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In the band theory for non-Hermitian systems, the energy eigenvalues, which are complex, can
exhibit non-trivial topology which is not present in Hermitian systems. In one dimension, it was
recently noted theoretically and demonstrated experimentally that the eigenvalue topology is clas-
sified by the braid group. The classification of eigenvalue topology in higher dimensions, however,
remained an open question. Here, we give a complete description of eigenvalue topology in two and
three dimensional systems, including the gapped and gapless cases. We reduce the topological clas-
sification problem to a purely computational problem in algebraic topology. In two dimensions, the
Brillouin zone torus is punctured by exceptional points, and each nontrivial loop in the punctured
torus acquires a braid group invariant. These braids satisfy the constraint that the composite of the
braids around the exceptional points is equal to the commutator of the braids on the fundamental
cycles of the torus. In three dimensions, there are exceptional knots and links, and the classification
depends on how they are embedded in the Brillouin zone three-torus. When the exceptional link is
contained in a contractible ball, the classification can be expressed in terms of the knot group of the
link. Our results provide a comprehensive understanding of non-Hermitian eigenvalue topology in
higher dimensional systems, and should be important for the further explorations of topologically
robust open quantum and classical systems.

Topological invariants associated with band structures
are widely used to predict robust behavior in electronic
and photonic systems [1–5]. For example, in the two-
dimensional Chern insulator, the topological invariants
of the bulk bands guarantee the existence of chiral edge
states [6]. In the three-dimensional Weyl semimetal, the
topological charges of the Weyl points lead to surface
Fermi arcs [7]. These concepts are traditionally stud-
ied in Hermitian systems (closed systems without gain
or loss). However, there has been much recent interest in
generalizing topological band theory to non-Hermitian
systems [8–14], which are of particular interest in ar-
eas such as photonics, electrical circuits, and mechanics
where gain and loss are ubiquitous [15–23].

Non-Hermitian systems have complex eigenvalues and
therefore can exhibit nontrivial eigenvalue topology: the
eigenvalues can wind and braid around each other in
the complex energy plane [24–27]. This stands in con-
trast to Hermitian systems, where the topological in-
variants are defined only in terms of eigenvectors. Non-
Hermitian eigenvalue topology has been observed exper-
imentally [23, 28, 29]. Eigenvalue winding and braiding
has also been shown to affect the open boundary con-
dition spectrum resulting in the non-Hermitian skin ef-
fect [12, 13, 30, 31].

In one spatial dimension, it was recently shown that
eigenvalue topology is classified by the braid group [25,
32]. The nature of eigenvalue topology in two and three
dimensions has not yet been established, although sim-
pler point-gap winding number invariants have been ex-
plored [33–36]. Certain features are known which suggest

that two and three dimensions will exhibit richer eigen-
value topology than one dimension. For example, in two
dimensions, an exceptional point has a nontrivial topo-
logical charge associated with eigenvalue braiding on a
small circle enclosing it [37]. In three dimensions, the
exceptional locus is generically one-dimensional, for ex-
ample forming exceptional rings, lines, or even knots and
links [38–42]. In addition to these topologically charged
exceptional objects, braid-group valued invariants can
be associated to non-contractible cycles in the Brillouin
zone torus [25]. Despite this rich behavior and theoret-
ical interest, there is not a comprehensive understand-
ing of eigenvalue topology in two and three dimensions.
There are existing classifications that study the line gap
and point gap conditions under various symmetry con-
straints [8, 11, 43], as well as a separable bands classifi-
cation of gapped systems [25, 32] and of individual ex-
ceptional points [44], but the general case with multiple
exceptional points remains unknown.

In this Letter, we give a complete description of the
eigenvalue topology of two and three dimensional band
structures, treating both the gapped and gapless settings
in a unified way and not assuming any symmetry. We
show that the problem of classifying eigenvalue topology
of non-Hermitian band structures can be reduced to a
computational problem in algebraic topology involving
fundamental groups. We provide several examples to il-
lustrate this general scheme.

