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Twisted trilayer graphene is a particularly promising moiré superlattice system, due to its tun-
ability, strong superconductivity, and complex electronic symmetry breaking. Motivated by these
properties, we study lattice relaxation and the long-wavelength phonon modes of this system. We
show that mirror-symmetric trilayer graphene hosts, aside from the conventional acoustic phonon
modes, two classes of shear modes, which are even and odd under mirror reflection. The mirror-even
modes are found to be gapless and equivalent to the “phason” modes of twisted bilayer graphene,
with appropriately rescaled parameters. The modes odd under mirror symmetry have no analogue
in twisted bilayer graphene and exhibit a finite gap, which we show is directly proportional to the
degree of lattice relaxation. We also discuss the impact of mirror-symmetry breaking, which can
be tuned by a displacement field or result from a stacking shift, and of rotational- as well as time-
reversal-symmetry breaking, resulting from spontaneous electronic order. We demonstrate that this
can induce finite angular momentum to the phonon branches. Our findings are important to the
interpretation of recent experiments, concerning the origin of superconductivity and of linear-in-T
resistivity.

Introduction.—Stacking and twisting different layers of
graphene has emerged as a popular route to creating cor-
related superlattices over the last few years [1–6]. Besides
the most well-studied system, twisted bilayer graphene
(TBG), many other geometries have been explored both
experimentally and theoretically. Among them, mirror-
symmetric twisted trilayer graphene (TTG) [7–22], which
consists of three graphene layers with alternating twist
angles (see Fig. 1) stands out: it is the first system that
can be efficiently tuned with a perpendicular displace-
ment field D0 while exhibiting strong and reproducible
superconductivity. Recently, another unique behavior
was observed experimentally on decreasing the twist an-
gle θ slightly below the magic angle [13, 14]: while the
system still exhibits superconductivity with roughly the
same critical temperature, the linear-in-temperature (T )
resistivity seen at the magic angle disappears. Motivated
by these outstanding properties of TTG and the fact that
both superconductivity and linear-in-T resistivity [23, 24]
are considered to be linked to phonons in graphene moiré
systems [24–30], here, we theoretically study thelong-
wavelength and low-energy phonons of this system that
are crucially determined by the moiré superlattice, and
thus, depend on the twist angle.

Long-wavelength phonon modes have recently at-
tracted significant attention [27, 31–33] in TBG. Besides
the conventional acoustic phonons, the moiré lattice al-
lows for gapless shear modes, often referred to as phasons.
Phason modes have a rich history in the study of qua-
sicrystals [34] and charge-density-wave materials [35]. In
our case, they can be intuitively thought of as the rela-
tive displacements of the two layers of TBG, which shift
the moiré pattern and are, thus, gapless. However, a
proper description [27, 31] requires taking into account
lattice relaxation, and the phasons then corresponds to
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FIG. 1. Illustration of TTG in a perpendicular displacement
field D0 and its low-energy phonon modes.

the sliding of domain walls. Figure 1 illustrates that TTG
allows for three types of long-wavelengths phonon modes:
on top of the regular acoustic phonons, where all three
layers move in phase, there is another mirror-even set of
modes, where the middle layer moves against the outer
two layers. It is shown to be gapless and (modulo rescal-
ing of parameters) exactly equivalent to the phasons of
TBG. We further show that TTG also allows for mirror-
odd shear modes, which have no analogue in TBG and are
found to be gapped; the existence of a gap is intuitively
understood by noting that a mirror-odd displacement of
the layers does not just correspond to a translation or
rotation of the moiré pattern, but rather to a nontrivial
distortion of the superlattice.

In this work, we not only investigate the twist-angle
evolution of the phonon properties—which bear im-
portant consequences for the interpretation of experi-
ments [13, 14]—but also the impact of reduced electronic
symmetries on the phonon spectrum. This includes both
the effects of an applied displacement field or stacking
shifts, which break the mirror symmetry leading to an ad-
mixture of the gapless and gapped shear modes, and the
consequences of spontaneous electronic symmetry break-
ing. Theoretical [19–22] and experimental [7–14] studies
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of TTG indicate a variety of symmetry-broken electronic
phases and studying their influence on the phonons is
therefore crucial. We show how different electronic or-
ders can induce finite angular momentum in the phonon
branches.
Formalism—To begin, we first focus on the mirror-

symmetric limit of TTG (i.e., in the absence of a dis-
placement field) with no symmetry breaking in the elec-
tronic sector. The total free energy is a sum of two pieces
F =Fel +Fad, where Fel describes in-plane elastic distor-
tions of the graphene layers and Fad accounts for the
interlayer adhesion energy. Labeling the layers from bot-
tom to top by l= 1, 2, 3, and their corresponding in-plane
[36] displacements by the two-component fields s(l), the
first term can be written as [37]

