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We explore the physics of a spin-1/2 Heisenberg chain with Kondo interaction, Jk, to a two-
dimensional electron gas. At weak Jk the problem maps onto a Heisenberg chain locally coupled
to a dissipative Ohmic bath. At the decoupled fixed point, the dissipation is a marginally relevant
perturbation and drives long-range antiferromagnetic order along the chain. In the dynamical spin
structure factor we observe a quadratic low-energy dispersion akin to Landau-damped Goldstone
modes. At large Jk Kondo screening dominates, and the spin correlations of the chain inherit
the power law of the host metal, akin to a paramagnetic heavy Fermi liquid. In both phases we
observe heavy bands near the Fermi energy in the composite-fermion spectral function. Our results,
obtained from auxiliary-field quantum Monte Carlo simulations, provide a unique negative-sign-free
realization of a quantum transition between an antiferromagnetic metal and a heavy-fermion metal.
We discuss the relevance of our results in the context of scanning tunneling spectroscopy experiments
of magnetic adatom chains on metallic surfaces.

Introduction. A spin-1/2 antiferromagnetic chain em-
bedded in a higher-dimensional metal, with Kondo cou-
pling Jk between spins and electrons, represents an arena
for rich physics. For two-dimensional metals, this relates
to scanning tunneling microscopy (STM) experiments,
with the ability to build and probe assemblies of mag-
netic adatoms on surfaces [1–5]. In higher dimensions,
Yb2Pt2Pb provides a realization of one-dimensional spin
chains embedded in a three-dimensional metal [6, 7]. Due
to the dimensionality mismatch, such a system remains
metallic even for a half-filled conduction band. It can
host a variety of phases that include Kondo-breakdown or
orbital-selective Mott states [8, 9], heavy-fermion physics
in which the magnetic spins, albeit sub-extensive, partic-
ipate in the Luttinger volume, as well as non-Fermi-liquid
states [10]. The understanding of quantum transitions
between these states is of considerable interest both ex-
perimentally and theoretically.

In this letter, we will consider the above setup for
two-dimensional electrons in the presence of a Fermi sur-
face. In the limit of weak Kondo coupling, one can fol-
low the Hertz-Millis approach [11, 12] and perturbatively
integrate out the fermions to arrive at an effective de-
scription of the spin chain locally coupled to an Ohmic
bath [13–17]. As argued in Ref. 17, for an O(3) quantum
rotor model coupled to an Ohmic bath, the dissipation
is marginally relevant and leads to long-range magnetic
ordering along the chain. Hence, unlike in conventional
heavy-fermions systems where Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions directly drive magnetic or-
dering [18, 19], here the ordering is stabilized only by
the dissipation. As the Kondo coupling increases, Kondo
screening will compete with dissipation-induced ordering.
In particular, in the strong-coupling limit, it is expected
that the spin-rotation symmetry will be restored in the

chain, and the spin-spin correlations of the chain will in-
herit the power-law decay of the host metal. The physics
of the Heisenberg spin chain on a metallic surface can
hence be cast into the flow diagram of Fig. 1(a) where
Kondo-singlet formation and dissipation-induced order
compete.
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FIG. 1. (a) RG flow diagram as suggested by the AFQMC
data. Jk is the antiferromagnetic Kondo coupling between
spins and conduction electrons. Green (red) bullets corre-
spond to phases (critical points). We observe an antiferro-
magnetic order-disorder transition with 〈n〉 the O(3) order
parameter. In both phases Kondo screening, corresponding
to a Higgs condensate 〈b〉 6= 0, is present. (b) Phase diagram
in the Jh versus Jk plane as extracted from AFQMC simu-
lations at β ∝ Lz with z = 2. Jh is the antiferromagnetic
Heisenberg coupling along the chain. The blue line at Jk = 0
represents the decoupled Heisenberg chain that is unstable
to dissipation-induced ordering upon Kondo coupling to the
fermions.

Model and Method. Our starting point is the Hamilto-
nian for a spin-1/2 chain on a metallic surface,

Ĥ = −t
∑
〈i,j〉

(
ĉ†i ĉj + H.c

)
+
Jk
2

L∑
r=1

ĉ†rσĉr · Ŝr

+Jh

L∑
r=1

Ŝr · Ŝr+∆r. (1)
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Here, the summation
∑
〈i,j〉 runs over nearest neighbors

of a square-lattice, L × L, conducting substrate, t is
the hopping matrix element, and ĉ†i =

(
ĉ†i,↑, ĉ

†
i,↓
)

is a

spinor where ĉ†i,↑(↓) creates an electron at site i with z-

component of spin 1/2 (−1/2). Ŝr are spin-1/2 operators
and L is the length of the chain. We consider an array
of ad-atoms at an interatomic spacing ∆r = (a, 0) with
a = 1 and periodic boundary conditions are used along
the spin chain as well as for the conduction electrons.
Translation by (a, 0) is a symmetry of the problem such
that crystal momentum k along the chain is conserved
up to a reciprocal lattice vector. This model, including
the Heisenberg exchange, is motivated by the STM work
of Ref. 1.

