
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Matrix product operator approach to nonequilibrium
Floquet steady states

Zihan Cheng and Andrew C. Potter
Phys. Rev. B 106, L220307 — Published 23 December 2022

DOI: 10.1103/PhysRevB.106.L220307

https://dx.doi.org/10.1103/PhysRevB.106.L220307


Matrix product operator approach to non-equilibrium Floquet steady states

Zihan Cheng1 and Andrew C. Potter1, 2

1Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
2Department of Physics and Astronomy, and Quantum Matter Institute,

University of British Columbia, Vancouver, BC, Canada V6T 1Z1

We present a numerical method to simulate non-equilibrium Floquet steady states of one-
dimensional periodically driven many-body systems coupled to a dissipative bath, based on a matrix
product operator ansatz for the Floquet density matrix in frequency-space. This method enables
access to large systems beyond the reach of exact simulations, while retaining the periodic micro-
motion information. An excited-state extension of this technique allows computation of the dynam-
ical approach to the steady state. We benchmark our method with a driven-dissipative Ising model
and apply it to study the possibility of stabilizing pre-thermal discrete time-crystalline order by
coupling to a cold bath.

Controlling quantum systems with time-periodic (Flo-

quet) external driving fields offers a powerful toolkit to

engineer interactions, symmetry-breaking, and topology

that are not present in the un-driven system [1]. Floquet

driving can also produce intrinsically non-equilibrium

phenomena such as dynamical phases like time crystals

and Floquet topological phases [2, 3], with properties

that would be impossible in static equilibrium. However,

for isolated systems, persistent energy absorption from

external ordinarily produces runaway heating to a fea-

tureless state[4, 5] that is locally indistinguishable from

an infinite temperature ensemble. Thus, to stabilize dy-

namical phases in closed Floquet systems, one usually

considers systems with many-body localization [6] that

fail to thermalize, or work in a pre-thermal regime [7–13]

where Floquet states can live up an exponentially-long

timescale τheat ∼ e
Ω/Λ in the ratio of driving frequency Ω,

to the local bandwidth, Λ. Both of these approaches have

substantial limitations. First, MBL requires synthesiz-

ing strong disorder, and is fundamentally incompatible

with many interesting phenomena such as non-Abelian

symmetries and anyons [14], Goldstone modes [15], long-

range interactions and (at least as a matter of princi-

ple if not practice) in dimensions higher than one [16].

Second, no experimental system is truly isolated from

its environment, which restricts MBL-protected order to

transient times. Realizing pre-thermal quantum phases

requires preparing a low-temperature state of the pre-

thermal Hamiltonian which is typically hard to even cal-

culate, let alone prepare its ground-state (e.g. adiabatic

state-preparation generally fails in Floquet settings [17]).

Experience from solid-state physics, it is natural to

look to dissipation from a cold bath to cool a Flo-

quet system close to its pre-thermal ground-state. For

fast, weakly-heating drives, rigorous bounds on pre-

thermalization [7–13] establish a large separation of time

scales between the drive period τ = 2π/Ω, and the heating

time τheat. This suggests an ample range of parameter

space to couple the system to a bath weakly enough to

avoid disrupting the interesting Floquet dynamics, while

cooling towards the pre-thermal ground-state at a rate

much higher than the drive-induced heating. On the

other hand, coupling a system to a bath can enhance

drive-induced heating, by broadening spectral lines in

the system to enable off-resonant drive-induced excita-

tions that cause the system to heat [18]. To explore the

balance between these competing processes and estab-

lish whether dissipation can stabilize dynamical orders

in an appropriately designed range of drive, bath, and

system-bath coupling parameters, it requires a controlled

calculation method that can simultaneously treat strong

driving, interactions, and open system dynamics.

However, solving the long-time non-equilibrium steady

state (NESS) of a generic Floquet-Lindblad equation [19–

22] (FLE) is a challenging task, even for one-dimensional

systems. Similar to solving Schrodinger equation, the

cost of exact treatment grows exponentially with respect

to the system size, but with a double(!) exponent due

to simulating density matrices rather than pure states.

Quantum trajectory sampling methods [23–25] reduce

the memory cost, but may incur exponential-in-system-

size sampling overheads.

