
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Hydrodynamic magnetoresistance in graphene Corbino
devices

Alex Levchenko, Songci Li, and A. V. Andreev
Phys. Rev. B 106, L201306 — Published 28 November 2022

DOI: 10.1103/PhysRevB.106.L201306

https://dx.doi.org/10.1103/PhysRevB.106.L201306


Hydrodynamic magnetoresistance in graphene Corbino devices

Alex Levchenko,1 Songci Li,1 and A. V. Andreev2

1Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
2Department of Physics, University of Washington, Seattle, Washington 98195, USA

(Dated: September 8, 2022)

We study hydrodynamic electron magnetotransport in graphene devices. We show that in
these systems a distinct mechanism of magnetoresistance appears, which is absent in systems with
Galilean-invariant electron liquid. The resulting magnetoresistance depends on the intrinsic conduc-
tivity and viscosity of the electron liquid, and becomes especially pronounced near charge neutrality.
We obtain analytic expressions for magnetoransport coefficients of Corbino devices, and obtain esti-
mates for the electrical and thermal magnetoresistances for monolayer and bilayer systems at charge
neutrality. Magnetoresistance becomes strong (of order 100 %) at relatively weak fields, at which
the kinetic coefficients of the electron liquid are practically unaffected by the magnetic field.

I. INTRODUCTION

Much of the recent interest in the electronic transport
properties in high-mobility two-dimensional electron sys-
tems (2DES) concerns the possibility of electron hydro-
dynamic behavior [1–5]. This transport regime can be
realized in samples of sufficient purity and only in a cer-
tain range of temperatures where the mean free path due
to electron collisions, `ee, becomes short compared to
other relevant length scales [6, 7]. Various experiments in
graphene devices, including transport measurements [8–
14] and local imaging techniques [15–19], provided nu-
merous pieces of evidence for realization of hydrodynamic
electron flow.

The Corbino disk geometry [20, 21] is an attractive
alternative to conventional Hall effect measurements of
magnetotransport properties of 2DES in rectangular de-
vices. Thermoelectric transport in graphene Corbino de-
vices was studied experimentally [22–27]. Hydrodynamic
theory was applied to these systems to identify viscous
effects in electron transport [28–33].

Because of the potential character of the flow in
Corbino geometry the manifestations of viscosity in hy-
drodynamic transport are rather unusual. In particu-
lar, the viscous force density vanishes. Therefore, the
Bernoulli law, which generally works only for ideal liq-
uids, applies in this case [34]. Since in the creeping flow
regime, which is realized in linear response, the net force
density also vanishes, this means that the density of ex-
ternal force driving the flow vanishes as well. In the con-
text of electron hydrodynamics, expulsion of the external
force from the flow produces drops of applied voltage and
temperature at the sample boundaries [31, 32], which are
proportional to the fluid viscosity. It is interesting to note
that the energy dissipation associated with these drops
occurs in the bulk of the flow. Indeed, the vanishing of
the viscous force in Corbino flow does not imply van-
ishing of the viscous stress tensor, only of its divergence.
The viscous stresses arising from the deformation of fluid
elements by the flow produce the required energy dissi-
pation.

Previous theoretical treatments of hydrodynamic mag-
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FIG. 1. Graphene Corbino disk geometry top view is depicted
on panel (a). The panel (b) shows the side view of the same
device, where a sheet of graphene is encapsulated between
the layers of hexagonal boron nitride. The whole device is
deposited on the substrate with added gate control.

netotransport assumed Galilean invariance of the elec-
tron liquid [30, 31, 35]. Therefore their results do not
apply to graphene devices near charge neutrality. Mo-
tivated in part by experiments [24–27], here we develop
a theory of hydrodynamic magnetotransport in graphene
Corbino devices near charge neutrality. We show that the
mechanism of hydrodynamic magnetoresistance (MR) in
this case is qualitatively different from that in systems
with Galilean-invariant electron liquid, which is caused
primarily by the modification of the hydrodynamic flow
by the Lorentz force [35]. The difference becomes most
striking at charge neutrality, where charge current is de-
coupled from the hydrodynamic flow in the absence of a
magnetic field. In contrast, in a nonzero field the flow
remains coupled to the charge current even at charge
neutrality. The mechanism of the coupling can be under-
stood as follows. Though the electric current is caused
entirely by the intrinsic conductivity, its magnitude is
proportional to the electromotive force (EMF) acting on
the electrons. The latter corresponds to the electric field
evaluated in the frame moving with the liquid. Therefore,
in the presence of a magnetic field the EMF depends on
the flow velocity [36]. In turn, the Lorentz force caused
by the current affects the flow velocity. The magnetore-
sistance arising from this mechanism depends both the
intrinsic conductivity and the viscosity of the electron
liquid.
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II. HYDRODYNAMIC DESCRIPTION