Our strategy is to isolate the exceptional locus ∆, de-
fined as the set of wavevectors in the Brillouin zone torus
Td for which there is an eigenvalue degeneracy, and study
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FIG. 1. Eigenvalue topology in two dimensions. (a) The Bril-
louin zone torus is shown as its fundamental polygon. In this
example, there are two exceptional points. The nontrivial
loops in the twice-punctured torus are the fundamental cy-
cles a and b, as well as the loops ei around the exceptional
points. These loops satisfy the relation aba−1b−1 = e1e2. (b)
The eigenvalues of the Hamiltonian define an element of the
braid group for each nontrivial loop in the twice-punctured
torus. The number of bands is the number of strands in the
braid, which lives in a 3D space where two dimensions are
the real and imaginary parts of the energy and the third di-
mension is the coordinate along a path in the Brillouin zone.
In this three-band example, a = σ1 and b = σ2 are positive
half twists; on the other hand, e1 = σ−1

2 and e2 = σ1. We
can verify that σ1σ2σ

−1
1 σ−1

2 = σ−1
2 σ1 using the braid relation

σ2σ1σ2 = σ1σ2σ1: σ1σ2σ
−1
1 σ−1

2 = σ−1
2 (σ2σ1σ2)σ−1

1 σ−1
2 =

σ−1
2 (σ1σ2σ1)σ−1

1 σ−1
2 = σ−1

2 σ1. This can also be seen intu-
itively by "pulling" the ends of the two composite braids.

the eigenvalue topology on the complement Td −∆. For
the precise definition of ∆, see the Supplemental Ma-
terial [45]. We are not constraining the nature of the
degeneracy; it could in principal be an exceptional point
between one pair of bands, a higher-order exceptional
point, or even diagonalizable, but the latter two scenar-
ios do not occur generically in two and three dimen-
sions [45]. The exceptional locus generically has codi-
mension 2 since it is defined by a single complex equation,
the vanishing of the discriminant. On Td−∆, there is no
eigenvalue degeneracy, so the distinct eigenvalues define a
point in the unordered configuration space UConfN (C) =
{{E1, . . . , EN} : Ei ∈ C, Ei 6= Ej}, where N is the num-
ber of energy bands [25]. The fundamental group of this
space is the braid group BN (π1(UConfN (C)) = BN ),
and all higher homotopy groups vanish [46]. In gen-
eral, a connected pointed space Y having π1(Y ) = G and
πi(Y ) = 0 for i > 1 is called an Eilenberg-MacLane space
of type K(G, 1), and one writes Y = K(G, 1). Thus

UConfN (C) = K(BN , 1). (1)

An important property of the spaces K(G, 1) is that
for any path-connected pointed space X which is homo-
topy equivalent to a CW complex there is a natural bi-
jection [X,K(G, 1)] = Hom(π1(X), G) between the set
[X,K(G, 1)] of homotopy classes of maps X → K(G, 1)
and the set Hom(π1(X), G) of group homomorphisms
π1(X) → G; see the Supplemental Material [45] for a
discussion of this fact. Applying this result in our set-

ting (since Td − ∆ generically satisfies the assumptions
of this theorem) yields

[Td −∆,UConfN (C)] = Hom(π1(Td −∆), BN ). (2)

As a technical point, the maps in Eq. 2 are assumed to be
basepoint-preserving; in order to relax this condition, one
must identify any two homomorphisms which are similar
under the action of BN by conjugation.

Eq. 2 is the primary mathematical result: the left-
hand side is the set of homotopy classes of non-Hermitian
band structures with fixed exceptional locus, which is
what we want to know, and the right-hand side is some-
thing we are able to calculate. To calculate the right-
hand side, the first step is to write down a presen-
tation of the fundamental group π1(Td − ∆) in terms
of generators and relations; if ∆ is relatively compli-
cated, the Seifert-Van Kampen theorem may be used
here [47]. Recall that a presentation of a group is a
way of writing its elements as words in a set of gener-
ators, with two words being identified if they are related
by a set of relations. Generators of π1(Td − ∆) corre-
spond to specific loops around ∆ in the Brillouin zone
torus, and relations correspond to homotopies of com-
posites of these loops. The second step is to compute
the set of group homomorphisms Hom(π1(Td−∆), BN ).
The defining property of a group homomorphism is that
f(γ1γ2) = f(γ1)f(γ2). Because of this property, any
group homomorphism f : π1(Td − ∆) → BN is deter-
mined by its values on the generators of π1(Td − ∆).
Conversely, any assignment of braids to the generators
of π1(Td−∆) which satisfies the relations of π1(Td−∆)
gives rise to such a group homomorphism. Thus, in gen-
eral, elements of Hom(π1(Td −∆), BN ) are given by as-
signing braids to some specific (irreducible) loops around
∆ in the Brillouin zone torus, in such a way that when-
ever any two composites formed from these generating
loops are homotopic, the corresponding braid products
are equal.