In one dimension (1d), matrix product states (MPS)

and operators (MPO) provide an effective way of rep-

resenting systems with limited spatial entanglement –

a class that includes not only ground-states of gapped

systems [26] but also thermal mixed-states [27]. One

class of MPO approaches [28–31], in combination with

time-evolving block decimation (TEBD) methods, allows

studying the NESS via long-time dynamics. Such real-

time approaches can suffer from the long relaxation time

to the NESS, for example in the presence of long-time

hydrodynamic tails, and weakly-dissipative systems may

also feature a rapid growth of entanglement in the tran-

sient regime that cannot be captured by a low bond-

dimension MPO [32–35], presenting a short-time barrier
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FIG. 1. Graphical representation – of vectorized MPOs
∣ρn⟫ (upper) and effective local Lindbladian L̂nm

i (lower) in
frequency-space. Blue circles and black single/double lines
respectively represent the tensor and bond/physical indices
in the Hilbert space, while the purple circle and red wavy
lines represent the tensor and Fourier indices in frequency-
space. Green lines represent the virtual bonds, where each
MPO block is diagonal in the frequency space.

to accessing the NESS through time-evolution.

To overcome these limitations, for time-independent

systems, recent works [33, 34] directly target an MPO

representation of a NESS that is variationally optimized

through density matrix renormalization group (DMRG)

type methods [36], while there are also Floquet DM-

RGs targeting eigenstates in closed (e.g. MBL) sys-

tems [37, 38]. In this paper, we extend this technique

to open Floquet systems, dubbed open-system Floquet

DMRG (OFDMRG). The central idea will be to re-

duce the time-dependent Floquet problem to an effec-

tive time-independent one in an extended (frequency)

space. Frequency-space methods are widely used in vari-

ous analytic and numerical approaches to Floquet prob-

lems [38, 39]. Here we adapt this representation in a form

convenient for performing MPS calculations. Impor-

tantly, the method retains information not only about the

NESS at stroboscopic times, but also the micro-motion

within a period, which can be required to observe certain

dynamical phases, such as Floquet topological insula-

tors and symmetry-protected topological phases [2]. We

benchmark our method with a driven-dissipative Ising

model and also use it to explore the dissipative stabiliza-

tion of a discrete time-crystal (DTC) by coupling it to a

cold bath.

Frequency-space MPO representation – Consider

the evolution of the density matrix ρ(t) of a periodically

driven 1d quantum system coupled to a Markovian bath

described by the Floquet-Lindblad equation (FLE):

∂tρ =L(t) [ρ] = −i [H(t), ρ]

+∑
α

(Lα(t)ρL
†
α(t) −

1

2
{L†

α(t)Lα(t), ρ}) , (1)

where H(t + τ) =H(t) and Lα(t + τ) = Lα(t) are respec-

tively the periodic Hamiltonian and jump operators.

Floquet’s theorem enables one to write solutions to

the FLE in terms of quasi-eigenmodes of the Lindbladian

L(t) as: ρ(t) = ∑n ρ
ne−λteinΩt, where λ is the (complex)

quasi-eigenvalue and Ω = 2π/τ is the driving frequency

(see the Supplemental Material [40] Sec. I). Inserting this

expression into Eq. 1, reduces the time-dependent FLE

into an effectively time-independent equation: L̂[ρ̂] =

−λρ̂ for extended ρ̂ = ∑n ρ
n ⊗ ∣n⟫ residing in an enlarged

(frequency) space H2 × Z (intuitively, the extra Z factor

keeps track of how many drive quanta the system has

absorbed or released), where the extended Lindbladian

is given by:

L̂
nm

[ρm] = −inΩρnδnm − i [Hn−m, ρm] +∑
α

Dnm
α [ρm],

Dnm
α [ρm] = Ln−kα ρmL†,k−m

α −
1

2
{L†,n−k

α Lk−mα , ρm} , (2)

where Hn, Lnα are Fourier coefficients of H and Lα with

frequency nΩ respectively, and throughout this paper re-

peated Fourier indices are implicitly summed.

We are targeting models with high-frequency drives

and weak-system bath couplings to model whether a sys-

tem can be cooled close to a pre-thermal ground-state.