We consider a Corbino disk geometry with radii r1 and
r2, and aspect ratio p = r2/r1 > 1, see Fig. 1. The in-
terior of the disk r ∈ [r1, r2] is assumed to be either
graphene monolayer (MLG) or bilayer (BLG); more gen-
erally, trilayer and multilayers are also possible. The de-
vice is subjected to an external magnetic field H = Hẑ
applied perpendicular to the xy-plane of the disk. We
consider a setup, in which a voltage V and a temper-
ature difference ∆T are applied between the inner and
outer electrodes. The electric and heat currents arising
in response are denoted by, respectively, I = eIn and
IQ = TIs (for convenience we also introduce particle In
and entropy Is currents, where e is the electron charge
and T is the temperature).

The 2 × 2 thermoelectric resistance matrix R̂ can be
determined by equating the Joule heat P to the rate of
energy dissipation in the flow

P = ~ITR̂~I, ~IT = (I, IQ). (1)

Here we introduced the two-component column vector of

currents ~I, with the superscript T denoting transposition.
The linear response electrical (Rel) and thermal (Rth)
resistances,

Rel(H) = (V/I)∆T=0, Rth(H) = (∆T/IQ)I=0, (2)

can be expressed in terms of the matrix elements of R̂
as follows: Rel(H) = DetR̂/R22, and Rth(H) = TR22.
The off-diagonal elements, R12 = R21, define thermo-
electric response. The Seebeck coefficient is given by
S(H) = −(V/∆T )I=0 = −R12/(TR22). From the On-
sager relation, S = Π/T , we can easily determine the
Peltier coefficient Π = (IQ/I)∆T=0.

The dissipated power in an electron flow,

P =
1

2

∫
Σij(∂iuj + ∂jui)d

2r +

∫
~X

T
Υ̂ ~Xd2r, (3)

comprises of two independent contributions. The first
term accounts for the viscous dissipation arising from the
hydrodynamic transport mode. In it the stress tensor is
given by [37]

Σij = η(∂iuj + ∂jui) + (ζ − η)δij∂kuk, (4)

where u(r) is the hydrodynamic velocity, while η and
ζ are, respectively, the shear and bulk viscosities. The
form of Σij in Eq. (4) is written for two spatial dimen-
sions. Note also that in Eq. (3) the summation over the
repeated indices is implicit. The second term in Eq. (3)
captures the entropy production rate due to transport in
the relative mode, i.e., charge and energy transport rel-
ative to the liquid. In Eq. (3) the column-vector of ther-

modynamic forces ~X consists of the electromotive force
(EMF) and the temperature gradient. It can be written
in the form [36]

~X = ~X − e

c
[u×H]~Ξ, ~ΞT = (1, 0). (5)

The first piece in the expression above is given by a pure

gradient, ~X = (−eE,∇T ), where eE represents the po-
tential part of the EMF defined by the gradient of elec-
trochemical potential. The second term above describes
the contribution to EMF arising from the motion of the
liquid in the presence of a magnetic field. The sum of the
two contributions corresponds to evaluating the electric
field in the frame moving with the liquid [36]. Finally, the

matrix Υ̂ in Eq. (3) characterizes the dissipative proper-
ties of the electron liquid. In the absence of Galilean
invariance, it is given by

Υ̂ =

(
σ/e2 γ/T
γ/T κ/T

)
(6)

and consists of the thermal conductivity κ, the intrin-
sic conductivity σ, and the thermoelectric coefficient γ,
see Refs. [38, 39]. For Galilean-invariant liquids, we have
σ = γ = 0. In the consideration below we neglect the
dependence of the kinetic coefficients in Eq. (6) on the
magnetic field. This approximation assumes that `ee
is shorter than the the electron cyclotron radius. We
will see that the effects considered below lead to magne-
toresistance that becomes strong at very weak magnetic
fields, where this approximation is justified.

