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The Hofstadter model exemplifies a large class of physical systems characterized by particles hopping on a
lattice immersed in a gauge field. Recent advancements on various synthetic platforms have enabled highly-
controllable simulations of such systems with tailored gauge fields featuring complex spatial textures. These
synthetic gauge fields could introduce synthetic symmetries that do not appear in electronic materials. Here,
in an SU(2) non-Abelian Hofstadter model, we theoretically show the emergence of multiple nonsymmorphic
chiral symmetries, which combine an internal unitary anti-symmetry with fractional spatial translation. Depend-
ing on the values of the gauge fields, the nonsymmorphic chiral symmetries can exhibit non-Abelian algebra and
protect Kramers quartet states in the bulk band structure, creating general four-fold degeneracy at all momenta.
These nonsymmorphic chiral symmetries protect double Dirac semimetals at zero energy, which become gapped
into quantum confined insulating phases upon introducing a boundary. Moreover, the parity of the system size
can determine whether the resulting insulating phase is trivial or topological. Our work indicates a pathway for
creating topology via synthetic symmetries emergent from synthetic gauge fields.

The quantum Hall [1] and quantum anomalous Hall [2, 3]
effects represent the earliest examples of topological phases of
matter. However, such phases with robust chiral edge modes
are only realizable under stringent conditions, like a strong
breaking of time-reversal symmetry, either though external
magnetic fields or suitable intrinsic magnetic order. The to-
pological landscape changed completely with the advent of
topological insulators [4, 5]. A key insight from the early stud-
ies was how time-reversal symmetry could protect new forms
of nontrivial topology and this greatly enlarges the physical
setups in which topological phases could emerge. Along
with the particle-hole and chiral symmetries, the time-reversal
symmetry represents one of the three internal symmetries rel-
evant for the classification of topological phases, and general
classification results were soon obtained under the ten-fold
way [6, 7]. The classification was then further refined in the
presence of symmorphic [8–12] and nonsymmorphic [13–27]
spatial symmetries. Such successive extension of the sym-
metry setting has led to a comprehensive understanding of the
diverse set of phases protected by the 230 spatial symmetry
groups [28–33], and the results were further extended to mag-
netic materials [34–36] in which time-reversal can also com-
bine nontrivially with partial translation into a symmetry of
the magnetic order.

Exhaustive as it may seem, the systematic treatment of
(magnetic) spatial symmetries has thus far focused on sym-
metries that are relevant to electronic materials. Engin-
eered physical platforms [37], like cold-atomic, photonic, and
acoustic systems, could inherently feature synthetic symmet-
ries that would have been unnatural or fine-tuned for elec-
tronic problems [38–45]. Here we show that a non-Abelian
Hofstadter model with SU(2) gauge fields, potentially real-
izable in engineered systems, calls for a further extension of
symmetry analysis. A key new ingredient is the coexistence
of multiple nonsymmorphic chiral symmetries, which com-
bine site-dependent, local phase factors with fractional trans-

lation. As the nonsymmorphic chiral symmetry is not gen-
erally respected in electronic materials, it is not included as
part of the comprehensive (magnetic) space-group symmetry
analysis on electronic topological band theory. Yet its pres-
ence has been recognized in the study of specific models, in-
cluding a minimal two-band model for nonsymmorphic topo-
logical crystalline insulators [15], certain antiferromagnetic
semimetals [46], the low-energy states in the SnTe material
class [47], and, as a theoretical construction via the square-
root operation from parent Hamiltonians [44]. So far, efforts
have been mostly dedicated to systems that obey a single non-
symmorphic chiral symmetry.

In this work, we show multiple coexisting nonsymmorphic
chiral symmetries could be non-Abelian, lead to intriguing
symmetry algebras, and, consequently, protect unusual band
degeneracy and topology, as illustrated in the non-Abelian
Hofstadter model. More concretely, we analyze the associ-
ated algebras of the multiple nonsymmorphic chiral symmet-
ries and reveal their dependence on the parity of the two non-
Abelian gauge fields that are assumed rational. In particular,
when both of the rational gauge fields have even denominat-
ors, and one and only one of the denominators is an integer
multiple of four, their algebra becomes non-Abelian and gives
rise to generic Kramers quartets, i.e. four-fold degeneracy at
all momenta, which are jointly protected by inversion and
time-reversal. The nonsymmorphic chiral symmetries turn
the magnetic Brillouin torus into a real projective plane, and
therein protect double Dirac semimetals at half filling. For
relatively small systems relevant to engineered physical plat-
forms, we further show that the semimetals get gapped and be-
come an insulator upon the introduction of a boundary, which
necessarily breaks some of the nonsymmorphic chiral sym-
metries. The resulting insulator can be tuned to be either
trivial or topological, depending on the parity of the system
size.

