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Due to the intertwining between electronic nematic and elastic degrees of freedom, lattice defects
and structural inhomogeneities commonly found in crystals can have a significant impact on the
electronic properties of nematic materials. Here, we show that defects commonly present at the
surface of crystals generally shift the wave-vector of the nematic instability to a non-zero value,
resulting in an incommensurate electronic smectic phase. Such a smectic state onsets above the
bulk nematic transition temperature and is localized near the surface of the sample. We argue that
this effect may explain not only recent observations of a modulated nematic phase in iron-based
superconductors, but also several previous puzzling experiments that reported signatures consistent
with nematic order before the onset of a bulk structural distortion.

Electronic nematicity has been observed in a wide
range of systems, including high-Tc superconductors [1–
3], heavy-fermion materials [4–6], topological supercon-
ductors [7, 8], cold atoms [9], and twisted moiré de-
vices [10, 11]. Among those, iron-based superconductors
(FeSC) have provided unique insight into this quantum
electronic state due to the nearly-universal and unam-
biguous presence of nematic order and nematic fluctu-
ations in their phase diagrams [3, 12–16]. Despite sig-
nificant progress, essential questions remain unresolved,
related not only to the microscopic mechanisms of ne-
maticity, but also to its general phenomenology [17]. For
instance, since early studies of FeSC, various probes in
nominally unstrained samples have reported signatures
consistent with nematicity above the nematic transition
temperature Tnem established by thermodynamic probes
[18–29]. More recently, experiments have found evidence
for a spatially-modulated nematic phase – i.e. an elec-
tronic smectic phase [30–33].

The probes used in many of these experiments are
particularly sensitive to the surface, e.g. angle-resolved
photo-emission spectroscopy (ARPES) [25–27], scanning
tunneling microscopy (STM) [21, 30–32], spatially re-
solved photomodulation [19], and photo-emission elec-
tron microscopy (PEEM) [33]. Moreover, the onset of
these interesting phenomena does not usually show typ-
ical phase-transition signatures in thermodynamic quan-
tities, such as specific heat [34] and elasto-resistance [3].
This suggests that both effects – nematic manifestations
above Tnem and modulated nematic order – may signal
a surface nematic transition at higher temperatures than
the bulk one [19], reminiscent of the so-called extraordi-
nary transition [35]. The key question is whether a sur-
face nematic transition is particular to some FeSC com-
pounds or a more general phenomenological property of
nematic compounds.

While a purely electronic mechanism was previously in-
voked to explain surface nematicity [36], in this Letter we
focus on the role of the elastic degrees of freedom. The
nemato-elastic coupling g is known to significantly im-

pact the nematic state, particularly in FeSC [15, 16, 37–
42]. For instance, coupling to elastic fluctuations (acous-
tic phonons) renders the nematic transition mean-field
like [41, 43–46], whereas intrinsic random strain fosters
behaviors associated with the random-field Ising-model
[47–49]. Here, we show that defects commonly found
in the surfaces of crystals, such as steps separating ter-
race domains, promote an electronic smectic state local-
ized near the surface and that onsets at a temperature
Tsmc > Tnem (see Fig. 1). The smectic state survives
down to a temperature Tsmc−nem, which decreases as the
sample thickness is reduced, at which point a homoge-
neous nematic phase takes over. Our results establish a
hitherto unexplored facet of electronic nematic phases in
elastic media, which we argue can explain the intriguing
observation of Ref. [33] of a mesoscopic nematic wave in
FeSC.

To understand why defects induce a surface transition,
note that elastic fluctuations increase the nematic tran-
sition temperature Tnem from its bare purely-electronic

value T
(0)
nem. In a clean system, some of the elastic modes

are expected to be frozen near the surface, resulting in

T
(surface)
nem < Tnem [50]. However, the fact that the ex-

posed surface is more disordered than the bulk changes
this picture dramatically. To see this, consider a random
distribution of defects, such as vacancies and dislocations,
on the surface of a crystal whose bulk is clean. Defects
locally induce large strains that decay slowly with dis-
tance [51]. Since they are concentrated at the surface,
they rapidly screen each other as one moves deeper into
the bulk. However, near the surface, they do not screen
efficiently, causing not only an enhancement of Tnem at
the surface, but also creating a “speckle” pattern in the
nematic fluctuation spectrum, with typical spot size set
by the algebraic strain correlations rather than by the
defect density. This disorder-induced pattern imposes a
preferred wavelength for the condensation of the nematic
order parameter, driving the formation of an electronic
smectic state.

