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A global quantum quench can be modeled by a quantum circuit with local unitary gates. In
general, entanglement grows linearly at a rate given by entanglement velocity.Locality yields a
finite light cone, which bounds the velocity. We show that the unitary interactions achieving the
maximal rate must remain unitary if we exchange the space and time directions – a property
known as dual unitarity. Our results are robust: approximate maximal entanglement velocity also
implies approximate dual unitarity. We further show that maximal entanglement velocity is always
accompanied by a specific dynamical pattern of entanglement, which yields simpler analyses of
several known exactly solvable models.

Introduction. The propagation of information can
never exceed the speed of light, due to Lorentz invari-
ance. Any particle actually achieving this speed must be
massless, and lower speed limits can be placed on massive
particles when energy is limited. In non-relativistic sys-
tems where the speed of light is effectively infinite, the lo-
cality of the interactions poses an emergent constraint[1].
In this letter, we study the speed limit of entanglement –
a measure of quantum information – in locally interact-
ing quantum circuits. As with the speed of light, it will
turn out that local unitary interactions (or “gates”) that
achieve the maximum velocity of spreading entanglement
have a special form.

There is a natural notion of entanglement velocity in a
global quantum quench[2–4]. When a short-range entan-
gled state |ψ0〉 is unitarily evolved, in general, a (small)
subsystem Q will thermalize. After a sufficiently long
time, the entanglement (or von Neumann) entropy S(Q)
of the subsystem Q will saturate to its equilibrium value.
To set the stage, we consider an infinite lattice qudit sys-
tem in one dimension with local Hilbert space dimension
q and take a semi-infinite region Q as the subsystem.
We assume that the unitary evolution can thermalize the
state |ψ0〉 to infinite temperature. On the way to equi-
librium, the von Neumann entropy of Q typically grows
linearly in t[5–7]

S(Q)t ≡ S(Q)ρ(t) ≡ − tr(ρQ ln ρQ) ∼ ln(q)vEt. (1)

The linear coefficient divided by the entropy density ln(q)
has the dimension of velocity. It is thus called the entan-
glement velocity and denoted as vE . A more precise def-
inition of vE is the asymptotic growth rate (maximized
over short-range initial states)

vE = lim
t→∞

S(Q)t
t ln(q)

. (2)

We model spatially local interaction by a quantum cir-
cuit with local gates in a brickwork structure (Fig. 1(a)).
The brickwork unitary circuit has been extensively stud-
ied in recent research about quantum chaos[8–12] and
entanglement[9, 13–16], bearing fruitful results. Taking

the depth as time, the construction has a natural light
cone velocity vLC = 1, so that the effective system size is
at most 2vLCt = 2t. This corresponds to a Hilbert space
of dimension q2t. The largest entanglement occurs when
a qt-dimensional subspace of Q maximally entangles with
a qt-dimensional subspace of Q’s complement (Fig. 1(a)).
Thus S(Q)t ≤ t ln q and vE ≤ 1.

In the study of quantum chaos, researchers discov-
ered certain (generally non-integrable) brickwork circuits
whose vE is exactly 1[17]. The gate is taken to be self
dual as we now define. We denote a two-site unitary
gate as u with element uij,kl. By definition, we obtain
an identity matrix when multiplying u with its Hermi-
tian conjugate, i.e. uij,klu

∗
i′j′,kl = δii′δjj′ . We draw this

unitarity relation as

ii
′ jj

′

k l

= ii
′ ⊗ jj

′
(unitarity) . (3)

The four-leg red and blue tensors represent a two-site
unitary and its complex conjugate respectively, with the
top/bottom legs as row/column indices ij/kl. Contrac-
tion at the bottom represents matrix multiplication, and
the two tensors on the right denote the identities on
the two sites. A dual unitary satisfies an additional dual
unitarity relation

ii
′

kk′

j

l

=

kk′

ii
′

(dual unitarity) . (4)

It means that the matrix is also a unitary when viewed
sideways, i.e. uij,klu

∗
i′j,k′l = δii′δkk′ . Examples of dual

unitaries include the swap gate and quantum Fourier
transform[18, 19], see review[12] for more constructions.