Fig. 1 shows the case of two dimensions. The Bril-
louin zone is a torus T2, and the exceptional locus ∆
generically consists of a finite number of exceptional
points. (Other configurations are possible by fine-tuning,
but they are non-generic in the sense that they are
removed by arbitrarily small perturbations). If k is
the number of exceptional points, then T2 − ∆ is a k-
punctured torus. We first consider the fully-gapped case
k = 0. The fundamental group π1(T2) = Z2 is the free
abelian group generated by the two fundamental cycles
γa and γb: its elements have the form γma γ

n
b for some

integers m and n. The reason that this fundamental
group is abelian is that there is a two-cell connecting
the curve γaγb to the curve γbγa, giving rise to the re-
lation γaγb = γbγa. If f : π1(T2) → BN is a group
homomorphism, then f(γa) and f(γb) commute, since
f(γa)f(γb) = f(γaγb) = f(γbγa) = f(γb)f(γa); so we get
a pair of commuting braids. Conversely, for any pair of
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FIG. 2. Eigenvalue topology in three dimensions. Four differ-
ent exceptional links are shown in panels (a)-(d): the unlink,
the Hopf link, the trefoil knot, and a pair of nontrivial cycles.
In the first three cases (a)-(c), the exceptional link ∆ is con-
tained in a small ball; the nontrivial loops are the fundamen-
tal cycles a, b, and c, as well as the generators ei of the knot
group π1(R3−∆). The relations are [a, b] = [b, c] = [c, a] = 1,
together with any relations coming from the knot group. In
the final case (d), the exceptional link is contained in a solid
torus rather than a ball, leading to the relations [a, b] = e1e2,
[b, c] = [c, a] = 1.

commuting braids a and b, we can define a group homo-
morphism f : π1(T2) → BN by setting f(γa) = a and
f(γb) = b; then f(γma γ

n
b ) = ambn. We can express the

fact that a and b commute concisely in terms of the com-
mutator [a, b] = aba−1b−1; they commute precisely when
[a, b] = 1. It follows that the eigenvalue topology in the
fully gapped case is given by commuting pairs of braids:

Hom(π1(T2), BN ) = {a, b ∈ BN : [a, b] = 1}. (3)

Eq. 3 shows the richness of eigenvalue topology even
in the simple case of gapped two-dimensional systems.
While there are certain pairs of braids which obviously
commute, such as those that act entirely on different
strands, these are not the only ones; due to the com-
plexity of the braid group, determining pairs of commut-
ing braids is already an interesting mathematical prob-
lem [48].

Now we consider the gapless case k ≥ 1. In this case,
each exceptional point acts like a puncture in the torus;
the complement of the punctures can be deformation re-
tracted onto a one-dimensional skeleton which is simply
k+1 circles joined at a point [47]. The fundamental group
of this k-times punctured torus is π1(T2 −∆) = Z∗(k+1),
the free group on k+ 1 generators. In Fig. 1(a), we show
the obvious cycles γe1 , . . . , γek around each exceptional
point in addition to the cycles γa and γb. Each cycle

defines an element of Z∗(k+1), but since there are k + 2
cycles, they are not all independent. Indeed, the cycles
satisfy the relation [γa, γb] = γe1 · · · γek . This relation
arises from the fact that both [γa, γb] and γe1 · · · γek can
be deformed to the boundary ∂U , where U is the green
region in Fig. 1(a). Now we compute group homomor-
phisms to the braid group: as before, the generators of
π1(T2 −∆) are assigned to braids subject to constraints
coming from the relations. The eigenvalue topology in
the gapless case is therefore

Hom(π1(T2 −∆), BN ) = (4)
{a, b, e1, . . . , ek ∈ BN : [a, b] = e1 · · · ek}.

This can also be written as Hom(π1(T2 − ∆), BN ) =
{a, b, e1, . . . , ek−1 ∈ BN} with the understanding that
ek = (e1 · · · ek−1)−1[a, b] in order to satisfy the constraint
from Eq. 4. This is what one would obtain directly from
the formula π1(T2 −∆) = Z∗(k+1). Specializing Eq. 4 to
the two-band case N = 2, where B2 = Z, we obtain

Hom(π1(T2 −∆), B2) = (5)

{a, b, e1, . . . , ek ∈ Z : 0 =

k∑
i=1

ei}.