To derive these results, we solve a Ginzburg-Landau
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Figure 1. (color online) Schematic illustration of the sur-
face smectic state, shown here as a modulated nematic or-
der parameter that quickly decays in the bulk of the sample
(gray). Red (blue) regions denote a B1g nematic order pa-
rameter that selects the x (y) axis of a tetragonal crystal.
The inset illustrates the dipolar forces induced by a surface
step. It also presents a cross-section of the sample (gray) with
aligned steps of random heights/strengths oriented parallel to
the y−axis.

model of a generic nematic order parameter coupled to
elastic strain induced by simple types of surface quenched
disorder, such as steps and anisotropic point defects. We
find that the defect distribution induces a non-local ef-
fective potential for the nematic order parameter. After
averaging over defect realizations, the minimum of the
resulting nematic free energy appears at a higher tem-
perature Tsmc = Tnem + ∆Tsmc (with ∆Tsmc > 0) and
at a non-zero wave-vector qsmc, resulting in an electronic
smectic phase. In terms of the disorder strength σ2, we
find

qsmc ∝ g2σ2, ∆Tsmc ∝ q2
smc, (1)

The smectic order parameter is inhomogeneous and lo-
calized at the the surface, decaying exponentially into
the bulk with a penetration depth ∝ 1/qsmc. Eventu-
ally, below Tsmc−nem, which is lower than the bulk ne-
matic transition temperature Tnem, the smectic solution
becomes unfavorable and the uniform q = 0 nematic state
is established throughout the sample.

Surface step disorder and induced strain.– To elucidate
our results, we consider an Ising-nematic order parame-
ter η that breaks the equivalence between the x and y
directions of a crystal (i.e. it transforms as the B1g ir-
reducible representation of the tetragonal group). In the
presence of strain, the nematic action is given by:

S =

∫
r

[(
r0
T − Tnem

2T
(0)
nem

)
η2
r +

bµ
2

(∂µηr)2 − gεB1g
r ηr +

uη
4
η4
r

]
(2)

where repeated indices are implicitly summed; bx =
by = b‖ and bz are the nematic stiffness coefficients;
uη > 0 is the quartic coefficient; r0 is of the order
of the Fermi energy (action has dimensions of energy);
εB1g ≡ (εxx − εyy)/

√
2 is the B1g shear strain, which

acts as a conjugate field to the nematic order parame-

ter; and T
(0)
nem, Tnem are the nematic transition temper-

atures without and with the enhancement from elastic
fluctuations. For a clean unstrained crystal, ε

B1g
r is only

present as a fluctuating field whose properties are deter-
mined by the crystal’s elastic constants. However, for
a crystal with quenched disorder, a static slow-decaying

strain ε
B1g
r is generated by the various types of defects.

In both cases, an effective nematic potential emerges in
the action due to either thermal fluctuations or average
over disorder configurations. While the former scenario
has been widely studied [43–46], the latter has received
much less attention [52, 53].

A crystal with an exposed surface can be modeled by
an isotropic elastic half-space (z ≥ 0) with Young’s mod-
ulus E and Poisson ratio ν. Each type of surface defect
generates a characteristic dipolar local force, which in

turn can be used to calculate ε
B1g
r via standard methods

[54–60]. Here, we consider idealized infinite step defects
parallel to the y−axis, as shown in Fig. 1 (we consider
point defects in the Supplementary material (SM) [61]).
A single step at x = x′ is parametrized by the force den-
sity fµ = hµ[∂xδ(x − x′)]δ(z), where δ(z) is the Dirac
delta function, the force hµ characterizes the strength of
the defect, and µ = x, z. For simplicity, we consider steps
that create forces along the z−axis only, i.e. hx = 0 and
hz 6= 0. The lattice displacement created by a single
step is given by uµ = hν∂xGµν(x − x′, z), where Gµν is
the Green’s function for an infinite line-force along the

y−axis in half-space [51]. The B1g strain ε
B1g

r−r′ generated
by a single defect is [51]