In the absence of Kondo coupling and at Jh 6= 0, the
local moments at low-energies are described by a Lut-
tinger liquid action Schain. Denoting the fluctuating an-
tiferromagnetic (AFM) order parameter as n, in this the-
ory 〈n(r, τ) · n(0, 0)〉 ∼

√
log(r2 + τ2)/

√
r2 + τ2. Here

r = |r|. When Jk 6= 0, one may proceed by integrating
out the conduction electrons and obtain an action up to
second order in Jk as S = Schain + Sdiss(n) with

Sdiss(n) =
J2
k

8

∫
dτdτ ′

∑
r,r′

nr(τ)χ0(r−r′, τ−τ ′)nr′(τ ′).

(2)
where χ0 is the antiferromagnetic spin susceptibility of
the conduction electrons and Schain the action of the
spin chain. For generic, non-nested two-dimensional
electrons at finite density, χ0(r = 0, τ) ∼ 1/τ2, while
χ0(r, τ = 0) ∼ 1/r3. Using power counting, one observes
that while the long-range 1/r3 spatial decay of χ0 is ir-
relevant at the Jk = 0 fixed point, the long-range 1/τ2

decay in the time direction is not innocuous, and at the
leading order, corresponds to an dissipative Ohmic bath
that is marginal in the renormalization-group sense. In
fact, as argued in [17], such a dissipative coupling is a
marginally relevant operator that triggers long-range or-
der. To avoid the negative-sign-problem we employ a
particle-hole-symmetric conduction band such that the
Fermi surface is nested. As shown in supplemental mate-
rial [20] this leads to a multiplicative logarithmic correc-
tion to χ0: χ0(0, τ) ∼ log2(τ)/τ2. Therefore, at small Jk,
the logarithmic enhancement only increases the tendency
for the system to become ordered due to dissipation. A
particularity of the nested Fermi surface is a directional
dependence of χ0(r, 0) [20]. For a chain along the (a, 0)
direction χ0(r, 0) ∼ 1/r4. At Jk � Jh, t the local mo-
ments prefer to form local singlets with the conduction
electrons, thereby resulting in a paramagnetic phase.

We simulate the Hamiltonian of Eq. (1) using the
auxiliary-field quantum Monte Carlo (AFQMC) [21, 22]
implementation of the Algorithms for Lattice Fermions
(ALF) [23, 24] library. The model falls in the general cat-
egory of spin-fermion Hamiltonians [25] that do not suffer

from the sign problem. Our simulations are based on the
finite-temperature grand-canonical AFQMC [26, 27]. To
reduce finite-size effects we have included an orbital mag-
netic field of magnitude B = Φ0/L

2 where Φ0 is the flux
quantum [28].
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FIG. 2. (a) First derivative of free energy as a function of
Jk/t at βt = L and Jh/t = 1. The inset plots the second
derivative of the free energy. (b) Correlation ratio R as a
function of Jk/t at βt = L2/2 and Jh/t = 1. The inset plots
R as a function of 1/L at Jk/t = 1.8 and Jk/t = 3.

AFQMC Results. Given the above considerations,
we anticipate an order-disorder transition as a function of
Jk. To locate it, we consider 1

L
∂F
∂Jk

= 2
3L

∑
r〈ĉ
†
rσĉr · Ŝr〉

as a function of Jk as well as ∂2F
∂J2
k

(Fig. 2(a) and inset). As

apparent, the data is consistent with a single transition
at Jck/t ' 2.1 for Jh/t = 1. Next, we consider the spin
susceptibility,

χ(k, iΩm) =

∫ β

0

dτ
∑
r

ei(Ωmτ−k·r)〈Ŝzr(τ)Ŝz0(0)〉, (3)

from which we can define the correlation ratio,

R = 1− χ(Q− δk, 0)