Fel =

3∑
l=1

∫
dr

[
λ

2

(
∇·s(l)

)2

+
µ

4

(
∂is

(l)
j + ∂js

(l)
i

)2
]
,

where λ ' 3.25 eV/Å2 and µ ' 9.57 eV/Å2 are the
Lamé coefficients of graphene [38, 39]. We briefly dis-
cuss the out-of-plane field component in Sec. IC of the
Supplemental Material (SM) [36]. The elastic theory is
more naturally expressed in terms of the relative dis-
placements, u ≡ s(3)− s(1), and v ≡ s(3) + s(1) − 2s(2),
which are odd and even under mirror reflections, respec-
tively, and the total displacement, w ≡ s(1) + s(2) + s(3)

(cf. Fig. 1). While changes in u and v correspond to shear
modes, the mode w represents an in-phase displacement
of all three graphene sheets. The adhesion energy Fad
is a functional of the relative displacement fields only,
i.e., Fad =

∫
dr Vad [r,u (r) ,v (r)] , where Vad represents

the adhesion potential gluing the layers together; we ex-
pect Vad to be well described as the sum of pairwise in-
terlayer interactions between nearest-neighboring layers.
Restricting its Fourier expansion to the smallest nonzero
reciprocal lattice vectors Gν , rotational symmetry im-
plies that [36]

Vad =
∑
l=1,3

Vl

3∑
ν=1

cos

[
bν
2
·(v + plu)−Gν ·r

]
, (1)

with p1 =−1, p3 = +1, where bν are the reciprocal lat-
tice vectors of a single graphene sheet; mirror symme-
try implies V1 =V3≡V . Putting Fel and Fad together,
and solving the coupled Euler-Lagrange equations of mo-
tion for harmonic oscillations about the self-consistently
determined equilibrium configurations {u(0)(r),v(0)(r)},
we obtain the spectrum of lattice vibrations.
Mirror-symmetric limit.—The relaxation of the moiré

superlattice due to the interlayer couplings is captured
by the displacement textures {u(0),v(0)}. We see that
this atomic reconstruction leads to a nontrivial v(0) 6= 0
[Fig. 2(b)], which illustrates that the lattice reorganizes
itself to maximize (minimize) the regions of energetically
(un)favorable AB/BA (AA) stackings in each bilayer. We
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FIG. 2. (a) Phonon spectra of TTG in the mirror-symmetric
limit at the magic angle θ= 1.56◦. (b) Lattice relaxation tex-
ture for v(0); the AA (AB/BA) stacking regions at the cen-
ter (corners) of the moiré unit cell—demarcated by the solid
hexagon—shrink (expand) under such relaxation. (c,d) Pha-
son velocities for the lowest two branches; the solid lines mark
the transverse (vta, blue) and longitudinal (vla, red) acoustic
phonon velocities. (e) Gap of the mirror-odd shear mode as
a function of the twist angle.

find that this relaxation is equivalent to that of TBG,
apart from a rescaling of parameters [36]. Furthermore,
we obtain that u(0)(r) is identically zero ∀ r. While
spontaneous breaking of mirror symmetry by the lattice
is possible in principle, u(0) 6= 0 is not favorable energet-
ically. This can be understood intuitively by noting that
simultaneous maximization of local AB/BA stacking re-
gions in the top and bottom bilayers via v(0) 6= 0 is most
effective when the outer two layers are aligned, as seen
in experiments [10, 12].