ε
B1g

r−r′ =
−4(1 + ν)hz√

2πE

[
(ν − 1) δx3z + (ν + 1) δx z3(

δx2 + z2
)3 ]

, (3)

where δx = x−x′. A distribution of such steps at random
positions x = xj and with random strength hz,j results

in the net B1g strain ε
B1g
r =

∑
j hj∂

2
xGxz(x − x′, z −

0) ≡
∑
j hj ε̄

B1g

r−rj
. The nematic action (2) for the finite

crystal with dimensions Lx = Ly = L‖ and Lz = L� L‖
becomes:

S =L‖

∫ L‖
2

−
L‖
2

dx

∫ L

0

dz

[(
r0
T − Tnem

2T
(0)
nem

)
η2
x,z +

b‖

2
(∂xηx,z)

2

+
b

2
(∂zηx,z)

2 +
uη
4
η4
x,z − g

∫ L‖
2

−
L‖
2

dx′ρx′ ε̄
B1g

x−x′,zηx,z

]
,

(4)

where we defined ρx =
∑
j hjδ(x− xj).
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Effective nematic potential and smectic state.— For
a random distribution of steps, 〈hjhj′〉 = σ2δj,j′ , the
step density ρx follows a Gaussian distribution with vari-
ance σ2(Nstep/L‖)(a‖/Lξ), where Nstep is the number of
steps, a‖ is the in-plane lattice constant, and Lξ is a
length scale larger than a‖ but smaller than the nematic
correlation length. Integrating out the step density in
Eq. (4) (equivalent to the standard procedure of aver-
aging over quenched disorder [62–68]) generates a new
quadratic term in the nematic action:

Sd = L2
‖

∫ L

0

dz dz′
∑
qx

Vqx,z,z′η
∗
qx,zηqx,z′ (5)

with an effective potential experienced by the nematic
order parameter

Vqx,z,z′ =− (gσ)2β

2
e−|qx|(|z|+|z

′|)

× q2
x[|qx||z|+ 2ν − 1][|qx||z′|+ 2ν − 1].

(6)

Here, β = [(1 + ν)/(
√

2E)]2Nstep(Lξ/a‖) and ηqx,z =
(1/L‖)

∫
x
ηx,ze

−iqxx. The potential Vqx,z,z′ is non-local,
depending on both z and z′. Moreover, it vanishes
quadratically as qx → 0 and exponentially as z, z′ →∞
or qx → ∞. Thus, the potential has a negative-valued
minimum at a non-zero qx and is significant only near
the surface. These features are a consequence of the al-
gebraic decay of the strain fields generated by defects,
rather than the type of defects (see SM [61]).

While the defect-generated potential in Eq. (6) is min-
imized by qx 6= 0, the nematic stiffness term b‖q

2
x in Eq.

(4) favors a uniform qx = 0 state. This competition
causes the nematic instability to take place at a nonzero
wave-vector qx, resulting in an electronic smectic state.
This effect is restricted to the vicinity of the surface due
to the exponential suppression of Vqx,z,z′ with |z|. This
can be more clearly seen by an approximate analytical
solution of the problem. Re-expressing Vqx,z,z′ in terms
of z̄ = (z + z′)/2 and δz = z − z′, Vqx,z̄,δz is peaked at
z̄ ∼ 1/|qx| and δz = 0. Assuming that ηqx,z varies slowly
near the surface over a depth Ls ∼ 1/|qx|, before even-
tually decaying exponentially away from the surface, the
action (5) becomes:

Sd =L2
‖

∫ L

z̄=0

∫ Ls
2

δz=−Ls
2

∑
qx

Vqx,z̄,δz|ηqx,0|2,

≈− L2
‖Ls

∑
qx

(gσ)2β
[
(ν − 1

2 )2 + ν2
]

2
|qx||ηqx,0|2.

