the domain wall, since Q = 1

2π

∮
bNi dli =

∮
1
4π∂iϕdli = 0

for a loop far away from any other domain walls or cor-
ners.

We will now add a π/2 disclination at (x0, y0) which
is deep in the bulk of the QI (x0 � xdw). To model this,
we consider a local patch of space and choose ω as

ωx = 0, ωy =
π

2
Θ(x− x0)δ(y− y0), ωt = 0, (12)

where Θ is the step function. This configuration yields
a point disclination at (x0, y0), around which there is
a localized charge Qdis = 1/2. Let us now examine
how this disclination affects the domain wall at x= xdw.
From Eq. 12 we see the curl of ω vanishes near the
domain wall. However, s varies in space near the do-
main wall, and at (xdw, y0) there is a localized charge
Q = 1

2π

∮
sωidli = −1/2 mod(1), where the integral is

over a loop that encircles (xdw, y0) and does not approach
the disclination or other domain walls. Additionally, the
disclination adds a new domain corner at (xdw, y0). To
see this, we recall that ωµ measures the rotation of the
underlying lattice along the µ-direction. The spin con-
nection defined in Eq. 12 therefore indicates that the
lattice rotates by π/2 at (x > x0, y = y0). Hence, the
orientation of the domain wall rotates by −π/2 relative
to the lattice at (xdw, y0) (see Fig. 2). We interpret
this rotation of the domain wall as a domain corner. Eq.
11 therefore correctly describes the charge bound to the
disclination of the QI, as well as the additional corner and
corresponding corner charge of the disclinated system.

We can also consider a “fractional” version of the re-
sponse in Eq. 11,

Lfrac =
εµρκ

2π
ν
[
bNµ + sωµ

]
∂ρAκ, (13)
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where ν is a rational number44. Eq. 13 characterizes a
fractional quadrupole insulator (FQI), which has charge
ν/2 localized at corners and π/2-disclinations. Due to
the fractional prefactor, the FQI is a symmetry enriched
topologically ordered phase45. Based on our earlier ob-
servation that the bulk of the QI can be treated as a
bilayer system where the layers have opposite (integer)
Hall conductances, we expect that the bulk of the FQI
can be realized in a fractional Chern insulator (FCI) bi-
layer where the FCIs have opposite (fractional) Hall con-
ductances. In the supplemental material30 (see also Ref.
46 and 47 therein), we consider a model for such a system
with ν = 1/(2k+1) and show that it realizes the response
in Eq. 13. We also show that a fractional quadrupole
insulator with magnetic point group symmetry can be
constructed by the breaking time reversal symmetry of a

fractional quantum spin Hall insulator48,49.
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