Non-Abelian Hofstadter problem. A less-known fact about
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Figure 1. Non-Abelian Hofstadter model (a) and its inhomogeneous real-space magnetic fields (b-d). Zero, one, and two nonsymmorphic
chiral symmetries involving a half-lattice translation appear in b, c and d, respectively, as evident from the patterns of the magnetic fields. Four
magnetic unit cells (divided by bold black lines) are shown. The real space magnetic fields are characterized by the gauge-invariant, real-space
Wilson loop W = Tr exp

(
i
∮

A dl
)

for each unit plaquette.

U ⊂ G qx ∈ 2Z + 1 qx ∈ 4Z + 2 qx ∈ 4Z
qy ∈ 2Z + 1 Z1 ⊂ Z2 Z1 ⊂ Z2

qy ∈ 4Z + 2 Z1 ⊂ Z2 Z4 × Z2 ⊂ D8 × Z2 D8 ⊂ D8 × Z2

qy ∈ 4Z Z1 ⊂ Z2 D8 ⊂ D8 × Z2 K4 ⊂ Z2 × Z2 × Z2

H qx ∈ 2Z + 1 qx ∈ 4Z + 2 qx ∈ 4Z
qy ∈ 2Z + 1 AII DIII CII
qy ∈ 4Z + 2 DIII AII ⊕ AII ⊕ AII ⊕ AII CII ⊕ CII

qy ∈ 4Z CII CII ⊕ CII CII ⊕ CII ⊕ CII ⊕ CII

Table I. Algebra of chiral symmetries and the resulting classification of the non-Abelian Hofstadter problem in the symmetric gauge.
U (left), a subgroup of G, contains only unitary symmetries generated by the chiral symmetries S and results in different classifications
of the systems (right). Shaded entries correspond to cases where multiple nonsymmorphic chiral symmetries appear. Blue color indicates
non-Abelian groups.

the well-known Abelian Hofstadter model, featuring U(1)
gauge fields, is that it obeys chiral symmetries that are non-
symmorphic [48] (see Sec. S1 of Ref. [49]). Nevertheless, its
nonsymmorphic chiral operators can always be transformed
into a local basis and their algebra is always trivial (see Sec. S1
of Ref. [49]), which relates to the equivalence between its for-
mulations in the Landau and the symmetric gauges. However,
these conditions can get modified in non-Abelian Hofstadter
models [50, 51]. Let us consider a Hofstader–Harper-like,
SU(2) gauge fields

A = (−yφxσx, xφyσy, 0). (1)

The associated Hamiltonian H(φx/2π, φy/2π) on a square lat-
tice is given by

H = −
∑
x,y

txc†x+1,ye−iyφxσx cx,y + tyc†x,y+1eixφyσy cx,y + H.c. (2)

Here tx and ty are the real hopping terms in the x and y direc-
tions and we restrict ourselves to tx = ty = t. cx,y and c†x,y are
the annihilation and creation operators at site (x, y). φx and
φy are the SU(2) Peierls phases. The Hamiltonian has a spin-
rotation symmetry and stays invariant for arbitrary choices of
distinct Pauli matrices in Eq. (1). If φx and φy are both rational,
i.e. they can be written as φx = 2πpx/qx and φy = 2πpy/qy for
integers px, qx, py, and qy. The Hamiltonian can be solved in
the qy×qx super-cell with the magnetic Brillouin zone (MBZ)
defined as kx ∈ [0, 2π/qy) and ky ∈ [0, 2π/qx).

This model is reminiscent of but distinct from the
symmetric-gauge, Abelian Hofstadter problem. Evidently, H

reduces to two decoupled Abelian counterparts with oppos-
ite homogeneous magnetic fluxes when either φx or φy van-
ishes. In contrast, under gauge fields that meet the genuine
non-Abelian condition [51], the associated magnetic fields be-
come spatially inhomogeneous, as characterized by the real-
space Wilson loop W = Tr exp

(
i
∮

A dl
)

(see Fig. 1).
Symmetry algebra. For {µ, ν} = {x, y}, a chiral symmetry S µ

appears when qν ∈ 2Z. Its explicit form is given by

〈r| S µ(k) |r′〉 = (−1)µ(i)qν/2 exp
(
ikµqν/2

)
σ0δµ+qν/2,µ′δν,ν′ , (3)

where r = (x, y) and σ0 operate on the spin degree of freedom.
This chiral operator contains site-dependent phase factors and
a half translation along a single dimension in the magnetic
unit cell (see Fig. 2a and b), satisfies S 2

µ(k) = exp
(
ikµqν

)
that

restores a full translation, and thus is an order-two nonsym-
morphic symmetry with d‖ = 0 [18] for the associated Bloch
Hamiltonian.