Here, we expect ρ0 to be approximately thermal, and

hence exhibit an area-law operator entanglement [27]

permitting efficient representation as an MPO. We fur-

ther assume that, at high frequencies, the linear poten-

tial −inΩ in frequency-space leads to localization near

n = 0 characterized by rapid decay of ∣ρn∣/∣ρ0∣ with n

(see the Supplemental Material [40] Sec. II for conver-

gence check), so that we can cut off the infinite frequency

index beyond ∣n∣ = Nc, and that each ρn has a low bond-

dimension MPO representation ∀n. The validity of as-

sumptions can be checked a posteriori. We note that the

Fourier index n can be regarded either as a global in-

dex, or distributed to each MPO by introducing virtual

bonds which formally require each MPS block diagonal

in the frequency space, i.e. no interplay between differ-

ent frequency space sectors. (see Fig. 1 for a graphical

representation). It is further convenient to vectorize the

density matrices ρn → ∣ρn⟫ using the Choi isomorphism

∣ψ⟩⟨φ∣→ ∣ψ⊗φ⟫, so that we regard the MPO as an MPS

with squared physical dimension:

∣ρn⟫ = ∑
{µi}

Mn
µ1
. . .Mn

µL
∣µ1 . . . µL⟫, (3)

where each Mn is a d2×χ×χ tensor, d is the onsite Hilbert

space dimension, µi ∈ {1 . . . d2} labels a basis of physical

states for the vectorized density matrix, i = 1 . . . L label

sites of the 1d chain, and χ is the bond dimension.

After the vectorization, L̂nm in Eq.(2) becomes a lin-

ear operator acting on ∣ρm⟫, which can be similarly rep-

resented in an MPO form with two Fourier components
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n,m:

L̂
nm

= ∑
{µi,νi}

vLWnm
µ1ν1⋯W

nm
µNνN

vR∣µ1⋯µN⟫⟪ν1⋯νN ∣,

(4)

where each Wnm is a d2 × d2 × χO × χO tensor, χO are

the operator bond dimension, and vL,R impose boundary

conditions.

Open-system Floquet DMRG (OFDMRG) – In

conventional MPS-DMRG for closed systems, one mini-

mizes the variation energy ⟨ψ∣H ∣ψ⟩ for each local MPS

tensor, which relies heavily on Hermiticity of H. A natu-

ral generalization [33] to open systems would be to min-

imize ⟪ρ∣L†L∣ρ⟫, however, the MPO for L†L has square

of the bond-dimension of that for L, adding significant

overhead [34]. In an alternative approach [34], instead of

variationally searching for the local MPS, one can solve

the zero eigenvector for the local effective Lindbladian

Li obtained by contracting all indices for ⟪ρ∣L∣ρ⟫, ex-

cept those for a single site i, so that sites j ≠ i form an

environment for site i.

Here we adapt this approach directly to the frequency-

space representation of ρ and L̂, seeking to approximately

prepare the NESS satisfying L̂nmi ∣ρm⟫ = 0 by sweep-

ing through a sequence of local eigenvalue problems for

Mm
µi

(see Fig. 1), using an implicitly restarted Arnoldi

method based non-Hermitian eigensolver implemented in

the ARPACK library [41]. Working in frequency-space

requires imposing additional constraints on the solutions.

Physical states satisfy Trρ(t) = ⟪I∣ρ(t)⟫ = 1∀t, which de-

mands Trρn = ⟪I∣ρn⟫ = δn0 where ∣I⟫ is the maximally

mixed state. We enforce this condition by penalizing vi-

olations by modifying how the extended Lindbladian acts

on vectors as L̂→ L̂′ with:

L̂
′nm

∣ρm⟫ = (L̂
nm

− P0∣I⟫⟪I∣(1 − δn0)δnm) ∣ρm⟫

− P1 exp (−∣Trρ0
∣
2
/δ2) ∣ρn⟫, (5)

where P0, P1, δ are penalty parameters. In practice, we

start with several warm-up sweeps with proper penalty

parameters (P0 = P1 = 1000 and δ = 0.01 in our imple-

mentation) to avoid local minima violating the trace con-

straint, and then remove the penalty for further DMRG

sweeping. (see the Supplemental Material [40] Sec. II

and III for discussion on convergence and positivity of

density matrices)

Dynamical approach to the NESS – The MPO-

based method can be naturally extended to solve long-

lived decaying modes of Floquet Lindbladian, with Reλ >

0, by a similar approach to excited state DMRG [42].