We note that Eq. 4 includes the gapped and gapless
cases. We also note that this formula implies the dou-
bling theorem for exceptional points [49]: the product
e1 · · · ek is a commutator so it has total degree zero, but
each ei has degree ±1 (since generically it is conjugate
to a half twist), so the exceptional points come in pairs.
(The reason each ei is conjugate to a generator and not
necessarily itself a generator is a technical one: all loops
must be connected to the basepoint in order to have a
group structure, so the braid on the loop is conjugated
by the braid on the path to the basepoint.) As another
consequence of Eq. 4, we note that exceptional points are
topologically guaranteed to exist whenever the braids a
and b on the fundamental cycles of the torus do not com-
mute.

The situation in three dimensions is far richer, as
shown in Fig. 2. The Brillouin zone is now a 3-torus
T3, and the exceptional locus ∆ is generically a one-
dimensional submanifold, namely an exceptional knot or
more generally an exceptional link. The exceptional lines
cannot terminate because they are topologically pro-
tected by their braid-group valued charge. The gapped
case is a straightforward generalization from two dimen-
sions: π1(T3) = Z3, so

Hom(π1(T3), BN ) = (6)
{a, b, c ∈ BN : [a, b] = [b, c] = [c, a] = 1}.

The gapless case in three dimensions is more compli-
cated in general. To illustrate the general structure of the
solutions we first consider a few examples. Suppose that
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the exceptional link ∆ is contained in a small ball U . In
this case, we can compute π1(T3 −∆) using the Seifert-
Van Kampen theorem from algebraic topology [47]. The
theorem allows us to compute π1(U1 ∪ U2) for open sets
U1 and U2 in terms of π1(U1), π1(U2), and π1(U1 ∩ U2).
In our setting, we take U2 = U −∆, and we take U1 to
be a thickening of T3 − U . Then U1 ∪ U2 = T3 − ∆,
and U1∩U2 deformation retracts onto the boundary ∂U .
Since U is a ball, its boundary is a sphere, which is simply
connected: π1(U1 ∩U2) = 0. Because of this, the Seifert-
Van Kampen theorem tells us that π1(U1 ∪U2) is simply
a free product π1(U1) ∗ π1(U2), meaning that loops in
U1 and U2 can be combined with no additional relations.
Furthermore, since U −∆ is homeomorphic to the com-
plement of a link in R3, we have π1(U−∆) = π1(R3−∆),
the knot group of the link ∆ [50]. Finally, we note that
removing U from T3 has no effect on the fundamental
group, namely π1(T3 − U) = π1(T3) = Z3. Putting this
together, we have

π1(T3 −∆) = Z3 ∗ π1(R3 −∆). (7)

Now we compute homomorphisms to the braid group.
The free product means that there are no relations be-
tween the braids assigned to the knot group π1(R3 −∆)
and the braids assigned to the torus cycles Z3, namely

Hom(π1(T3 −∆), BN ) = (8)

{a, b, c ∈ BN , f ∈ Hom(π1(R3 −∆), BN ) :

[a, b] = [b, c] = [c, a] = 1}.

Fig. 2(a)-(c) show three examples of an exceptional link
that can be surrounded by a contractible ball U . For the
unlink (Fig. 2(a)), we have π1(R3 − ∆) = Z∗2, a free
group on loops around the two components, so

Hom(π1(T3 −∆), BN ) = (9)
{a, b, c, e1, e2 ∈ BN : [a, b] = [b, c] = [c, a] = 1}.

For the Hopf link (Fig. 2(b)), the crossing gives rise to
the relation e1e2 = e2e1, so π1(R3 − ∆) = Z2 is a free
abelian group and

Hom(π1(T3 −∆), BN ) = (10)
{a, b, c, e1, e2 ∈ BN :

[a, b] = [b, c] = [c, a] = 1, [e1, e2] = 1}.

Finally, for the trefoil knot (Fig. 2(c)), the knot group is
itself the braid group on three strands, π1(R3−∆) = B3.
This group is generated by σ1 and σ2 with the braid
relation σ1σ2σ1 = σ2σ1σ2, so

Hom(π1(T3 −∆), BN ) = (11)
{a, b, c, e1, e2 ∈ BN :

[a, b] = [b, c] = [c, a] = 1, e1e2e1 = e2e1e2}.

Other possibilities for ∆ can also be tractable; for ex-
ample, suppose ∆ itself is a pair of nontrivial cycles, as
shown in Fig. 2(d). In this case, we can use the Seifert-
Van Kampen theorem as before, but with U a solid torus,
so that π1(∂U) = Z× Z. In this case, π1(T3 −∆) is not
a free product but rather an amalgamated product [47];
one of the Z factors of π1(∂U) is trivially identified with
γc, and the other leads to the relation [γa, γb] = γe1γe2 .
It follows that

Hom(π1(T3 −∆), BN ) = (12)
{a, b, c, e1, e2 ∈ BN : [a, b] = e1e2, [b, c] = [c, a] = 1}.