The dual unitary circuits are strongly chaotic[14, 17,
20–23]. Its auto-correlation[14, 24] and quantum butter-
fly effect travels at the light cone speed of 1[25](though
not exclusively[26]). The spectrum form factor[20, 27]
exactly reproduces the random matrix behavior. For cer-
tain solvable initial states, it has vE = 1[17, 28, 29].
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Figure 1. (a) The brickwork circuit. Solid circles at the bot-
tom denote product initial states. The vertical dashed line
cut the system into subsystem Q and Q. The dotted line de-
lineates the circuit light cone. (b) (top) At t = 2, analysis of
S(Q)t=2 reduces to 4 qudits and 3 gates. S(Q)t=2 is set to be
the maximal 2 ln q. (bottom) Evolution from t = 1 to t = 2
with input ρABCD and output ρAB′C′D.

In this letter, we ask what is required for the circuit
to have vE = 1. We prove two conditions: the dual uni-
tarity (Eq. (4)) of the gate and a decoupling structure
(Fig. 2(b)) of the input state. These conditions are ro-

bust: if vE = 1− η, they are satisfied up to error O(η
1
2 )

for small positive η. Furthermore, such a local decou-
pling structure is exact in solvable states. When acted
on by an arbitrary dual unitary circuit, they yield vE = 1
exactly without the need for an asymptotical limit. We
will discuss later in the paper how dual unitaries are the
most efficient way to produce highly entangled states.

Almost maximal growth by a gate. The entan-
glement velocity vE can be thought of as the long-term
average rate of entanglement growth per gate. Since the
expression involves a limit, vE = 1 can still be achieved
if most gates have near-maximal entanglement growth.

We start here with the vE ≤ 1 limit. Follow the dashed
line in Fig. 1(a) from the bottom to the top. Entangle-
ment can only change when the line pierces through a
unitary gate, every other time step. The maximal growth
by one gate is upper bounded by 2 ln q (Lemma 1 of
[30]). After t time steps (assuming t even), there are t/2
gates between Q and Q, corresponding to entanglement
changes ∆τ ≡ S(Q)2τ − S(Q)2τ−1 for τ = 1, 2, . . . , t/2.
Each ∆τ ≤ 2 ln(q). On the other hand, if vE = 1 then
1
t/2

∑
τ ∆τ ≥ (1 − η)2 ln(q) where η → 0 as t → ∞.

Thus there exists at least one τ where the entanglement
increase ∆τ is ≥ (1 − η)2 ln(q). As we take t → ∞
this argument shows that individual gates must yield en-
tanglement increases arbitrarily close to 2 ln(q). Note
that the 2 ln(q) upper bound is not really used here.
We get the existence of gates with entanglement growth
≥ (1−η)2 ln(q) just because that’s the average entangle-
ment growth. We need the upper bound only to interpret
this as near-maximal.

A 4-qudit model. A simple version of the relation be-

tween dual unitarity and maximal entanglement growth
can be seen in a 4-qudit example. Suppose we have
S(Q)t=0 = 0 and S(Q)t=2 = 2 ln q in Fig. 1(a), then for
the sake of entanglement S(Q), we only need to consider
4 qudits and 3 gates(Fig. 1(b)). (Later we will generalize
this to the case where the initial entanglement may be
large.) We label the four qudits at the slice of t = 1 as
A, B, C and D. The gate evolves B and C to B′ and C ′

(Fig. 1(b) bottom). Our assumption of maximal entan-
glement growth means that S(AB′)− S(AB) = 2 ln q.

The input and output states can be determined from
the entropies. We have S(AB) = 0, due to the product
initial state and absence of gate across AB and CD at
t = 1. Thus AB′ is maximally mixed. By tracing out B′,
so is A (for t = 2 and consequently for t = 1). B therefore
forms a Bell state with A at t = 1. Similarly, C forms a
Bell state with D. We denote the Bell state as a curved
line connecting the qudits in Fig. 1(b) bottom (there is
an ambiguity of a unitary transformation in A, but it can
be removed once we obtain the RHS of Eq. (5)).

