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A Spectral Neighbor Analysis (SNAP) machine learning interatomic potential (MLIP) has been
developed for simulations of carbon at extreme pressures (up to 5 TPa) and temperatures (up to
20, 000 K). This was achieved using a large database of experimentally relevant quantum molecular
dynamics (QMD) data, training the SNAP potential using a robust machine learning methodology,
and performing extensive validation against QMD and experimental data. The resultant carbon
MLIP demonstrates unprecedented accuracy and transferability in predicting the carbon phase
diagram, melting curves of crystalline phases, and the shock Hugoniot, all within 3 % of QMD.
By achieving quantum accuracy and efficient implementation on leadership class high performance
computing systems, SNAP advances frontiers of classical MD simulations by enabling atomic-scale
insights at experimental time and length scales.

Carbon at extreme pressures and temperatures is a
topic of great scientific interest for several disciplines in-
cluding planetary science [1–5] and inertial confinement
fusion (ICF) research [6–9]. Methane ice at megabar
pressures and temperatures of thousands of kelvins is pre-
dicted to convert to solid or liquid carbon in the cores of
giant planets [2–4]. A successful suppression of hydro-
dynamic instabilities seeded by solid and liquid carbon
phases appearing upon strong compression of the outer
diamond ablation shell of an ICF capsule [10] was the key
for achieving a record-breaking, near-threshold fusion en-
ergy ignition at the National Ignition Facility [11].

The exploration of carbon’s behavior at extreme con-
ditions is challenging for both theory and experiment.
Shock and ramp compression experiments using power-
ful lasers [12], pulsed power [13] and bright X-ray sources
[14, 15] uncovered complicated mechanisms of inelastic
deformations [16–21], anomalous strength of diamond
[18–22], unusual melting [7, 23–27] and liquid carbon
properties [24, 25], as well as extreme metastability of di-
amond well beyond the pressure-temperature range of its
thermodynamic stability [28]. Molecular dynamics (MD)
simulations can provide a fundamental understanding of
these phenomena, but to be of experimental relevance,
it must accurately describe interatomic interactions in a
system consisting of a large number of atoms.

Previous simulations of carbon at extreme conditions
were predominantly performed using quantum molecu-
lar dynamics (QMD) based on density functional the-
ory (DFT) [24, 29–36]. Due to high computational cost,
QMD simulations are limited to several hundred atoms
for up to tens of picoseconds, which is insufficient for un-
covering non-equilibrium processes at experimental time
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(ns) and length (µm) scales. In principle, these scales can
be accessed by classical MD simulations on massively par-
allel computers [37]. However, empirical interatomic po-
tentials developed for carbon at near ambient conditions
[38–42] singularly fail upon extension to high pressures
and temperatures [43, 44], thus compromising predictive
power of atomistic simulations.

The advent of machine learning interatomic poten-
tials (MLIPs) [45, 46] opens up exceptional opportunities
for achieving a classical description of chemical bonding
with quantum accuracy [47]. Although numerous MLIPs
have been recently introduced and successfully applied to
modeling properties of materials at ambient conditions
[45, 46, 48–52], including carbon [53–56], their excep-
tional power in describing diverse and complex atomic
environments at megabar pressures and tens of thousand
of kelvins has yet to be demonstrated.

This letter reports a significant advance in develop-
ment of a quantum-accurate Spectral Neighbor Analy-
sis Potential (SNAP) for simulations of carbon at ex-
treme pressure-temperature (P-T) conditions. This in-
cludes construction of an experimentally relevant train-
ing database, implementation of a robust SNAP machine
learning training methodology, and extensive validation
against QMD and experimental data. The end result
is the first MLIP that delivers unprecedented accuracy
in simulating carbon over a remarkably wide range of
pressures (from 0 to 50 Mbar) and temperatures (up to
20, 000 K).

In general, MLIPs fingerprint a unique local atomic
environment around each atom by a set of descriptors.
SNAP’s descriptors are bispectrum components {Bi} of
the local neighbor density projected onto a basis of hyper-
spherical harmonics in four dimensions [48, 49]. Other
successful MLIPs – Neural Network Potentials (NNP)
[45, 52], Gaussian Approximation Potential (GAP) [46],
the Moment Tensor Potential (MTP) [50] – employ math-
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Figure 1: SNAP training database: a) pressure-temperature map of QMD and static DFT simulations included in the database,
each represented by a P-T point on carbon phase diagram sampling FC8 (diamond), BC8, SC solid and liquid phases (total
number of structures - 636); b) pressure-temperature-density-energy/atom distribution.

ematically different, but physically similar descriptors.
All of them, including SNAP can be mapped into a gen-
eral Atomic Cluster Expansion (ACE) descriptor frame-
work [51].