To explore this, we first review some basic properties of

the (extended) Lindbladian: (i) the Lindbladian has a

bi-orthornormal basis, where left and right eigenvectors

FIG. 2. NESS of driven-dissipative Ising chain – with
(J,h, g, γ, ω) = (1.0,0.5,1.0,1.0,5.0). (a) Time-dependent
expectation values of magnetization ⟨Z6⟩ for a system size
L = 11, with χ = 36, compared with the master equation evo-
lution result. The period-averaged error (inset) decays rapidly
with Nc to the numerical accuracy of the eigensolver. (b) Spa-
tial correlations ⟨Z6Z6+x⟩ for a larger chain with L = 21, using
(Nc, χ) = (4,20).

are defined by L̂∣ρRα⟫ = λα∣ρ
R
α⟫ and L̂†∣ρLα⟫ = λ∗α∣ρ

L
α⟫ and

satisfy the orthorgonal relations ⟪ρLα ∣ρ
R
β ⟫ = δαβ ; (ii) The

corresponding eigvenvalues {λα=0,1,...} can be sorted as

0 = λ0 > Reλ1 ⩾ Reλ2 ⩾ ⋯ (we assume that the zero

eigenvalue is not degenerate in the following discussion).

In particular ∣ρL0 ⟫ = ∣I⟫ due to the trace preservation of

Lindblad operator; (iii) The complex eigenvalues must

occur in a pair of complex conjugate since when ρ is an

eigenvector, ρ† is also an eigenvector.

Based on properties of the Lindbladian and in anal-

ogy to the Hamiltonian case [42], one can define L̂1 =

L̂−w∣I⟫⟪I∣ (L̂†
1 = L̂

†−w∣ρss⟫⟪ρss∣) where w is the penalty

energy for the vector not orthogonal to the zeroth left

(right) eigenvector. For large enough w, the solved eigen-

value with largest real part will give the first right (left)

eigenvector ∣ρR1 ⟫ (∣ρL1 ⟫). In principle, this procedure can

be done recursively to the nth eigenvector by adding n

projectors, however for the pair of eigenvectors whose

eigenvalues are in complex conjugate pairs λ = a ± ib,

they cannot be distinguished by their real part. Thus,

we focus only on the first decaying mode by targeting

the largest real part of eigenvalues, which dominates the

approach to the steady state at long times.

Benchmark: driven-dissipative Ising chain – We

first benchmark our OFDMRG method in a driven-

dissipative Ising model on a length L spin-1/2 chain

with Pauli operators {Xi, Yi, Zi} for sites i = 1 . . . L with

Hamiltonian:

H(t) =∑
i

[p(t) (−JZiZi+1 + hZi) + q(t)gXi] , (6)

where p(t) = (1 − sinωt) /2, q(t) = (1 + sinωt) /2, and

time-independent majority-rule jump operators

Li =
√
γ(2∣ ↑↑↑⟩⟨↑↓↑ ∣ + ∣ ↑↑↓⟩⟨↑↓↓ ∣ + ∣ ↑↓↓⟩⟨↑↑↓ ∣ + (↑↔↓)).

(7)

To compare our method with the exact evolution of Lind-

blad master equation implemented in QUTIP [43], we
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FIG. 3. OFDMRG for dissipative DTC model Eq. 8 for
J = 1, h = 0.5, ωc = 2, and unless otherwise specified: β = 2
and r = 2. (a) Comparison between effective temperature
βeff of the dissipative DTC model calculated by OFDMRG
method and that from solving Floquet rate equation (FRE),
with L = 11, g = 0.05, γ = 0.2, and (Nc, χ) = (1,16). (b)
Correlation lengths ξ of the dissipative DTC model for L = 31,
g = 0.05, γ = 0.2, and (Nc, χ) = (1,8). The correlation length
for a thermal state of transverse-field Ising model (TFIM)
with β = 2 is given as a reference. (c) Comparison between
transient dynamics of ⟨Z3⟩ calculated by OFDMRG method
and by the exact evolution of master equation (ME) for L = 5,
g = 0.2, γ = 2, β = 5, high-frequency (Ω = 10), and (Nc, χ) =
(2,16). (d) Relaxation time of the dissipative DTC model for
L = 21, g = 0.2, γ = 2, and (Nc, χ) = (1,16).