In a graphical notation similar to Eq. 3 and Eq. 4, we
rewrite ρAB′ in two ways

1

q2
=

1

q2
⊗ . (5)

On the LHS, the input state – two separate Bell pairs –
is conjugated by u (red) and u† (blue). Partial trace at
C ′, D denoted by the closed loop gives ρAB′ . The open
-shape symbol denotes the maximally mixed states at A

and B′. Canceling the normalization factor 1
q2 , Eq. (5) is

an alternative way to write down the dual unitary condi-
tion in Eq. (4). Thus we see that maximal entanglement
growth implies dual unitarity in our example.
Approximate maximal entangling. We extend the

intuition in the 4-qudit toy model to the case where en-
tanglement growth is almost maximal. This could arise
if vE = 1 and individual gates approach but do not nec-
essarily achieve this limit; alternately we might have vE
close to, but not equal to, 1. In Theorem 1 we will derive
entropy bounds to analyze the input and output states,
yielding an approximate dual unitary condition.

More formally, let us consider at time slice t there is
a gate on the dashed line Fig. 1(a) which is nearly max-
imally entangling. The gate u acts on qudits B and C,
while A (D) now denotes the collection of qudits to the
left (right) of B (C)[31–35], see Fig. 2(a). Unitary gates
acting exclusively on A or D do not change S(AB′), so
are ignored.

Theorem 1 (proximity to dual unitarity). Let u act as
in Fig. 2(a) such that

S(AB′)− S(AB) = 2 ln q − ε (6)

then ∥∥∥∥∥1

q
⊗ 1

q
− 1

q2

∥∥∥∥∥
1

≤ O(ε
1
2 ) (7)
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Figure 2. (a) The 4-party setup. Entanglement increases by
2 ln q−ε after applying unitary u on qudits B and C (Eq. (6)).
A and D are auxiliary systems with arbitrary (finite) dimen-
sions. (b) The decoupling entanglement structure. A (D) is
partitioned into A1 (D1) and qudit A2 (D2). A2B and D2C
are Bell pairs.

When vE = 1, ε goes to zero for a sequence of gates
along the dashed line in Fig. 1(a). Hence vE = 1 implies
that the gate is dual unitary. If vE = 1 − η, then the
entanglement growth for a sequence of gates along the
dashed line can converge to 2 ln q(1 − η). Theorem 1
indicates that the dual unitary condition is satisfied up
to an error of order η

1
2 .

When Eq. (7) holds, there a nearby dual unitary. We
give an explicit bound for q = 2 thanks to an explicit
parameterization; for q > 2, we know only non-explicit
bounds.

Theorem 2. If u has vE = 1− η for 0 < η < 1, then ∃
a dual unitary u×, s.t. it is close to the gate u up to an
error

‖u− u×‖1 ≤
{
O(η

1
4 ) if q = 2

fq(η) if q > 2,
(8)

where fq(η)→ 0 as η → 0.

The rest of this section gives a proof sketch of The-
orem 1. See Supplemental Material[36] for the proof of
Theorem 2.

First, we show that near-maximal entanglement in-
creases require that B and C be nearly maximally en-
tangled with A and D, respectively.

Lemma 1. Let u act as in Fig. 2(a) and assume entan-
glement growth in Eq. (6). Then

−S(B|A) = S(A)− S(AB) ≥ ln q − ε (9)

−S(D|C) = S(D)− S(CD) ≥ ln q − ε. (10)

The lemma can be proved by telescoping S(A) −
S(AB′) +S(AB′)−S(AB) and using sub-additivity[36].

The subsystem AB contains one extra qudit (B) than
A, yet its entanglement is at least ln q − ε smaller.
This almost maximal difference implies that −S(B|A) ≥
ln(q) − ε entanglement can be asymptotically distilled
from the state [37, Chaps 11, 24].

Lemma 2 (local decoupling structure in input). Up to
unitary transformations exclusively in A or D, the input

state ρABCD can be approximated by

σABCD = |αA2B〉〈αA2B | ⊗ σA1D1
⊗ |βCD2

〉〈βCD2
| (11)

s.t.

‖ρABCD − σABCD‖1 ≤ O(ε
1
2 ). (12)

Here A1, A2 (D1, D2) are partitions of A (D), and A2

(D2) is a qudit. |αA2B〉 and |βCD2〉 are maximally en-
tangled, i.e. S(A2)α = S(D2)β = ln q.

Fig. 2(b) depicts the structure of σABCD in the the-
orem. Using similar notation as in Eq. (5) for the Bell
state, Eq. (12) can be written as∥∥ρABCD − σA1D1 ⊗ A2B/q ⊗ CD2

/q
∥∥
1
≤ O(ε

1
2 ).
(13)

We use monogamy of entanglement to prove this struc-
ture, see [36] for details.