Herein, the total potential energy of the system of N
atoms is written as a sum of atomic energies Ei, which
are quadratic functions of the bispectrum coefficients Bi

[49]

Etot({rN}) =
∑
i

Ei; Ei = β·Bi+
1

2
Bi ·α·Bi . (1)

Machine-learning techniques are used to determine the
symmetric matrix α and the vector β, the unknown pa-
rameters of SNAP, to reproduce potential energy, atomic
forces and stress tensor for each structure in the DFT
training database.

SNAP displays a good balance between computational
cost and accuracy [57]. Both are controlled by SNAP
hyperparameters – the cutoff radius rcut and the integer
angular momentum J . The former specifies the number
of neighbor atoms participating in the fingerprinting of
atomic environment around each atom i and the latter
refers to the dimensionality of the descriptor space, i.e.
the number of bispectrum descriptors{Bi}: (J + 1)(J +
3/2)(J + 2)/2 for each atom i .

The SNAP development includes: (i) construction of
a robust training database of first-principles QMD data;
(ii) machine-learning training; and (iii) extensive valida-
tion against QMD and experiment. These three tightly
connected steps constitute a single development cycle.
Several of such cycles are executed to improve upon defi-
ciencies observed in previous iterations, see the develop-
ment workflow in supplemental Fig. S2 [58]. For exam-
ple, during the validation, two-phase SNAP MD simula-
tions produce melting lines of several high-pressure car-

bon phases in a substantial disagreement with QMD. The
problem has been traced back to SNAP inaccuracies in
calculation of enthalpies of solid and liquid phases along
the melting line, which, according to Clausius–Clapeyron
relation, define its slope dT/dP . Therefore, separate
liquid and solid phases were added to the QMD train-
ing database to complement original combined two-phase
solid-liquid structures. This update resulted in substan-
tial improvements in SNAP accuracy upon execution of
a new training cycle.

One of the highlights of our MLIP development is the
dedicated construction of a SNAP training database of
experimentally relevant QMD of large systems (by QMD
standards) – up to 1, 024 atoms. These are individual
frames (1-3 frames per simulation) from QMD produc-
tion simulations of physical properties of carbon (melting
lines, hydrostatic and uniaxial isotherms, shock Hugo-
niot) performed within a wide range of pressures (from 0
to 5 TPa), temperatures (from 0 to 40, 000 K) and densi-
ties (from 2.9 to 13.6 g/cm3). For example, MD frames
for each (P, T ) point along the melting lines of several
crystalline carbon phases were taken from production
two-phase QMD simulation [59]. These complex cells
contain both liquid and solid parts separated by a real-
istic solid-liquid interface, which add an additional com-
plexity to the SNAP database. A series of complimen-
tary QMD simulations of liquid and solid phases were
also included in the database. The QMD data is sup-
plemented by static DFT calculations of binding energy
curves, point and extended defects, and metastable car-
bon structures obtained from dedicated crystal structure
searching [60]. Fig. 1 displays the range of pressures,
temperatures and energies covered by QMD simulations.
The SNAP database, consisting of 636 structures, sam-
ples 124, 907 unique atomic environments. Each struc-
ture of N atoms contributes 1 total energy, 6 stress com-
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Figure 2: Validation of SNAP against QMD: (a) carbon phase diagram, including melting lines of diamond, BC8 and SC
crystalline phases of carbon at pressures up to 5, 000 GPa and hydrostatic shock Hugoniot; (b) Radial distribution functions
g(r) for diamond, BC8 and liquid phase at diamond-bc8-liquid triple point (840 GPa, 7510 K). (MD trajectories are averaged
over 20 ps time interval); c) density difference ∆ρ = ρs − ρl between solid (s) and liquid (l) phases (top panel) and average
coordination number of carbon atoms (bottom panel) as a function of pressure along the melting lines of diamond and BC8.
∆ρ = 0 corresponds to melting line maxima: diamond – at 500 GPa, BC8 – at 1, 300 GPa.

ponents and 3N atomic forces resulting in a total train-
ing complexity (the number of regression equations to
fit) of 388, 077. Higher temperatures (up to 40, 000 K)
were employed during SNAP development to make sure
it is well behaved at very small interatomic distances oc-
curring in energetic collisions of the atoms with atomic
velocities from the tail of Maxwell distribution even at
temperatures below 20, 000 K. The SNAP accuracy in
this temperature interval between 20, 000 and 40, 000 K
is not sufficient to attempt meaningful MD simulations.
Additional information on database composition and its
generation is provided in the Supplemental Material [58].