In order to determine P in Eq. (3) as a quadratic form
of the currents I and IQ we need to determine the flow

pattern, i.e. the spatial profile of u(r) and ~X(r). The
hydrodynamic velocity is related to the driving forces by
the Navier-Stokes (NS) equation

η∇2u + ζ∇(∇ · u) = ~xT ~X + [jn × ẑ]/l2H , (7)

which expresses the force balance condition in the bulk
of the flow. The first term on the right hand side of Eq.
(7) describes the potential force on the liquid, which is
caused by the temperature and voltage bias. In it we
introduced a two-component column vector ~xT = (n, s),
whose components are the densities of particles, n, and
entropy s. The last term on the right hand side of
Eq. (7) is the Lorentz force, where jn is the particle
current density, and we introduced the magnetic length
lH =

√
c/|e|H.

The remaining hydrodynamic equations are given by
the continuity equations for the particle current jn and
entropy current js. Using the column vector notation
~JT = (jn, js) they can be written as

∇ · ~J = 0, ~J = ~xu− Υ̂ ~X . (8)

In the absence of a magnetic field the flow is purely radial.
The corresponding thermoelectric matrix, and the distri-
bution of temperature and the electric potential was de-
termined in our previous work [32]. In the present study
we extend this analysis to study thermoelectric transport
in weak magnetic fields.
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III. MAGNETOFLOW PATTERN

The magnetohydrodynamic description of electron liq-
uids formulated above applies to any device geometry,
and does not assume Galilean invariance of the electron
liquid. To make further progress, we specialize to the
Corbino geometry and work in polar coordinates (r, φ).
Owing to the angular symmetry of the Corbino disk, the
radial and azimuthal components of the currents and
forces do not depend on the polar angle φ. Therefore,
NS equation (7) projected onto the radial, (r), and az-
imuth, (φ), directions reduces to two coupled equations

(η + ζ)∆̂ur − ~xT ~Xr − (jn)φ/l
2
H = 0, (9a)

η∆̂uφ + (jn)r/l
2
H = 0. (9b)

Here ∆̂ denotes the radial component of the Laplace op-
erator, ∆̂ = 1

r
d
dr

(
r ddr
)
− 1

r2 , and the azimuthal compo-
nent of the particle current density is given by

(jn)φ = nuφ +
σ

e2

ur
l2H
. (10)

The continuity equation (8) for the current densities
reads

~Jr =
~I

2πr
= ~xur − Υ̂ ~Xr − Υ̂~Ξ

uφ
l2H
, (11)

where ~IT = (In, Is) is the column vector of particle and
entropy currents. In these notations the NS equation
for the angular component of the hydrodynamic velocity
[Eq. (9b)] reduces to the equation

∆̂uφ = − In
2πrηl2H

. (12)

Its solution is given by

uφ(r) = − Inr1

4πηl2H

(
Aρ+

B

ρ
+ ρ ln ρ

)
, (13)

where we introduced a dimensionless radial coordinate
ρ = r/r1 ∈ [1, p]. The values of the integration con-
stants A and B are determined by the boundary condi-
tions. Assuming the standard no-slip boundary condition
uφ(r1,2) = 0 we obtain A = −B = −p2 ln p/(p2 − 1).

Next, we analyze the radial part of the NS equation
(9a). For this purpose, we use the continuity equa-

tion (11) to express ~Xr in terms of ur,φ. Then, using
Eq. (10) we obtain

(k2
H − ∆̂)ur =

~xTΥ̂−1~I

2πr(η + ζ)
, k2

H =
1

l2
+

σ

e2(η + ζ)l4H
,

(14)
where the characteristic length scale l is given by

l−2 =
~xTΥ̂−1~x

(η + ζ)
=

n2κ
T −

2nsγ
T + s2σ

e2

(η + ζ)
(
κσ
Te2 −

γ2

T 2

) . (15)

We note that in graphene the bulk viscosity is expected
to be negligible [40, 41]. Therefore, it will be omitted in
what follows.