(7)

In the regime of vanishing z-component stiffness b→ 0,
the quadratic part of the action (4), S(2), is given by:

S(2) ≈ L2
‖Ls

∑
qx

[(
r0
T − Tnem

2T
(0)
nem

)
+
b‖q

2
x

2

]
|ηqx,0|2 (8)

Minimizing the full action Sd + S(2) with respect to
qx gives a finite smectic wave-vector qsmc = (gσ)2β

[
(ν −

1
2 )2 + ν2

]
/2b‖ and an enhanced smectic transition tem-

perature Tsmc = Tnem + (T
(0)
nem/r0)b‖q

2
smc, consistent with

Eq. (1). The actual spatial profile of ηx,z and the precise
qsmc and Tsmc can be obtained by solving the saddle-point
equation in real space,[

r0
T − Tnem

T
(0)
nem

− b∂2
z − b‖∂2

x

]
ηx,z + uηη

3
x,z

+
1

L‖

∫ L

0

dz′
∫ L‖

2

−
L‖
2

dx′ Vx−x′,z,z′ηx′,z′ = 0 (9)

where Vδx,z,z′ is the inverse Fourier transform of Vqx,z,z′

(see SM [61]), whose asymptotic behavior is:

Vδx,z,z′ ∼
{
−(z + z′)−3 , |δx| � z, z′

+(z + z′)(δx)−4 , |δx| � z, z′
. (10)

Therefore, as a function of δx/(z + z′), Vδx,z,z′ has a
negative central trough at δx = 0, crosses zero at δx ∼
z+z′, and then remains positive as it decays algebraically.
The sign change in real-space means that the effective
potential favors an oscillatory ηx solution.

The numerical solution of Eq. (9), shown in Fig. 2(a),
confirms the main results of our analytical approxima-
tion. The quartic term of the nematic action (4) stabi-
lizes a single smectic wave-vector over the entire tem-
perature range Tsmc−nem < T < Tsmc, as it acts as
a repulsive biquadratic interaction uη|ηqx |2|ηq′x 6=qx |

2 be-
tween states with different wave-vectors. Consequently,
only the smectic wave-vector corresponding to the high-
est critical temperature develops. For the same reason, in
a fully 3D crystal with L� 1/qsmc, the uniform bulk ne-
matic phase is preferred for T < Tnem, as its free-energy
gain scales extensively with the system size. However,
for smaller values of L comparable to 1/qsmc, the smec-
tic free-energy can compete with the bulk nematic one.
Consequently, the smectic-nematic transition is pushed
to a lower temperature Tsmc-nem < Tnem, which decreases
with decreasing sample thickness. Figs. 2(b)-(c) show
the corresponding profile of ηqx,z in momentum space,
highlighting the change in wave-vector above and below
Tsmc−nem.

The temperature dependence of the uniform nematic
and smectic order parameters is shown in Fig. 3(a). The
continuous onset of surface smectic order is evident, even-
tually dropping discontinuously to zero, concomitant to
the onset of uniform nematic order. Fig. 3(b) shows
the numerically obtained phase diagram as a function of
increasing defect disorder strength σ2.

Discussion.— The mechanism unveiled in this work for
the emergence of a surface electronic smectic state above
the onset of bulk electronic nematicity is rather general,
as it relies solely on the existence of defects commonly
observed at crystal surfaces. While here we focused on
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Figure 2. (color online) (a) Spatial profile of the nematic order parameter ηx,z for three representative temperatures, obtained
from the numerical solution of the saddle-point equation (9). For T > Tsmc, the nematic order parameter is effectively zero
everywhere. As temperature is lowered towards Tsmc−nem < T < Tsmc, ηx,z displays a sinusoidal x-dependence characterized
by a single smectic wave-vector qsmc [panel (b)]. Below the bulk nematic transition T < Tsmc−nem, a uniform nematic state
emerges with zero wave-vector [panel (c)]. The enhancement of ηx,z at the corners is an artifact of the boundary conditions.
The profile of the nematic order parameter ηqx,z in Fourier space is shown in panels (b) (for Tsmc−nem < T < Tsmc) and (c)
(for T < Tsmc−nem). The parameters used are (in arbitrary units): r0 = 1, b = 0.5, b‖ = 0.25, ν = 0.495, L‖ = 44, L = 9,