Once the database is constructed, the SNAP model
for the total potential energy, stress tensor components
and atomic forces is trained using machine learning tech-
niques to determine SNAP parameters α and β through
minimization of an objective function - a sum of the nor-
malized squared differences between DFT and SNAP en-
ergies, stresses and atomic forces (Fig. S2) [58]. The
training is performed in a series of iterations. For a given
set of weights, the SNAP parameters α and β are deter-
mined through weighted linear regression as implemented
in FitSNAP package [61]. The weights are then optimized
to minimize the objective function using a genetic algo-
rithm (GA) within DAKOTA software package [62]. At
every step of GA minimization FitSNAP is called with
the current set of weights to determine new α and β,
which are then fed back to update the objective function
being minimized (Fig. S2) [58]. The iterations stop when
the GA minimization converges to a final set of weights.
In addition to group weights, the SNAP hyperparame-
ters, rcut and J are optimized in an offset fashion to find
a right balance between SNAP accuracy and computa-

tional efficiency (Fig. S2 [58]). The final values for the
SNAP hyperparameters are rcut = 2.7 Å and J = 4. The
resultant quality of SNAP training is discussed in Sup-
plemental Material [58].

The critical part of SNAP potential development is a
thorough validation of SNAP MD results against QMD
and experimental data. Only one to three QMD frames
per (P,T) state were included in the SNAP training
database. Therefore, simulating these states with SNAP
using much larger simulations cells and performing ther-
modynamic averaging of atomic trajectories containing
tens of thousands of frames to obtain stresses, densi-
ties, internal energies, as well as radial distribution func-
tions is considered as a rigorous validation test against
QMD. Further, these validation simulations sample a va-
riety of pressure/temperature points not included in the
database but still within the SNAP’s intended interval of
pressures (from 50 to 5, 000 GPa) and temperatures (from
0 to 20, 000 K). SNAP transferability is demonstrated by
good agreement with both QMD and experiment.

The important validation test is concerned with carbon
phase diagram, including melting lines of several high-
pressure phases at pressures up to 5, 000 GPa, see Fig.
(2a). A series of isobaric-isothermal NPT two-phase MD
simulations were run at a given pressure but varying tem-
perature to determine the P-T value of the phase coex-
istence [59]. SNAP melting lines are in excellent agree-
ment with those from QMD, the average temperature
error being ∼ 200 K or 3 % in a pressure interval from 0
to 5, 000 GPa. Fig. 2(b) displays SNAP and QMD radial
distribution functions g(r) at diamond-BC8-liquid triple
point: they are almost indistinguishable from each other.

A remarkable property of carbon at extreme condi-
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Figure 3: Carbon shock Hugoniot calculated by QMD and
SNAP and compared with experimental data. (a) Us − Up

Hugoniot (b) pressure-density Hugoniots. Points correspond
to experimental data.

tions is the negative slope (dT/dP ) of diamond and BC8
melting lines at high pressures [25, 30–33, 36]. This
is because liquid carbon becomes denser than the cor-
responding solid phase upon increase of pressure above
∼ 500 GPa for diamond and ∼ 1, 300 GPa for BC8, see
Fig. 2(c). This can be traced back to a significant in-
crease of carbon packing in the liquid as carbon atom
coordination changes from less than 4 to higher values,
see Fig. 2(d). SNAP accurately predicts this subtle
change in density upon increase of pressure as well as
corresponding pressure-dependent evolution of the aver-
age coordination of carbon atoms ( Fig. 2(d)), which is
in an excellent agreement with QMD. The latter is a re-
sult of “snap-on” agreement between QMD and SNAP
radial distribution functions for both diamond and BC8
over a large range of pressures (Fig. S4 [58]).