To motivate further approximations it is useful to es-
timate the order of magnitude of l in different trans-
port regimes. For instance, in the case of MLG in the
low density limit close to charge neutrality (Dirac fluid),

one gets l ≈
√
κη/Ts2 ∼ lT , where lT = v/T is the

thermal de Broglie length. To arrive at this estimation
we have used s, η ∝ (T/v)2 and κ ∝ T near the neu-
trality point [42]. In the high density regime (Fermi

liquid), one has instead l ≈
√
η/n2 ∼ lT , where we

have used the estimation of viscosity η ∼ n(EF /T )2 in
the Fermi liquid regime [43]. The field dependence of
kH , and thus ur, is manifested through the parameter
l2/(ηl4H) ∼ (lT /lH)4 � 1, which is negligible in the hy-
drodynamic regime since lT is a microscopic length scale.
Consequently, we can set k2

H = l−2, thereby neglecting
the dependence of ur on the magnetic field. This is accu-
rate within our approximation, in which we neglect the
field dependence of the viscosities η and ζ, and the kinetic
coefficients in matrix Υ̂.

The solution of Eq. (14) consists of the general so-
lution of the homogeneous equation and the particular
solution of the inhomogeneous equation. In our approx-
imation, the former is given by a linear combination of
modified Bessel functions of the first and second kinds,
I1(r/l) and K1(r/l). These exponentially decaying and
growing solutions of a homogeneous equation are local-
ized on the length l near the inner and outer boundaries
and describe deviations of the hydrodynamic flow from
that in the bulk. These solutions contribute to the ther-
moelectric resistance of the contacts. We are interested
in the contribution to the resistance matrix due to the
hydrodynamic flow in the interior of the disk. The latter
corresponds to the particular solution, which is given by

ur(r) =
1

2πr

~xTΥ̂−1~I

~xTΥ̂−1~x
. (16)

Note that, for given charge and heat currents the radial
component of the flow is independent of the magnetic
field. In contrast, the azimuthal component of the flow
velocity in Eq. (13) does get modified by the magnetic
field. The strength of this modification is characterized
by a single dimensionless parameter β = nr2

1/(2ηl
4
H).

This parameter measures the relative strength of the
Lorentz and viscous Stokes forces and determines the
number of turns the flow makes between the electrodes.
For β > 1 the flow swirls around electrodes the integer
of β times.

To illustrate the hydrodynamic magnetoflow in Fig. 2
we took β = 0.5 and used Eqs. (13) and (16) for a par-
ticular biasing scenario with Is → 0 at the high density
limit n� s. The velocity in the resulting flow pattern is
normalized to u0 = In/(2πr1n). It is worth noting that in
the situation corresponding to charge neutrality, n → 0,
the radial component of the flow velocity in Eq. (16) van-
ishes, and the charge transport occurs only through the
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FIG. 2. Illustration of hydrodynamic flow of electron liquid
in a Corbino device in a perpendicular magnetic field. The
stream plot for the velocity u(r) is generated for the disk
with the inner to outer radius ratio p = r2/r1 = 5 and non-
slip boundary conditions.

relative mode. In contrast, the azimuthal component uφ
remains nonzero in the presence of a magnetic field, so
that hydrodynamic magnetoflow at charge neutrality is
purely vortical.

IV. VISCOUS MAGNETORESISTANCE

Let us now determine the rate of energy dissipation in
this hydrodynamic transport. The derivation naturally
breaks down into two steps. First, we use ur(r) and uφ(r)
to determine the nonvanishing components of the stress
tensor

Σrr = 2η
∂ur
∂r

, Σφφ = 2η
ur
r
, Σrφ = η

(
∂uφ
∂r
− uφ

r

)
.

(17)
These expressions enable us to calculate the first term
in Eq. (3). The second step is to resolve the continuity
equation (11) in order to determine the radial dependence

of the forces in the bulk of the flow ~Xr(r). The particular
expressions we need read

eEr =
1

DetΥ̂

[(sγ
T
− nκ

T

)
ur +

κ

T

In
2πr
− γ

T

Is
2πr

]
+
uφ
l2H
,

(18a)

∇rT =

[(sσ
e2
− nγ

T

)
ur +

γ

T

In
2πr
− σ

e2

Is
2πr

]
. (18b)

These terms define the second contribution to P in Eq.
(3), which stems from the relative mode. The remain-
ing spatial integrations are elementary, but yield cum-
bersome expressions. Below, we focus on the regime near

charge neutrality working in leading order in n/s � 1,
and furthermore retain only the leading correction in the
magnetic field dependence.