If
(
qx ∈ 2Z, qy ∈ 2Z

)
, multiple chiral symmetries appear.

First, two nonsymmorphic chiral operators S x and S y emerge
because we can apply Eq. (3) to both x and y directions (see
Fig. 2a and b). It is noted that they have no counterparts in
the Landau-gauge non-Abelian Hofstadter model [51], where
gauge fields are arranged along a single spatial dimension.
Second, because the magnetic unit cell becomes bipartite un-
der the same condition, the conventional local chiral sym-
metry S 0 exists:

〈r| S 0 |r′〉 = (−1)x+yδx,x′δy,y′σ0. (4)

After we quotient away the translational part in S x and S y, S ≡



3{
S 0, S x, S y

}
becomes the generator of a finite unitary group

G. There always exists a proper index-2 subgroup U ⊂ G
such that U only contains unitary symmetries of the hamilto-
nian, i.e. U ≡ S µS ν. U contains symmetries that are reminis-
cent of the projective translational symmetry [41], which are
shown to protect doubly-degenerate bands and Dirac points
at single momenta [41], as recently demonstrated in acoustic
lattices [43, 52].

The parity of the gauge field, in particular the denomin-
ators, strongly affects the symmetry algebra and thereby the
classification of this non-Abelian model (see Table I), even
in the continuum limit with weak fields (i.e. φx, φy → 0). If(
qx ∈ 2Z + 1, qy ∈ 2Z + 1

)
, no other internal symmetry beside

time reversal T0 = iσyK exists, U is empty, and H belongs
to class AII in Table I. If

(
qµ = 2Z + 1, qν = 2Z

)
, a nonsym-

morphic chiral symmetry S µ exists. Although T 2
0 = −1 and

S 2
µ = 1 are ensured, the square of their associated nonsym-

morphic particle-hole symmetry Cµ = T−1
0 S µ is uncertain—

C2
µ = 1 if qν = 4Z + 2 and C2

µ = −1 if qν = 4Z, which
corresponds to class DIII and CII in Table I, respectively. For
both of the DIII and CII classes, G = {S µ, 1} is Z2 and U = {1}
is the trivial group Z1.

Richer symmetry algebra appears for
(
qx ∈ 2Z, qy ∈ 2Z

)
. In

this case, T0 and S 0 enable a local particle-hole symmetry
C0 = T−1

0 S 0 that satisfies C2
0 = −1. Although

[
S x, S y

]
= 0

is ensured, S 0 and S µ may commute or anticommute. Spe-
cifically,

[
S 0, S µ

]
= 0 when qν = 4Z and

{
S 0, S µ

}
= 0

when qν = 4Z + 2. There are three resulting scenarios.
First, when

(
qx ∈ 4Z, qy ∈ 4Z

)
, S is an Abelian generator.

G is an elementary Abelian group Z2 × Z2 × Z2 and U ={
1, S 0S x, S 0S y, S xS y

}
is the Klein four-group K4. H is con-

sequently diagnosed as CII⊕CII⊕CII⊕CII, with each subspace
chiral symmetric. Second, when

(
qx ∈ 4Z + 2, qy ∈ 4Z + 2

)
,

G = D8 × Z2 becomes non-Abelian. However, its sub-
group U = Z4 × Z2 is still Abelian, which diagnoses H as
AII ⊕ AII ⊕ AII ⊕ AII, forming two pairs of chiral partners.
Third, when

(
qµ ∈ 4Z + 2, qν ∈ 4Z

)
, G = D8 × Z2 is the same

as that in the previous scenario. However, they differ in their
detailed symmetry algebra (Sec. S2 of Ref. [49]); accordingly,
the only non-Abelian subgroup of U = D8 appears in Table I,
which leads to a classification of CII⊕CII and the appearance
of the Kramers quartet states, as we describe below.