We note that ∆ cannot be a single nontrivial cycle
since any two-torus section must obey the doubling the-
orem [49] (exceptional points must come in pairs). On
the other hand, a single exceptional ring or a single tre-
foil knot is allowed from the perspective of eigenvalue
topology; but these configurations still may be forbidden
due to constraints from eigenvector topology if they have
nonzero Chern number [5].

We can generalize the previous discussion to apply the
Seifert-Van Kampen theorem to an arbitrary exceptional
link contained in an open set U , possibly in a higher-
dimensional Brillouin zone. For general U using U1 and
U2 as defined above, the Seifert-Van Kampen theorem
says that

π1(Td −∆) = π1(Td − U) ∗π1(∂U) π1(U −∆) (13)

where G ∗K H denotes the pushout of groups G and H
over a group K [47]. By the universal property of the
pushout [51],

Hom(π1(Td −∆), BN ) = G̃×K̃ H̃ (14)

where

G̃ = Hom(π1(Td − U), BN ) (15)

H̃ = Hom(π1(U −∆), BN )

K̃ = Hom(π1(∂U), BN ).

In Eq. 14, G̃×K̃ H̃ denotes the pullback (fiber product)
of groups G̃ and H̃ over a group K̃ [51]. This pullback
is the subset of the Cartesian product G̃× H̃ consisting
of pairs which are compatible when passed to K̃. In this
way, when we apply the Seifert-Van Kampen theorem to
understand more complicated systems, the results agree
with our general notion that braids should be assigned
to irreducible non-contractible cycles in Td − ∆ subject
to relations coming from homotopies between composite
cycles.

There is a rich set of effects of eigenvalue topology on
the physics of non-Hermitian systems. The spectrum of
a finite-size non-Hermitian system looks quite different
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from the spectrum of an infinite system due to the non-
Hermitian skin effect [12, 13]. In one dimension, eigen-
value braiding has been observed to control certain as-
pects of the shape of the finite-size spectrum as a subset
of the complex energy plane [29, 31]. Furthermore, eigen-
value topology may modify the bulk-edge correspondence
for eigenvector topology, since the eigenvalues determine
the generalized Brillouin zone [52, 53]. Finally, there is a
rich interplay between eigenvalue topology and eigenvec-
tor topology, resulting in a reduction mod N of the Chern
number in the presence of braiding [24, 25]. Understand-
ing eigenvalue topology in two and three dimensions is
therefore key for understanding non-Hermitian topology
more broadly. In the Supplemental Material [45], we
provide a toy model exhibiting eigenvalue topology, and
we show the relationship between the periodic boundary
condition (PBC) invariants (the primary focus of this
classification) and the open boundary condition (OBC)
behavior related to the non-Hermitian skin effect.

The notion of stability for eigenvalue topology is nec-
essarily different than the traditional notion for eigen-
vector topology. For example, the Hopf invariant [54]
is an unstable three-dimensional invariant of two-band
systems, meaning that adding a third band destroys the
topological protection even if the third band is separated
in energy from the other two. In contrast, additional
eigenvalues which do not braid with existing bands have
no impact on the existing eigenvalue topology. Eigen-
values which do braid with existing bands result in a
richer eigenvalue topology, but do not destroy existing
invariants. Another question of robustness is the amount
of disorder required to destroy the topological protec-
tion; here, this is quantified by the minimum of the dis-
tance between the bands in the complex plane as a func-
tion of the wavevector k. We also note that many ex-
isting classifications are based on a mapping from non-
Hermitian systems without symmetry to Hermitian sys-
tems with symmetry [11]. While certain aspects of non-
Hermitian topology survive under this mapping, it is un-
likely that it can be used to understand non-Hermitian
braid group topology, since the non-abelian braid group
has not shown up in the band theory of Hermitian sys-
tems. Finally, while we classified systems without any
symmetry, the study of eigenvalue topology under sym-
metry constraints remains an interesting subject for fu-
ture study, as does the role of eigenvalue topology in
many-body physics.

In summary, we have provided a complete description
of non-Hermitian eigenvalue topology in two and three di-
mensions in both gapped and gapless systems, not assum-
ing any symmetry. The topological classification prob-
lem reduces to a well-studied problem in algebraic topol-
ogy. We provided concrete examples in two and three
dimensions to illustrate the general scheme. These re-
sults should be helpful in developing a more general un-
derstanding of non-Hermitian topology.
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