simulate a chain with array length L = 11. We find ex-

cellent convergence in the central magnetization ⟨Z6⟩ to

the exact solution with increasing frequency-space cutoff

Nc, achieving residual error ∼ 10−4 for Nc ∼ 5 that is con-

sistent with residual error in the zero-eigenvalue solver of

OFDMRG and the order of magnitude of Schmidt com-

ponents at the bond-dimension cutoff (see the Supple-

mental Material [40] Sec. II). The OFDMRG method

also extends straightforwardly to larger systems with

polynomial-in-L scaling. For example, in Fig. 2 we show

spatial correlations for a size L = 21, which would require

enormous computational resources to compute exactly.

Dissipatively-stabilizing a discrete time-crystal

(DTC) – Having benchmarked the performance of the

OFDMRG approach, we now turn to the question of

whether a pre-thermal dynamical phase can be stabi-

lized by coupling to a cold bath. As an example, we

study a model for a pre-thermal DTC model [11] cou-

pled to a thermal bath. For the system part, we con-

sider one-dimensional Ising model driven by periodic π-

pulses with generic perturbation breaking the Z2 sym-

metry, which serves as a prototypical model for the pre-

thermal DTC [11]

H(t) =∑
i

[
π

2
∑
n

δ(t − nτ)Xi − JZiZi+1 + hZif(t) + gXi] ,

(8)

where f(t) = (1 − cos Ωt). Various disordered and/or

long-range interacting incarnations of this Hamiltonian

have been studied in previous theoretical studies and im-

plemented experimentally in a variety of systems [2, 3]

to study MBL and prethermal mechanisms for stabiliz-

ing DTC order in (approximately) closed systems.

Here, we introduce dissipation by coupling each spin,
√
γXi ⊗Bi, where γ is thecoupling strength and Bi are

bath operators corresponding to separate ohmic bath

with spectral function J(ε) = ε
ε0
e−∣ε∣/ωc/ (1 − e−βε), where

β = 1/T is the inverse temperature of the bath, ε0 is a

characteristic energy scale, and ωc is the local bandwidth

of the bath, which will play an important role in con-

trolling the steady state [44]. We compute the effective

time-dependent jump operators for this model using a

Born-Markov approximation (see the Supplemental Ma-

terial [40] Sec. IV), and then truncate these to a finite

range of (2r + 1) sites to incorporate into the OFDMRG

procedure.

The singular δ-train has unbounded Fourier spectrum,

which would be long range in frequency-space. How-

ever, for models with smooth f(t) satisfying f(0) = 0,

we can cure this by transforming into a rotating frame

of the δ-function Xπ-pulses. In the rotating frame the

periodicity is doubled to 2τ , but there is a dynamical

symmetry: H(t + τ) = XH(t)X with X = ∏iXi. In

the DTC phase [2, 3], this dynamical symmetry is spon-

taneously broken, resulting in persistent period-doubled

oscillations, and manifesting in long-range mutual infor-

mation between distant spins [45]. However, unlike the

long-range interacting pre-thermal DTC model realized

recently in trapped-ion experiments [46], such sponta-

neous symmetry breaking is forbidden in any short-range

interacting 1d system that thermalizes to a finite temper-

ature. Instead, one expects the length- and time-scales

for these signatures to diverge if the system is success-

fully cooled to a pre-thermal ground-state. The criterion

of cooling near the pre-thermal ground is also required

to realize dynamical Floquet topological phases (in any

dimension), whose properties rely crucially on quantum

coherence and entanglement.