The fully relaxed spectra of the three distinct classes
of vibrational modes, arising from the displacements u,
v, and w, are arrayed in Fig. 2(a) in units of ω0 =
(2π/LM )

√
λ/ρ, where ρ is the mass density and LM

is the moiré lattice constant. Physically, the acoustic
phonon modes, w(q), represent the in-phase vibrations
of all three layers. On the other hand, the gapless pha-
son modes, v(q), correspond to the sliding motion of the
domain walls. As shown in Sec. IB of the SM [36], the
phason mode for TTG is equivalent to the one of TBG
modulo rescaling of the adhesion potential V → 2V/3.
The phasons can be thought of as acoustic modes of the
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emergent moiré superlattice, and the soft nature of this
lattice can be seen from the velocities in Fig. 2(c) and
(d). Unlike the acoustic mode velocities, which, within
the harmonic approximation, are just constants given by
vla =

√
(λ+ 2µ)/ρ and vta =

√
µ/ρ, for longitudinal and

transverse phonons, respectively, we see that the veloc-
ities of the low-frequency phason modes are extremely
sensitive to twisting and can thus be used as an indirect
probe to infer the twist angle. The existence of these
soft phason modes is also expected to modify (and im-
print signatures in) various experimental observables, in-
cluding the low-temperature specific heat [40], thermal
conductivity [41], and frictional properties such as su-
perlubricity [42–45].

Finally, there also exists a gapped shear mode, u(q),
which is unique to TTG. This mode corresponds to a dis-
tortion of the moiré lattice and is thus massive but the
C3 symmetry guarantees that the lowest two branches
(the two polarizations) have the same mass. In Fig. 2(e),
we see that the gap ∆ decreases monotonically with in-
creasing twist angles and this behavior of the gap can be
understood from the expression

∆2 =
3V

2ρ
|b|2α; α =

〈
− cos

(
bνv

(0)/2−Gνr
)〉

Ω
, (2)

obtained from perturbation theory (see Eq. (S32) [36]).
Here, |b| ≡ |bν |, and 〈. . .〉Ω denotes the spatial average
over the system. Without any relaxation, i.e., v0(r) = 0,
we have α= 0, while relaxation will result in α> 0 to op-
timize the adhesion potential. This is also expected since,
in the absence of relaxation, the top and bottom layers
can be moved independently without any energetic cost
in our elastic theory. Therefore, the gap of the mirror-odd
shear mode—a thermodynamically observable quantity—
is directly proportional to the dimensionless measure α of
lattice relaxation. Furthermore, we now also immediately
understand that, for smaller twist angles, the impact of
the relaxation will be stronger such that α, and hence,
∆, increases, in accordance with Fig. 2(e). Given that
the gap varies from 10.5 to 5.6 cm−1 over this range of
θ, the mirror-odd shear modes can be directly probed by
Brillouin-Mandelstam spectroscopy [46, 47].
Mirror-symmetry breaking.—One particularly interest-

ing aspect of TTG is that an electric displacement field
D0 can be applied perpendicular to the graphene layers
(see Fig. 1), which breaks the mirror symmetry. D0 is
known to strongly affect the electronic degrees of freedom
as seen in experiments [7–14] and thus, is expected to also
modify the phononic properties. In our elastic theory, we
model this phenomenologically by allowing for the adhe-
sion potential strength to differ between the bottom and
top bilayers, taking V1,3 = V ∓ γD0 in Eq. (1).

The broken mirror symmetry has two crucial conse-
quences. Firstly, while v(0) continues to resemble the
previously found profile in Fig. 2(b), lattice relaxation
now also occurs in the mirror-odd sector, i.e., u(0) 6= 0.
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FIG. 3. (a) Mirror-odd lattice relaxation u(0), and (b) its
strength relative to the mirror-even v(0) for θ= 1.56◦ TTG in
the presence of a displacement field. (c, d) Spectra of shear
modes as the field is varied. (e) The phonon spectrum for the
shear modes when the mirror-symmetry breaking is induced
by a lateral stacking shift of magnitude d0 = 0.25; for clarity,
we omit the acoustic phonons in (c–e). (f) and (g) show the
corresponding relaxation textures in this case.