(gσ)2β/2 = 1, and uη = 5. In panels (b) and (c), the nematic fields were normalized.
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Figure 3. (a) Temperature dependence of the uniform ne-
matic (red, approximated by ηqx=0,z=L) and surface smectic
(blue, approximated by ηqx=qsmc≈0.57,z=0) order parameters,
numerically obtained by solving Eq. (9) (same parameters as
Fig.2). (b) Phase diagram as a function of the effective disor-

der strength (gσ)2β
2

and the reduced temperature. The smec-
tic critical temperature (blue circles), found to vary quadrat-

ically with (gσ)2β
2

, was obtained from the linearized saddle-
point equation (9) in momentum space (see SM [61]). Due to
the finite sample thickness, the bulk nematic phase onsets at
T = Tsmc−nem < Tnem.

steps, other defects with nonzero dipolar elastic moments
are expected to promote a similar behavior, since they
also generate algebraically-decaying strain fields that are
poorly screened at the surface (see SM [61]) [69, 70].
Our result unearths yet another aspect of the rich phe-
nomenology of electronic nematicity caused by the cou-
pling to the elastic degrees of freedom.

The impact of the effect we found on a given nematic
system depends on the disorder strength σ and on the
nemato-elastic coupling g, as shown in the phase di-

agram of Fig. 3(b). FeSC stand out as compounds
with strongly coupled nematic and elastic degrees of free-
dom, as manifested by, e.g., the large orthorhombic dis-
tortion seen in the nematic phase [71]. In contrast, in
other tetragonal correlated systems that display nematic
tendencies, such as Hg-based cuprates [72] and heavy-
fermion systems [5, 6], a lattice distortion is difficult to
be resolved experimentally. The potentially large period
2π/qsmc of the smectic state may explain why certain
surface-sensitive probes, such as ARPES and STM, ob-
serve signatures consistent with nematic order above the
temperature where a bulk orthorhombic distortion on-
sets. Among the various experimental findings that have
indicated the existence of a smectic phase in FeSC [30–
33], the PEEM data reported in Ref. [33] provides the
most straightforward platform to perform comparisons
with our theory and extract relevant physical estimates.
That work found a sinusoidal modulation of the nematic
order parameter with a long and material-dependent pe-
riod. Moreover, when Fourier-transformed to momentum
space (see the SM [61]), the PEEM data, available in [73],
displays a distinctive speckle pattern corresponding to a
spot of size qsmc, reminiscent of our theoretically calcu-
lated nematic potential Vqx,z,z′ . As shown in detail in
the SM [61], combining the experimental results of Ref.
[33] with our theoretical model, we find two interesting
results: (i) The size of a typical region of parallel stripes,
observed in that work, is small enough that a homoge-
neous nematic phase may not be stabilized at Tnem. (ii)
The characteristic energy scale per defect is of the order
Ed ∼ 100µeV. This scale is much smaller than both the
Fermi energy and the bulk nematic orbital order energy
splitting observed in FeSe. These results highlight that
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the smectic order is not the result of a particular defect
distribution with fine-tuned disorder strength, but of the
subtle effects of the long-range strain generated by the
defect distribution.
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C. Berthier, K. Ishida, H. Ikeda, S. Kasahara,
T. Shibauchi, and Y. Matsuda, Journal of the Physical
Society of Japan 84, 043705 (2015).

[21] E. P. Rosenthal, E. F. Andrade, C. J. Arguello, R. M.
Fernandes, L. Y. Xing, X. C. Wang, C. Q. Jin, A. J. Mil-
lis, and A. N. Pasupathy, Nature Physics 10, 225 (2014),
ISSN 1745-2481.