Now we discuss the constraints that apply to the out-
put state ρAB′ , which should be nearly maximally mixed
on A2B

′ after tracing out A1.

Lemma 3 (almost maximally mixed output). Given the
configurations in Fig. 2(a) and entanglement growth in
Eq. (6), we have∥∥ρA1A2B′ − σA1

⊗ A2
/q ⊗ B′/q

∥∥
1
≤ O(ε

1
2 ) (14)

where /q denotes a maximally mixed state, σA1
is the

reduced state from σABCD in Eq. (11).

For the proof, we can first deduce the deduce the ap-
proximate decoupling

∥∥ρAB′ − ρA ⊗ /q
∥∥
1
≤ O(ε

1
2 ) and

then replace the ρA by the approximate σA1
⊗ A2

/q from
the known structure in Lemma 3.

With these ingredients, we can prove Theorem 1.

Proof. Taking partial trace of C ′D in Eq. (13), we have
the approximation from the input side,∥∥∥∥∥ρAB′ − σA1 ⊗

1

q2

∥∥∥∥∥
1

≤ O(ε
1
2 ) (15)

On the output side, we replace ρAB′ with the maximally
mixed state in Lemma 3,∥∥∥∥∥σA1

⊗ 1

q
⊗ 1

q
− σA1

⊗ 1

q2

∥∥∥∥∥
1

≤ O(ε
1
2 ) (16)

Taking partial trace in A1 does not increase the distance.
We thus obtain Eq. (7).

Mechanism for vE = 1. We have shown that dual
unitarity is a necessary condition for vE = 1. For suffi-
ciency, it is known that vE = 1 for translational invariant
dual unitary circuits even at finite times, given special
classes of “solvable”initial states[17, 23].

We enhance the results by dropping the translational
invariance and prove vE = 1 for solvable states through
the entanglement structure developed above.
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Figure 3. Entanglement entropy of sites from −∞ to x in unit
of ln q for t = 1 (black), t = 2 (blue) and t = 3 (red). vE = 1
at finite time. At t = 1, the entanglement alternates between
0 and ln q. Applying dual unitary gates at the valleys relay
this zigzag pattern.

Theorem 3 (dual unitarity relays the zigzag entangle-
ment pattern). Suppose at the t = 1 time slice, the en-
tanglement across bonds alternates between ln q or 0. For
any dual unitary circuits, we have at even steps:

S(Q)t = t ln q. (17)

Proof. At t = 1, the entanglement profile is given by the
black curve in Fig. 3. There are peaks whose value is
ln q and valleys whose value is 0. Since the valley has
ln q entanglement smaller than its neighbors (Lemma 1
with ε = 0), the input state locally has the exact distill-
able entanglement structure in Fig. 2(b)(Lemma 2 with
ε = 0). When a dual unitary gate acts at the valley,
dual unitarity guarantees to increase the entanglement
by 2 ln q (the 4-qudit model). A valley becomes a peak.
In a brickwork circuit structure, the gate always acts on
valleys. Thus the circuit interchanges the role of peak
and valley in one step, yet still maintains the entangle-
ment difference to be ln q. For example, the red and blue
lines in Fig. 3 depicts the entanglement profile at t = 2
and t = 3. We see that the dual unitary gates can relay
the zigzag entanglement pattern, while always generat-
ing 2 ln q entanglement in each step, even if the gates
are different across the circuit. Hence the exact relation
S(Q)t = t ln q at even steps.

We find that “solvable” states[17, 23] can initiate a
zigzag pattern[36] (blue line in Fig. 3.) Thus its entan-
glement growth can achieve vE = 1 without the need
for an asymptotic limit. We conjecture that the zigzag
pattern can be dynamically generated in a dual unitary
circuit even if absent in the initial state, thus achieving
vE = 1 as t→∞.
Discussion.– In quantum simulation experiments, it

is desirable to create entangled states as quickly as possi-
ble to complete the operations within the coherence time
and to reduce errors. Theorem 1 suggests only (approx-
imate) dual unitarity gives the (nearly) maximal entan-
glement growth rate. In fact, in the random circuit sam-
pling experiment by the Google Quantum AI group[38],
the original choice of CZ gate was replaced by a dual
unitary gate in order to better resist classical simulation;
see Section VIII.A of [36] for details.