Kramers quartets. A consequence of the non-Abelian
symmetry algebra is the existence of generic Kramers quar-
tet states, i.e. a global four-fold degeneracy in the entire MBZ
for the case of

(
qµ ∈ 4Z + 2, qν ∈ 4Z

)
. Here, time reversal

(can be nonsymmorphic, as constructed from the nonsym-
morphic chiral symmetries) and inversion protect the conven-
tional Kramers doublets, while the non-Abelian chiral sym-
metry group ensures that they are degenerate Mobius partners.
Without loss of generality, we can decompose H into two CII
subspaces, Ha and Hb, by diagonalizing the unitary symmetry
Uxy = S xS y such that both Ha and Hb also obey inversion and
a nonsymmorphic time-reversal symmetry Tµ ≡ S µC−1

0 (see
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Figure 2. Nonsymmorphic chiral symmetries and wavefunctions
of Kramers quartets. Nonsymmorphic chiral symmetries [a and b;
see Eq. (3)] appear as the product between half translations and site-
dependent phase factors (represented by light and dark shadings for
±i and ±1 in a and b, respectively). When qx = 4Z and qy = 4Z + 2,
two Kramers doublets (c and d) can be constructed by occupying
each bipartite sublattices respectively with α± [ red and blue dots
label the ± superscript; see Eq. (5)] or vice versa. The non-Abelian
group D8 protects the degeneracy between the two Kramers doublets
and thus enables a Kramers quartet, i.e. a four-fold degeneracy at
all momenta and all energies. Here, H (1/4, 1/6) is illustrated as an
example.
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4

Sec. S3 of Ref. [49]), meaning that spins at one site need to
perform fractional translation to find their time-reversal part-
ners. Therefore, both Ha and Hb are Kramers doublets.

Mathematically, the anticommutation relation in the non-
Abelian group U enforces the degeneracy between the two
CII subsystems Ha and Hb [41]. Physically, we explicitly con-
struct their wavefunctions by considering the transformation:(

α+
mn
α−mn

)
= exp(iτxπ/4)

(
umn

um+qy/2,n+qx/2

)
, (5)

where u is the wavefunction in the original basis, τx acts on
the lattice sites, and we drop the spin index σ since the trans-
formation does not act on the spin. α±mn are eigenstates of Uxy

with eigenvalues ±1 because Uxyα
±
mn = (−1)m+ni(qx+qy)/2∓1α±mn.

Since (qx + qy)/2 = 2Z+ 1, the eigenstate of Ha (Hb) occupies
each bipartite sublattice with α± (α∓), respectively (see Fig. 2c
and d). The two subspaces must be similar because Uxy con-
sists of two half translation operations, each along x and y dir-
ections, which map between the two sublattices (see Fig. 2a
and b). Taken together, the non-Abelian subgroup U, inver-
sion, and nonsymmorphic time-reversal symmetry jointly pro-
tect the generic Kramers quartet states at arbitrary momenta.

Quantum confinement effects on the real projective plane.
When

(
qx ∈ 2Z, qy ∈ 2Z

)
(shaded entries in Table I), the

multiple NCS symmetries S render the MBZ of the full
system a real projective plane, i.e. a 2D generalization
of the non-orientable Mobius strip. For the subspaces
of the system, there are two sets of momentum labels[
± exp

(
ikxqy/2

)
,± exp

(
ikyqx/2

)]
, independent of each other

(except for the the Kramers-quartet case, as proved earlier).
As a result, the subspaces are defined on an enlarged MBZ
(doubled size in both dimensions) and they exchange these
momentum labels at the original MBZ boundary of the full
system.

The chiral symmetries S are also essential for stabilizing
the degeneracies at half filling. It is established that the exist-
ence of a chiral and a spatial symmetry leads to a lower bound
NS (k) on the number of chiral zero modes at momentum
k [53] (also see Sec. S4 of Ref. [49]). In our case, the spa-
tial symmetry is inversion, which always commutes with all
chiral symmetries (see Sec. S3 of Ref. [49]). In the presence
of multiple chiral symmetries, the lower bound can be calcu-
lated for each of them, i.e. NS(k) ≡

(
NS 0 (k),NS x (k),NS y (k)

)
.

As we will show below, NS(k) depends on the choice of gauge
fields.

In the case of H(1/4, 1/4) (Fig. 3), the full system can be
decomposed into four chiral-symmetric subspaces that display
pairwise Mobius-type band connections along both the x and
y directions at the zone boundary. Notably, its double Dirac
point (eight-fold degenerate; Fig. 3a) at Γ is, in fact, shared by
its four subspaces at the four quadrants. Each of them hosts
a double Dirac point at Γ, 2X, 2Y , and 2M (Fig. 3b-e and
also see Fig. S1), respectively. The chiral zero mode indices
at the Γ point are NS(Γ) = (8, 8, 8), which indicates that in-
version, and both of the local and the nonsymmorphic chiral

symmetries jointly protect the double Dirac points at Γ. This
protection is confirmed by an x-periodic inversion-symmetric
cylinder calculation in Fig. S2, which breaks S y but preserves
S 0 and S x. Therein, the double Dirac point in the bulk bands
reduces to a single Dirac point in the edge spectra at the cost
of the reduced symmetries.