χ(Q, 0)
, (4)

where Q = (π/a, 0) corresponds to the antiferromag-
netic wave vector and δk to the smallest wave vector on
the L-site chain. This correlation ratio scales to unity
(zero) for ordered (disordered) states, and at critical-
ity, is a renormalization group invariant quantity. Here,
R = f([Jk − Jck]L1/ν , Lz/β, L−ω) where ν is the correla-
tion length exponent, z is the dynamical exponent, and ω
captures corrections to scaling. Figs. 3 (c) and (d) shows
that in the vicinity of the critical point spatial correla-
tions drop off as 1/r whereas along the imaginary time,
we observe a much slower 1/

√
τ decay. This suggests

a critical exponent z ' 2. With this in mind, we can
compute R adopting a βt = L2 scaling such that un-
der the assumption vanishing correlations to scaling, R
should show a crossing point as a function of system size
at Jck. As apparent from Fig. 2(b) R shows a crossing
at Jck/t ' 2.1 thus providing a consistency check for our
choice of the dynamical exponent. We now discuss the
physics at weak, Jk < Jck, and strong coupling, Jk > Jck.

For Jk < Jck, we expect-dissipation induced long-range
AFM ordering. As discussed in [20], in this phase one
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can decompose the fluctuating AFM field n as n(r, τ) =(
σ(r, τ),

√
1− σ(r, τ)2

)
where the ordering is assumed

along the ẑ direction. The low-energy action for the
transverse fluctuations σ has dynamical exponent z = 2,

and is given by S0(σ) = Γ
2

∫
dτdτ ′dr σ(r,τ).σ(r,τ ′)

(τ−τ ′)2 +
ρs
2

∫
dτdr (∂rσ(r, τ))2. This implies that while the nz

correlations are long-ranged in both space and time, the
correlations of σ are given as: 〈σ(r, τ) ·σ(r, 0)〉 ∼ 1/

√
τ ,

while 〈σ(0, τ) · σ(r, τ)〉 ∼ 1/r.
On the numerical front, at Jk/t = 1.8 < Jck/t, we ob-

serve a slight increase in the correlation ratio (Fig. 2(b)
inset) thus hinting to the onset of long-range order, but
as Jk decreases further no sign of long-range order on
our finite lattice sizes is apparent. To understand this
apparent lack of ordering, we can switch off the Kondo
screening and retain only local dissipation, correspond-
ing to Eq. (2) with χ0(r, τ) ∝ δr,0/τ

2. For this bosonic
model stochastic series approaches for retarded interac-
tions [29, 30] can be used to investigate this model with
unprecedented precision [17]. It was shown in Ref.[17]
that the marginally relevant nature of the Ohmic dis-
sipation at the LL critical point requires lattice sizes
L� Lc ∝ eξ/J

2
k to detect long-range order.

For L . Lc one observes crossover phenomena charac-
terized by a 1/r decay of the real space spin-spin corre-
lations and breakdown of Lorentz symmetry. Our under-
standing is that our data falls in this crossover regime,
and that for r � Lc it can be accounted for by

C(r, τ) ∝


1√

r2+τ2/z
τ � 1

∆

e−∆τ√
r2+∆−2/z

τ � 1
∆

(5)

on an L-site lattice. Here C(r, τ) = eiQ·r〈Ŝzr(τ)Ŝz0(0)〉
and ∆ ∝

(
2π
L

)z
corresponds to the finite-size gap. At

Jk/t = 0.5, far from the critical point, Fig. 3 plots C(r, 0)
(a) as well as C(0, τ) (b). The real-space equal-time de-
cay is consistent with a 1/r law. Along the imaginary
time we observe crossover phenomena: While at short
times, τt . L, the temporal decay is consistent with
Eq. (5) at z ' 1 akin to the Heisenberg model, we ob-
serve at large τ a breakdown of Lorentz invariance with
C(0, τ) decaying substantially slower than 1/τ . In the
infinite-size limit, we foresee that both the real-space and
imaginary-time correlations will level off to show long-
ranged correlations, albeit with a very small local mo-
ment.

The breakdown of Lorentz invariance is equally ap-
parent in the data of Fig. 4. The Ansatz of Eq. (5)
leads a structure factor S(Q) = 1

β

∑
Ωm

χ(Q, iΩm) that
is independent on the dynamical exponent and as for
the Heisenberg chain diverges as log(L). The size scal-
ing in the crossover regime (Fig. 4(a)) does not show
marked differences from the Heisenberg limit. As noted
in Ref. [17] and seen in Fig. 4(a), coupling to the bath re-
duces the magnitude of the equal time spin-correlations.
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FIG. 3. Space and time correlation functions C(r, τ) at βt =
L2 and Jh/t = 1. (a) C(r, 0) at Jk/t = 0.5. (b) C(0, τ) at
Jk/t = 0.5. (c) C(r, 0) at Jk/t = 0.5. (d) C(0, τ) at Jk/t = 2.
The dashed grey lines denote the 1/r ((a) and (c)) and 1/

√
τ

((b) and (d)) power laws.