A random pure state on two qudits has entanglement
ln q − O(1). It is an approximate unitary from one qu-
dit to the other: the expected fidelity with a maximally
entangled state is 8

3π + O(q−2)[36]. Similarly a random
unitary (brickwork) circuit has vE ∼ 1−O( 1

ln(q) ) at large

q[39, 40]. Each gate increases entanglement by 2 ln q− ε,
with ε an O(1) number in q. By Theorem 1, we infer that
a random unitary has an O(1) distance to a dual unitary.
This is consistent with expected fidelity 8

3π +O(q−2)[36].
Thus in both cases, we see an O(1) deviation from max-
imal entanglement, whether measured in entropy or fi-
delity.

In numerical simulations of quantum chaos, pseudo-
random choices of the gate parameters can accidentally
lead to vE ≈ 1[41–43]. Our theorem indicates that it is
approximately a dual unitary (Sec. VIII.B of [36]), which
would hinder typical behaviors of chaotic dynamics from
being observed at numerically accessible system sizes.

Lemma 2 characterizes the local decoupling structure
of the state to have maximal entanglement growth. In-
stead of relying on translational invariance, in Theo-
rem 3 we use the decoupling structure to demonstrate
why vE = 1 even at finite times for arbitrary dual unitary
circuits acting on solvable states. We believe that such a
zigzag structure can be dynamically generated even when
the initial states are not “solvable”, see proof for a subset
of dual unitaries in Ref. [44].

Next we consider continuous setups. When space is
discrete and time is continuous, the question of maximal
entanglement velocity is known as the “small incremen-
tal entangling”(SIE) problem[31, 33, 35, 45]. Using the 4-
party setup in Fig. 2 with u = e−iHt, the best known SIE

bound is dS(AB)t
dt ≤ 8‖H‖ ln(q), which resembles the cor-

responding discrete-time bound, up to O(1) factors [45].
However, the structure of the optimal entangling state
in continuous time is unknown. The locally decoupling
state in Fig. 2(b) maximizes entanglement growth in dis-

crete time but has dS(AB)t
dt = 0 in continuous time for

any H. Further developing connections between these
settings is an intriguing direction for study.

In a quantum field theory, both space and time are
continuous. In Lorentz-invariant theories, we also have
vE ≤ vLC and the proofs[2, 4] are quite similar to our
entropy bound estimates in [36]. There are examples,
such as conformal field theories in 1+1 dimension that
have vE = vLC. It is natural to attempt to extend our
results to this setting; however, defining the right field-
theoretic analogue of dual unitarity is an open question.

In d dimensional space-time, holographic systems
which are believed to be strongly chaotic have[46, 47]

vE =

√
d(d− 2)

1
2− 1

d

(2(d− 1))1−
1
d

and vLC =

√
d

2(d− 1)
. (18)

When d = 1 + 1, vE = vLC = 1 as in the discrete case,
but when d > 1+1, vE < vLC. We note that our theorem
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only gives the necessary condition for vE = vLC without
showing that circuits achieving vE = vLC in fact exist for
d > 1 + 1. There are two important questions in higher
dimensions (i.e. d > 1 + 1) for both the continuum and
discrete cases: (1) is the maximal vE strictly less than
vLC?; and (2) if so, which gates/Hamiltonians can achieve
maximal vE? We conjecture that the dual unitary gates
still give the maximal possible rate, but the rate itself
could depend on the lattice structure in the discrete case
and the geometry of the cut in both the discrete and
continuum cases.

Finally, we may exploit the small temporal (operator)
entanglement of the (almost maximally) mixed output
state (AB′ or C ′D) in a matrix product state-based al-
gorithm. We leave this to future work.
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[34] M. Mariën, K. M. R. Audenaert, K. Van Acoleyen, and
F. Verstraete, Entanglement Rates and the Stability of
the Area Law for the Entanglement Entropy, Commun.
Math. Phys. 346, 35 (2016).

[35] S. G. Avery and M. F. Paulos, Universal bounds on the
time evolution of entanglement entropy, Phys. Rev. Lett.
113, 231604 (2014).

[36] See the Supplemental Material for more details about the
proofs.

[37] M. M. Wilde, Quantum Information Theory (Cambridge
University Press, Cambridge, 2013).

[38] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C.
Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L.
Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, K. Guerin, S. Habegger, M. P. Harrigan,
M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,
D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lind-
mark, E. Lucero, D. Lyakh, S. Mandrà, J. R. Mc-
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