[22] H. Man, X. Lu, J. S. Chen, R. Zhang, W. Zhang, H. Luo,
J. Kulda, A. Ivanov, T. Keller, E. Morosan, et al., Phys.
Rev. B 92, 134521 (2015).

[23] K. W. Song and A. E. Koshelev, Phys. Rev. B 94, 094509
(2016).

[24] L. Stojchevska, T. Mertelj, J.-H. Chu, I. R. Fisher, and
D. Mihailovic, Phys. Rev. B 86, 024519 (2012).

[25] T. Shimojima, T. Sonobe, W. Malaeb, K. Shinada,
A. Chainani, S. Shin, T. Yoshida, S. Ideta, A. Fujimori,
H. Kumigashira, et al., Phys. Rev. B 89, 045101 (2014).

[26] T. Sonobe, T. Shimojima, A. Nakamura, M. Nakajima,
S. Uchida, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, K. Oh-
gushi, et al., Scientific Reports 8, 2169 (2018).

[27] P. Zhang, T. Qian, P. Richard, X. P. Wang, H. Miao,
B. Q. Lv, B. B. Fu, T. Wolf, C. Meingast, X. X. Wu,
et al., Phys. Rev. B 91, 214503 (2015).

[28] M. Toyoda, Y. Kobayashi, and M. Itoh, Phys. Rev. B 97,
094515 (2018).

[29] P. Wiecki, M. Nandi, A. E. Böhmer, S. L. Bud’ko, P. C.
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J. Schmalian, Phys. Rev. B 104, 125134 (2021).
[50] A. Lahiri, Master’s thesis, University of Minnesota

(2021).
[51] E. Lifshitz, A. Kosevich, and L. Pitaevskii, Theory of

Elasticity (Butterworth-Heinemann, 1986).
[52] L. Nie, G. Tarjus, and S. A. Kivelson, Proceedings of the

National Academy of Sciences 111, 7980 (2014).
[53] T. Cui and R. M. Fernandes, Phys. Rev. B 98, 085117

(2018).
[54] V. Marchenko and A. Y. Parshin, JETP Lett. 52, 129

(1980), [ZhETF, Vol. 79, No. 1, p. 257, July 1980].
[55] L. E. Shilkrot and D. J. Srolovitz, Phys. Rev. B 53, 11120

(1996).
[56] J. Stewart, O. Pohland, and J. M. Gibson, Phys. Rev. B

49, 13848 (1994).
[57] Point Defects (John Wiley & Sons, Ltd, 2005), ISBN

9783527606672.
[58] D. Bacon, D. Barnett, and R. Scattergood, Progress in

Materials Science 23, 51 (1980).
[59] E. Clouet, C. Varvenne, and T. Jourdan, Computational

Materials Science 147, 49 (2018).
[60] C. Teodosiu, Elastic Models of Crystal Defects (Springer-

Verlag, 1982), 1st ed.
[61] See Supplemental Material at [URL will be inserted by

publisher] for details of the defect-induced nematic po-
tential for both step and generic point defects, the deriva-
tion of the smectic critical temperature, the eventual
surface smectic to uniform bulk nematic transition, and
comparison with the PEEM data of T. Shimojima et al,
Science 373, 1122, (2021).

[62] C. De Dominicis and I. Giardina, Random Fields and
Spin Glasses: A Field Theory Approach (Cambridge Uni-
versity Press, 2006).

[63] V. Dotsenko, Introduction to the Replica Theory of Disor-

dered Statistical Systems, Collection Alea-Saclay: Mono-
graphs and Texts in Statistical Physics (Cambridge Uni-
versity Press, 2000).

[64] Y. Imry and S.-k. Ma, Phys. Rev. Lett. 35, 1399 (1975).
[65] A. Aharony, Y. Imry, and S.-k. Ma, Phys. Rev. Lett. 37,

1364 (1976).
[66] G. Grinstein, Phys. Rev. Lett. 37, 944 (1976).
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