On the other hand, the susceptibility, χ(Q, 0) shows
marked differences as a function of Jk. In Fig. 4(b)
we consider the scaling βt = L2/2. In the Heisenberg
limit this leads to χ(Q, 0) ∝ L and a marked deviation
from this law is observed in the crossover regime. For
z = 2 akin to the critical point, Jck/t ' 2.1, the Ansatz
of Eq. (5) yields χ(Q, 0) ∝ L2. This scaling law is sup-
ported by the data thus confirming z ' 2 at criticality.
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FIG. 4. (a) Static spin structure factor S(Q) along the spin
chain as a function of Jk/t for given L at Jh/t = 1 and βt =
L2/2. (b) Correspondingly, spin susceptibility χ(Q, 0) as a
function of Jk/t.
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power law. (b) C(0, τ). The dashed grey line indicates a 1/τ2

law. Both power laws in time and in space are observed in
the large-N limit (see Ref. [20]).

At Jk > Jck we are in a Kondo screened phase that
can be understood within a large-N mean field theory
presented in Ref. [20]. In this phase, the spin-spin cor-
relations inherit the asymptotic behavior of the conduc-
tion electrons and fall off as 1/r4 in space and as 1/τ2 in



4

imaginary time. In particular, Figs. S2 and S3 of Ref. 20
plot the space- and time-displaced correlation functions
within the large-N approximation and confirm the above.
The AFQMC data of Fig. 5 is consistent with this expec-
tation.
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FIG. 6. S(k, ω) as a function of energy ω/t and momentum
k along the spin chain at βt = L = 44 and Jh/t = 1.

Using the ALF [24] implementation of the maximum
Entropy method [31, 32] we compute the dynamical spin

structure factor S(k, ω) = Imχ(k,ω+i0+)
1−e−βω . Fig. 6(a) plots

this quantity for the Heisenberg model. The data shows
the well known two spinon continuum [33–35]. At finite
Kondo couplings (Figs. 6(b)-(c)), the two-spinon contin-
uum is still apparent at elevated energies. However the
low-energy bound shows a marked deviation from the lin-
ear dispersion and is very suggestive of a ω ∝ k2 law. In
fact, a field theory presented in Ref. 20 as well as a large-
S calculation [17] of a Heisenberg chain locally coupled to
an Ohmic bath confirms that dissipation stabilizes long-
range order and that the lower bound of the dispersion
relation follows an ω ∝ k2 law akin to Landau-damped
Goldstone modes. Our dynamical data bears similarities
with spinon binding as observed in KCuF3 [36] and corre-
sponding to a dimensional crossover [37]. In the present
case, the elevated-energy spectrum shows the two-spinon
continuum while the low energy to corresponds the spin-
wave excitations of the Heisenberg chain coupled to an
Ohmic bath [20]. Finally, in the Kondo-screened phase
at Jk/t = 3 see Fig. 6 (d) the low-lying spectral weight
is depleted.

We now turn our attention to Kondo screening and
heavy-fermion physics. Consider the composite-fermion
operator ψ̂†r,σ = 2

∑
σ′ ĉ
†
r,σ′σσ′,σ · Ŝr [38–40]. In the

large-N limit this quantity picks up the Higgs con-
densate or hybridization matrix element [20], charac-
teristic of Kondo screening [41]. Here we compute
the spectral function Aψ(k, ω) = −ImGret

ψ (k, ω) with

Gret
ψ (k, ω) = −i

∫∞
0
dteiωt

∑
σ〈
{
ψ̂k,σ(t), ψ̂†k,σ(0)

}
〉, rep-

resenting the conduction-electron T matrix. Figs. 7(a)-
(b) shows flat (i.e heavy) bands in the vicinity of the

Jk/t=2.3Jk/t=1.8(a) (b)
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FIG. 7. Spectral function of the composite-fermion operator
Aψ(k, ω) on an L = 24 lattice at βt = 48 (a) in the ordered
phase and (b) in the Kondo-screened phase. (c) Local zero-
bias signal Aψ(ω = 0) as a function of temperature T/t at
L = 44 and for various values of Jk/t in the ordered and
disordered phases.