This can be seen in Figs. 3(a,b) where we plot the tex-
ture u(0)(r), which closely follows that of v(0), and how
its strength evolves approximately linearly with γD0.
Specifically, we see that u(0)→v(0)/3 as the extreme
limit γD0/V = 1 is approached; this corresponds to the
absence of relaxation in the top layer, which becomes
completely decoupled in this case. While slightly un-
physical, this limit helps us understand qualitatively the
behavior of the second key modification—the change of
the shear mode spectra. As can be seen in Fig. 3(c),
the gapless phason mode at D0 = 0 stays gapless for fi-
nite D0 while the gap of the originally mirror-odd mode
decreases. This is because the spectrum must approach
that of the acoustic phonon of a single graphene layer and
the phason of TBG (with doubled adhesion potential) in
the abovementioned limit of γD0/V = 1.

Another route to breaking mirror symmetry is via lat-
eral stacking shifts [48], which naturally arise in experi-
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mental samples. For concreteness, let us consider a case
in which the topmost layer is displaced from the orig-
inal “A-twist-A” stacking by a vector d= d0 a/2; here,
a is chosen such that d0 = 1 corresponds to “A-twist-B”
stacking, which we find to be structurally unstable, as
signaled by imaginary phonon frequencies. Interestingly,
however, for d0≤ 0.5, we discover metastable configura-
tions that are fundamentally distinct from our previous
ones. This is most clearly seen from the lattice relaxation
textures in Fig. 3(f,g): since u(0) measures the static shift
between the outer layers, the fact that it is a nonconstant
vector (i.e., u(0) 6=−d ∀ r) implies that the system does
not just relax back to the earlier mirror-symmetric con-
figuration but instead finds a different local minimum,
oscillations about which yield the phonon spectrum in
Fig. 3(e). The broken threefold rotational symmetry now
lifts the prior degeneracy of the mirror-odd shear modes
at the Γ point.

Spontaneous electronic symmetry breaking.—Besides
explicit symmetry breaking via external fields, TTG
also exhibits a variety of electronic phases with spon-
taneously broken symmetry, as indicated by experi-
ments [7–14]; some of these states coexist with super-
conductivity [7, 8, 11, 14] and appear in the same regime
of the phase diagram as the linear-in-T resistivity. As
such, it is important to analyze the consequences of
these electronic orders for the phonons. The combina-
tion C2zΘ of time-reversal (Θ) and twofold-rotation sym-
metry (C2z) is not only relevant to the stability of the
electronic Dirac cones of the system, but also for the
phonon modes: the phononic angular momentum [49],
Lzq =

∫
dr
∑3
l=1(δs

(l)
q × δṡ(l)

q )z, is constrained by Θ (C2z)
to obey Lzq =−Lz−q (Lzq =Lz−q) and thus, vanishes if
C2zΘ is a symmetry [50]. Recent theory [19] finds the
emergence of sublattice-polarized phases at finite D0,
which break C2zΘ, gapping out all Dirac cones, in consis-
tency with the more resistive behavior seen experimen-
tally [7, 8] in this regime. Whether this proceeds via
breaking of C2z or Θ depends on details of the exact in-
teractions present and can be thought of as the sponta-
neous emergence of loop currents on the moiré scale with
opposite or same chirality in the two valleys, respectively.

To begin with the latter, broken time-reversal sym-
metry induces a Hall viscosity term in the elastic the-
ory [51, 52], which—owing to C6z rotation symmetry—
can be parameterized (Sec. SIIIB [36]) by a single real
number, η, as Fη = η

∫
dr
∑
l([∂

2
j δs

(l)]× δṡ(l))z. Here, η
has to scale as η∼ g2M for small electron-phonon cou-
pling strength g and magnitude M of the sublattice po-
larization [53]. As shown in Fig. 4(a-c), this induces a
finite angular momentum in all low-energy modes, the
overall scale of which increases with η [36]. Most im-
portantly, by virtue of resulting from broken Θ rather
than C2z symmetry, the integral of Lzq over the Brillouin
zone of a given band does not vanish, which crucially

Acoustic phonon Gapped shear mode Phason
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FIG. 4. Angular momentum of the lowest band of the (a)
acoustic phonon, (b) gapped shear, and (c) phason modes in
the presence of broken time-reversal symmetry at θ= 1.56◦,
using a phenomenological value of η/√ρ = 1 (eV)1/2 (see
Fig. S4 [36] for the variation with η). The lower panel shows
the angular momentum for the lowest band of the (d) gapped
shear mode, and (e) phason when C2z is broken for a value of
φ=π/6 (cf. Fig. S5 [36] for variation in φ). In this case, the
angular momentum of the acoustic phonon is identically 0.