Another validation test of great experimental impor-
tance is the prediction of the carbon shock Hugoniot,
which passes through both solid and liquid parts of the
phase diagram (Fig. 2(a)). The Hugoniot points are
calculated in a hydrodynamic approximation by ignoring
crystalline anisotropy in a series of MD simulations at a

given pressure P but varying temperature T to satisfy
the Hugoniot condition of conservation of mass, momen-
tum, and energy: 1

2 (P + P0)(V − V0) = (E −E0), where
P , V, and E are the pressure, volume, and internal en-
ergy at a given point on the Hugoniot, and P0, V0, and
E0 are those at ambient conditions of 0 GPa and 300 K.
The Hugoniot in (P, T ) space is shown in Fig. 2(a), in
pressure-density (P −ρ) space – in Fig. 3(b) and particle
velocity Up – shock velocity Us space – in Fig. 3(a). The
SNAP Hugoniots (red lines in Figs 2(a) and 3) are in a
very good agreement with those from QMD (black lines
in Figs 2(a) and 3). Visible differences in temperature
of the P–T Hugoniot at very high temperatures (Fig.
2(a)) are due to electronic entropy effects, which are not
captured by the temperature-independent description of
interatomic interactions [63].

Both SNAP and QMD Hugoniots are also in a very
good agreement with multiple experiments in a pres-
sure range from 300 to 1, 500 GPa [18, 20–22, 24, 26,
27]. Some difference between SNAP/QMD and experi-
ment at higher pressures is due to experimental uncer-
tainty in density, which is not measured directly, but
rather determined using an impedance matching method
[26, 27]. Differences at low pressures between experi-
ment [18, 21, 22] and SNAP/QMD (Fig. 3(a)) are due to
crystalline anisotropy and strength effects, which are not
well described by a hydrodynamic approximation [21].
To make a proper comparison with experiment in this
split elastic-inelastic shock wave regime, explicit large-
scale SNAP MD simulations of piston-driven shock waves
are required, which will be the focus of future work.

To demonstrate SNAP’s ability to attack problems
that are impossible to solve with QMD, we simulated
melting of polycrystalline diamond at pressures between
50 and 1, 200 GPa using a 1 million atom sample (Fig. 4).
For each pressure point, a series of NPT simulations is
performed to determine the temperature at the onset of
melting. In addition to validating SNAP, this simulation
also validates the two-phase melting curve calculation.
The presence of grain boundaries suppresses superheat-
ing characteristic of single crystals: the melting starts at
the most weakly bonded defective regions of the sample,
followed by the growth of liquid fraction at the expense of
crystalline grains, which gradually transform to shrink-
ing round crystallites embedded in the liquid carbon (Fig.
4).

This work represents a major step towards solving ex-
tremely challenging but fundamentally important prob-
lem of predictive atomic-scale simulations of carbon at
extreme pressure-temperature conditions at experimen-
tal time and length scales. The quantum-accurate SNAP
is the first MLIP that describes the properties of carbon
at extreme pressures up to 5 TPa and temperatures up
to 20, 000 K, including the phase diagram, melting curves
of diamond, BC8 and simple cubic phases of carbon and
shock Hugoniots with unprecedented accuracy within 3 %
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Figure 4: (a) Comparison of diamond melting curves calculated by three methods: QMD 2-phase (solid line), SNAP 2-
phase (dashed line), and direct melting of 1 million atom polycrystalline sample using SNAP (stars); (b) Time progression of
polycrystalline sample melting at 600 GPa and 7750 K. The sample is initially composed of crystalline diamond regions (blue)
separated by grain boundaries (light blue). Liquid regions (red) emerge at the grain boundaries, grow in size, and eventually
consume the isolated diamond crystallites.

of QMD results. Although the accurate description of
carbon at low pressures below 50 GPa is outside of the
scope of this work, the ambient pressure properties of di-
amond are well-described by SNAP, lattice constant, en-
ergy and elastic constants being in excellent agreement
(within 1.5 %) with those predicted by DFT (Table S2).
The ground state properties of graphene calculated by
SNAP were less accurate [64]. Development of accurate
SNAP for ambient carbon is a subject of our future work.
SNAP’s linear scaling with number of atoms, and its ef-
ficient implementation within the LAMMPS MD simula-
tion package [37] allows billion atom simulations on lead-
ership class high performance computing systems. By
advancing frontiers of classical MD simulations, SNAP
enables new insights by uncovering fundamental atomic-
scale mechanisms of materials response which are difficult
or even impossible to observe in experiment [65].
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Phys. Rev. Lett. 104, 136403 (2010).
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