Fermi energy, both below and above the critical point
Jck/t ' 2.1. In Fig. 7(c) we plot Aψ(ω) = 1

L

∑
kAψ(k, ω)

as a function of temperature and Jk. To avoid ana-
lytical continuation, we use the relation Aψ(ω = 0) '
(1/π)βGψ(τ = β/2). Confirming the k-dependent data,
we see that this quantity never vanishes at low tem-
peratures in both phases. Hence, the data supports
the point of view that Kondo screening is active in the
dissipation-induced ordered phase. It is interesting to
note that the temperature dependence of Aψ(ω = 0)
differs in both phases. While it grows and saturates in
the Kondo-screened phase, it shows a maximum in the
ordered phase. Such a behavior can be understood in
terms of the onset of ordering that opens a pseudogap
in the spectral function, see Ref. 20. Aψ(ω = 0) is an
important quantity since it provides a link to STM ex-
periments. In fact, it corresponds to the zero bias signal
dIl/dV (V = 0) for tunneling processes between the tip
and the substrate that involve intermediate excited states
of the localized orbital. In the experiments described in
Refs. [1, 42] and modelled in Ref. [5] Jk can be tuned by
changing the width of the Cu2N islands between the Co
adatoms and Cu(100) surface. Provided that the chains
are long enough, our observation of distinct temperature
behaviors of Aψ(ω = 0) in the two phases provides a
means to experimentally distinguish them.

Conclusions. The physics of the Heisenberg chain cou-
pled to two-dimensional electrons can be understood by
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the competition between dissipation and Kondo screen-
ing. As the competition between the RKKY interaction
and Kondo screening, the Kondo coupling triggers both
effects but at different energy scales.

At weak coupling dissipation dominates, and the chain
develops long-range antiferromagnetic order. Since the
coupling to the Ohmic bath is marginally relevant [17],
system sizes exceeding our achievable lattices are re-
quired to unambiguously detect the order. As a con-
sequence our data below the critical point are dominated
by a crossover regime characterized by the absence of
Lorentz invariance as seen in Ref. 17. In fact, the ten-
dency towards ordering on small lattices can be enhanced
by considering the XXZ (as opposed to Heisenberg) chain
in its Luttinger-liquid phase. Here the transverse spin
operator acquires a scaling dimension smaller than 1/2
such that the coupling to the Ohmic bath becomes rel-
evant. In Ref. 20 we have verified that the XXZ chain
indeed leads to a stronger tendency towards ordering. At
strong coupling, Kondo screening dominates, leading to
a paramagnetic phase. Here, the spin-spin correlations
inherit the power-law decay of the host metal. Aspects
of this phase diagram have been put forward based on
analytical considerations in Ref. 43.

The composite-fermion spectral function reveals a
heavy band in both phases. Hence, in the ordered phase
Kondo screening coexists with dissipation-induced or-
dering. In the disordered phase, the notion of heavy
Fermi liquid can be made precise by invoking the Lut-
tinger theorem that relates the size of the Fermi surface
to the count of its constituents. Since our model pre-
serves translation invariance along the chain, it can be
thought of as a one-dimensional model with a unit cell
that contains L conduction electrons and single spin-1/2
local moment. With this formulation, one can now ap-
ply Oshikawa’s proof of Luttinger theorem in the context
of Kondo lattices [44], and show that the volume of the
Fermi surface includes the local moments, assuming that
the system is described by a Fermi liquid at low energies.
An explicit calculation is presented in Ref. 20.

Our model provides a unique negative-sign-free real-
ization of a Hertz-Millis-type transition between anti-
ferromagnetic and paramagnetic heavy-fermion metals.
In previous studies that capture aspects of Hertz-Millis
type physics [45], the electrons are effectively coupled to
Ising spins such that Kondo effect and concomitant heavy
fermi liquid phase is not present. To avoid the negative-
sign problem we have to consider a particle-hole symmet-
ric conduction band with inherent nesting instabilities.
Nevertheless, we expect that the our broad conclusions,
including the global structure of the phase diagram, hold
for a generic two-dimensional Fermi surface. In the lat-
ter case, the spin-spin correlations of the host metal de-
cay as 1/r3 and as 1/τ2 in space and time, respectively.
Since the 1/r3 decay is an irrelevant perturbation at the
decoupled fixed point, we expect dissipation-induced or-

dering to occur generically at small Jk. Remarkably,
STM has the ability to build atomic rings on metallic
surfaces. Therefore, the two phases and the associated
critical point can be probed with the existing STM tech-
nologies. Our numerical data suggests that the transition
in Fig. 1 is characterized by a dynamical exponent z ' 2.
A detailed understanding of the transition, both on the
numerical and analytical fronts, remains for future work.
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