Our goal is to assess whether and under what con-

ditions the resulting NESS resembles a low-temperature

Floquet Gibbs state with extended range DTC correla-

tions. To this end, we compute (i) the NESS entropy

Sss = −Tr (ρss log ρss); (ii) the NESS DTC spatial cor-

relation length ξ defined by fitting the averaged corre-

lation function ⟨Zj+xZj⟩ to the form e−x/ξ (shown in
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Fig. 3(b)). The NESS results are compared to prop-

erties of a thermal state ρthermal =
1
Z e

−βD, where D =

∑i [−JZiZi+1 + g (1 − 8ch2/Ω2)Xi] with some constant

c from f(t) is the effective Floquet Hamiltonian ob-

tained by performing a high-frequency (ven Vleck) ex-

pansion to the second order. By comparing the system

entropy Sss to the thermal entropy of D, we can extract

an effective inverse temperature βeff = 1/Teff (shown in

Fig. 3(a)). D takes the form of a transverse-field Ising

model with ordered ground-state, and the characteris-

tic energy scale to make a local spin-flip excitation of

D is 4J , which results enhanced drive-induced heating

when Ω/2 ≈ 4J , and hence enhanced Teff . We also com-

pare results to solutions to an approximate Floquet rate

equation (FRE) [22, 47, 48] (for L = 11) obtained from

a Fermi-Golden rule treatment bath-induced transition

rates between eigenstates of the effective system Hamil-

tonian D in a rotating frame, which neglects off-diagonal

coherences in the system density matrix (see the Sup-

plemental Material [40] Sec. V). As driving frequency

increases beyond 8J , this heating is suppressed, and the

system’s βeff asymptotes to that of the bath (note that,

simulating colder temperatures requires keeping a larger

spatial extent, r, to the ab initio computed jump oper-

ators), and ξ increases towards the thermal correlation

length of ρthermal at the bath temperature. Importantly,

the Floquet Gibbs state arises only when the local bath

bandwidth satisfies ωc ≪ ∣Ω
2
− 4J ∣, so that bath-assisted

drive-induced heat absorption processes are suppressed

(see the Supplemental Material [40] Sec. V and VI).

We further explore the long-time DTC dynamics,

through asymptotic decay rate τrelax = − (Reλ1)
−1

of pe-

riod doubled oscillations obtained by computing the first

excited eigenstate ∣ρ1⟫, as well as the explicit dynam-

ics of ⟨Zj(t)⟩ for the ∣ρ(t)⟫ = ∣ρss⟫ + e
−λ1t⟪ρI ∣ρ1⟫∣ρ1⟫,

which captures the long-time dynamics from an initial

product state: ρI = ∏i(sin
π
8
∣ ↑⟩ + cos(π

8
)∣ ↓⟩)(sin π

8
⟨↑

∣ + cos(π
8
)⟨↓ ∣). As shown in Fig. 3(c), the dynamical

results are compared against exact master equation sim-

ulations (for L = 5, close to the limit of a single worksta-

tion). We observe quantitative agreement between the

time-dependent dynamics of the excited-state OFDMRG

method with the master equation simulations, confirm-

ing that the long-time dynamics is indeed dominated by

the first decaying mode. Further, in Fig. 3(d), we observe

that the DTC time scale increases with driving frequency

Ω (for Ω/2 > 4J), asymptoting to a finite time-scale that

increases as the bath is cooled.

Discussion and outlook – These results confirm the

expectation that there is a parameter regime of large

driving frequency (Ω ≫ 8J), moderate bath bandwidth

(ωc ≪ ∣Ω
2
− 4J ∣), and moderately-weak system bath cou-

pling (e−J/Ω ≪ γ ≪ J) where coupling the pre-thermal

DTC model to a bath successfully produces a Floquet

Gibbs-like state with temperature close to that of the

bath (see the Supplemental Material [40] Sec. V and VI).

Further, the OFDMRG method successfully captures this

behavior in system sizes that greatly exceed those acces-

sible by exact master equation simulations (here we sim-

ulated up to L = 31 on a single computer, which would

be limited to L ≲ 6 for exact computation).

We expect this technique to be useful in designing ex-

perimental realizations of dissipatively-stabilized dynam-

ical phases in solid-state devices and atomic quantum

simulators. The OFDMRG also permits a controlled

means to assess the validity of various approximation

methods such as Floquet rate equations and truncated

Wigner approximation methods [49, 50] which could po-

tentially be used beyond 1d. Natural future targets for

extending the OFDMRG method include studying NESS

of quasiperiodically driven systems [51–53] (with multi-

ple frequency-space directions), and incorporating non-

Markovian effects [54, 55].
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