There are situations when components of NS are not
identical, which cause consequences of quantum confinement.
We again use H(1/4, 1/6) as an example. Its chiral zero mode
indices are NS(k) = (0, 0, 8), which indicates S y being cru-
cial in stabilizing the double Dirac points in the bulk bands
(Fig. 4a). Thus, an inversion-symmetric cylinder geometry,
which is open in x but periodic in y, still preserves S y and
remains gapless (an example shown in Fig. S3). In contrast,
a cylinder geometry open in y, even if inversion-symmetric,
can be gapped because the nonsymmorphic chiral symmetry
S y is unavoidably broken. This is confirmed in Fig. 4 with
the appearance of a band gap (shaded gray) and edge states
(red and blue). Introducing the boundary also lifts the de-
generacy of the Kramers quartets because the violation of S y

alters the symmetry algebra. Specifically, U ⊂ G is modified
as Z4 ⊂ D8 for this edge Hamiltonian (cf. D8 ⊂ D8 × Z2 for
the bulk in Table I). Evidently, bulk boundary correspondence
is violated, a typical feature of topological crystalline phases
but in this case originating from chiral symmetries: the bulk
phase in Fig. 4a is a double Dirac semimetal protected by in-
version and nonsymmorphic chiral symmetries, while an edge
that violates S y renders it a quantum-confined insulator with a
vanishingly small band gap in the thermodynamic limit.

Moreover, this quantum-confined, insulating phase can be
either trivial or topological, depending on the parity of the
number of unit cells in the cylinder geometry, as illustrated in
Fig. 4b-g. Because the cylinder still respects S 0 and S x, we
can still decompose the full manifold into two 4X-periodic,
chiral and anti-chiral subspaces that are Mobius partners to
each other. Although chiral symmetry does not hold for
each subspace, there remains a sublattice symmetry that maps
E(kx)→ −E(kx + 2X), typical in Hofstadter problems. For an
even (odd) number of unit cells in the open direction, each
subspace contains an even (odd) number of Kramers part-
ners. Taken together, there must be an even (odd) number
of crossings at zero energy for each subspace. Therefore,
the entire manifold and its two subspaces are simultaneously
Z2-even or Z2-odd depending on the parity of the unit cells
along the open boundary direction. For other gapped phases
at non-half fillings, there is no such dependence. Instead, Z2
time-reversal-invariant insulating phases with a Mobius struc-
ture can appear for the edge spectra (Fig. S4), where chiral-
partnered edge states exchange their nonsymmorphic sym-
metry labels at the original MBZ boundary.

Conclusion. We have shown that multiple nonsymmorphic
chiral symmetries naturally emerge in a non-Abelian general-
ization of the Hofstadter model with SU(2) gauge fields. The
nontrivial commutation relations between these symmetries
lead to several topological consequences: the Kramers quartet
states, semimetals at half filling, and quantum-confined insu-
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Figure 4. Trivial and topological quantum-confined phases dictated by the system parity. a. Projected bulk bands of H(1/4, 1/6) near
half-filling. b-g. quantum-confined bandgaps (shaded grey) and edge states (red and blue, for chiral and anti-chiral subspaces, respectively)
appear upon introducing a boundary that breaks a nonsymmorphic chiral symmetry S y, which protects the bulk double Dirac points at Γ and
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green indicates half MBZ for the full manifold and the two subspaces.

lators whose topology depends on the system parity. Richer
non-Abelian algebras and topology are expected in higher di-
mensions, e.g. the three-dimensional non-Abelian Hofstadter
model where each dimension hosts a unique nonsymmorphic
chiral symmetry [54] (see Sec. S6 of Ref. [49]). In particular,
our results showcase the diverse possibilities in which internal
symmetries, classified according to the ten-fold way, could be
combined with spatial symmetries in physical systems bey-
ond electronic band theory. A particularly interesting question
concerns whether similar effective symmetries could be relev-
ant to the parton description of spin liquid candidates with an
emergent SU(2) gauge field.

The proposed non-Abelian Hofstadter system could be sim-
ulated with photons and cold atoms. In optics, relevant can-
didate platforms are anisotropic or bianisotropic materials
with electromagnetic duality [55–58], and PTD-symmetric
systems [59]. In cold atoms, the two spatially-dependent
gauge potentials could be realized by existing methods—such
as laser-assisted tunneling [60, 61], lattice shading [62], or
magnetic wires with spatially-modulated currents [63, 64]—
along the two spatial dimensions.
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