For the electrical and thermal magnetoresistance we
thus find

Rel(H) = R0

[
1 +

σ

e2

r2
2

ηl4H
f1(p)

]
, R0 =

ln p

2πσ
, (19a)

Rth(H) = Rth

[
1 +

σ

e2

r2
2

ηl4H
f2(p)

]
, Rth =

η(p2 − 1)

πT (r2s)2
,

(19b)

where the dimensionless functions of the aspect ratio are

f1(p) = (p2−1)2−4p2 ln2 p
8p2(p2−1) ln p , and f2(p) = ln p

2(p2−1) . In order

to extract the thermopower we must retain finite density.
In the limit n/s� 1 we determine

S(H) = S0

[
1− σ

e2

r2
2

ηl4H
f2(p)

]
, S0 =

1

e

ns

n2 + Γ2
. (20)

The characteristic width in the density dependence across

the charge neutrality is given by Γ2 = σ
e2

2η(p2−1)
r22 ln p

. It

corresponds to electron densities, which are much smaller
than the characteristic thermal density s.

We see that, just as for Galilean-invariant liquids [35]
MR is positive, but its magnitude is proportional to the
intrinsic conductivity and inversely proportional to the
viscosity of the electron liquid. The temperature depen-
dence of MR is primarily governed by the fluid viscosity
since the intrinsic conductivity is only weakly T depen-
dent. From the weak coupling analysis, it is known that
σ behaves logarithmically with temperature [44–46]. The
inverse proportionality of MR to the viscosity is consis-
tent with the earlier results for correlated electron liquids
subject to long-range disorder potential [35, 47]. This be-
havior seems to be universal in the hydrodynamic regime.
Indeed, extending the above analysis to the opposite limit
of high density, n� s, one finds for MR

Rel(H) = R0 +
1

πe2

r2
2

ηl4H
f3(p), R0 =

η(p2 − 1)

πe2(r2n)2
, (21)

with f3(p) = p2−1
16p2

[
1− 4p2 ln2 p

(p2−1)2

]
. We note that the func-

tions f1(p) and f3(p), which characterize the magnitude
of MR in Eqs. (19) and (21), exhibit sensitive depen-
dence on the aspect ratio p. As illustrated in Fig. 3 these
functions range between zero at p → 1 and practically
saturate for p > 10.

It is worth noting that at charge neutrality magne-
toresistance in Eq. (19) reaches a value of order unity
at rather small fields, where l2H ∼ r1lT and our approxi-
mation of neglecting the dependence of the kinetic coeffi-
cients in Eq. (6) and kH in Eq. (14) on the magnetic field
still holds. At large densities MR becomes independent
of the intrinsic conductivity. In this regime the absence
of Galilean invariance becomes inessential.

In conclusion, to facilitate possible comparison to ex-
periments, we present estimates for relative MR for both
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FIG. 3. Dependence of the dimensionless functions f1,3(p)
that define MR in Eqs. (19) and (21) on the aspect ratio of
the Corbino disk.

electrical and thermal parts. It is convenient to express
them in the form δRel,th(H) = Ael,thH

2, where the fac-
tors Ael,th(n, T ) can be measured independently. Ex-
actly at charge neutrality, we determine that their ratio
is Ael/Ath ∝ Ts2/η. For MLG devices, we thus expect
Ael/Ath ∝ T 3. In BLG, η(T ) has not been microscop-

ically calculated near charge neutrality, since this is a
problem of strong-coupling theory. Nevertheless, we can
infer the temperature dependence of η from the viscosity
to entropy density bound conjecture [48]. It thus sug-
gests η ∼ s(T ) ∼ m∗T , where m∗ is the effective mass
of the band structure. Therefore, for BLG we expect
Ael/Ath ∝ T 2.
Note added. During the completion of this manuscript

we became aware of the related work Ref. [49] that also
addresses MR in a graphene Corbino disk at the charge
neutrality.
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