differs from previous discussions of angular momentum
bands in moiré systems [54, 55]. Interestingly, the con-
tributions from the different modes have the same sign,
as opposed to acoustic and optical phonons in regular
crystals [49]. Consequently, the phononic system ex-
hibits a finite ground-state angular momentum, which
has to decay at sufficiently large temperature due to the
Bohr-van Leeuwen theorem. Fingerprints of the angular
momenta in the phononic bands could potentially even
be probed experimentally via the Einstein-de Haas ef-
fect [49] or the phonon thermal Hall effect [56], which
has attracted much attention recently in the context of
cuprate superconductors [57] and Kitaev materials [58].
For completeness, we also studied [36] sublattice polar-
ization which breaks C2z instead of Θ; practically, this
corresponds to adding a phase φ to each cosine of Vad in
Eq. (1). In this case, Lzq is odd in q, as clearly seen in
Fig. 4(d-e), and the net angular momentum vanishes at
any temperature.
Discussion.—Making the natural [11] assumption that

electron-phonon coupling is an important driving force of
superconductivity in TBG and TTG, our results provide
a natural explanation for why both systems show super-
conductivity with comparable Tc. As we have shown, the
phason modes are equivalent in the two systems, mod-
ulo an O(1) rescaling of parameters, and we expect the
additional mirror-odd mode to only provide a subleading
enhancement of Tc for vanishing D0, since it couples the
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flat (TBG-like) bands to the highly dispersive (graphene-
like) bands of TTG. When turning on a finite D0, the
two sectors mix and we expect the gapped shear mode
to become more relevant; this might play an important
role in the observed enhancement [7] of superconductiv-
ity for small D0. In this picture, our results are also
consistent with recent experiments, where the transition
temperature was found to be approximately the same at
the magic angle (θ' 1.5◦) and in the “small-twist-angle
regime” (θ' 1.3◦) [59], since we find that the phonon
properties change by only a small amount in this range
of θ, see Fig. 2(c–e).

If electron-phonon coupling is also responsible for the
linear-in-T resistivity, % ∝ T , which is considered to be a
plausible scenario [24–27], the observed suppression [13]
of it around θ= 1.3◦ will have to be due to at least one
of the following reasons: (i) the temperature scale below
which phonons do not give rise to a linear-in-T contri-
bution increases significantly. This temperature scale is
an O(1) fraction [60] of the Bloch-Grüneisen-like tem-
perature scale Tbg =ω(k∗) where k∗ is the characteris-
tic momentum transfer required to change the direction
of the electronic group velocity significantly. Choosing
k∗ to be half the vector connecting the Γ and K point
as an example, we find Tbg ' 25K and 30K for the
mirror-even and mirror odd modes at θ= 1.5◦. These
scales even decrease further, to 18K and 24K, respec-
tively, when reducing the angle to θ= 1.3◦. So, we are left
with possibility (ii) that the magnitude of the phonon-
induced contribution to % decreases rapidly with θ. Fo-
cusing on the gapless phason mode, the slope d%/dT is
proportional to [25, 27] |g|2/(v2

fρmv
2
ph), where g is the

electron-phonon coupling matrix element, vf (vph) the
Fermi (phonon) velocity, and ρm∝ sin(θ/2) the soliton-
network mass density [27]. From our phonon spectra, we
find ρmv2

ph decreases by about 20% from θ= 1.5◦ to 1.3◦,
corresponding to an increased contribution to %. Fur-
thermore, the approximately identical phonon spectra at
these two angles imply that the resulting superconduct-
ing Tc should be primarily determined by |g|2/vf, since
the density of states at a fixed filling fraction scales as
1/vf. Experimentally, Tc is seen [13] to be about the
same for the two angles, so the only way to explain the
absence of linear-in-T behavior at small θ is if vf increases
significantly from θ= 1.5◦ to 1.3◦; this, however, is not
plausible either as the measured [13] bandwidth is even
smaller in the small twist-angle regime. Consequently,
the recent data of Ref. 13 is not consistent with a pic-
ture based on phonons alone and points towards another
origin. This is not only in accordance with a very recent
low-temperature study on TBG [61] but is also reminis-
cent of transport behavior in the “strange metal” phase
of the cuprate superconductors [62].
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