
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Role of polarization-photon coupling in ultrafast terahertz
excitation of ferroelectrics

Shihao Zhuang and Jia-Mian Hu
Phys. Rev. B 106, L140302 — Published 18 October 2022

DOI: 10.1103/PhysRevB.106.L140302

https://dx.doi.org/10.1103/PhysRevB.106.L140302


 1 

Role of Polarization-Photon Coupling in Ultrafast Terahertz Excitation of Ferroelectrics 

 

Shihao Zhuang and Jia-Mian Hu* 

Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 

WI, 53706, USA 

 

Abstract 

We investigate the role of polarization-photon coupling (specifically, polarization-oscillation-

induced radiation electric field) in the excitation of ferroelectric thin films by an ultrafast terahertz 

(THz) electric-field pulse. Analytical formulae are developed to predict how the frequencies and 

relaxation time of three-dimensional soft mode phonons (intrinsic polarization oscillation) are 

modulated by radiation electric field and epitaxial strain. Ultrafast THz-pulse-driven excitation of 

harmonic polarization oscillation in strained single-domain ferroelectric thin film is then simulated 

using a dynamical phase-field model that considers the coupled strain-polarization-photon 

dynamics. The frequencies and relaxation time extracted from such numerical simulations agree 

well with analytical predictions. In relatively thin films, it is predicted that the radiation electric 

field slightly reduces the frequencies but significantly shortens the relaxation time. These results 

demonstrate the necessity of considering polarization-photon coupling in understanding and 

predicting the response of ferroelectric materials to ultrafast pulses of THz and higher frequencies. 
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Introduction. Ultrafast light-matter interaction is a promising route to understanding and 

controlling quantum materials where the four fundamental degrees of freedoms (charge, spin, orbit, 

and lattice) are dynamically intertwined [1,2]. By tailoring the wavelength, duration, and 

amplitude of ultrafast light pulse, one can probe the coupling among different quasiparticles (e.g., 

phonons, magnons), switch the material to a degenerate ground-state or a hidden metastable state 

of matter, or induce phase transitions [3,4]. Ferroelectric materials have a spontaneous polarization 

that can be switched by its conjugate electric field or other non-conjugate stimuli. Ultrafast light 

control of ferroelectrics offers potential for developing photoferroic devices with order of 

magnitude higher operation speed than those controlled by voltage [5]. In archetypal ferroelectric 

system such as PbTiO3 and BaTiO3, the development of the spontaneous polarization P is 

attributed to the condensation of a particular soft mode phonon A1(TO) (see Fig. 1a) below the 

Curie temperature [6–8]. Depending on wavelength of the light pulse, ultrafast light control of 

polarization in ferroelectrics can occur through nonlinear coupling between the soft mode phonons 

and the near-infrared pluses via impulsive stimulated Raman Scattering [9,10], resonant coupling 

between the soft mode phonons and the terahertz (THz) pulse [11–19], indirect manipulation of 

soft mode phonons by mid-infrared pulses [20–25], and above-bandgap excitation [26–29]. 

Among these mechanisms, the use of THz electric-field pulse to drive soft mode phonon, 

whose resonant frequency is also in the THz range, is most straightforward [5]. Since the 

theoretical proposal for achieving picosecond (ps) polarization reversal by shaped THz electric-

field pulses [11], ultrafast THz-field induced ps polarization dynamics has been experimentally 

observed in various ferroelectric materials systems [12,14–17,19]. Moreover, a recent experiment 

shows that applying a THz electric-field pulse can transiently drive the quantum paraelectric 

SrTiO3 into a ferroelectric state [16]. Furthermore, molecular dynamics simulations predict that 

ultrafast THz electric-field excitation can induce hidden phase of polarization order in relaxor 

ferroelectric systems [18]. Despite these extensive works, the role of polarization-photon coupling, 

i.e., the emission of electromagnetic (EM) waves from the oscillating polarization and the 

backaction of the emitted EM waves on polarization dynamics, has not yet been addressed in 

existing atomistic [11,13,18] and mesoscale [19,30] simulations. 

In this Letter, we formulate the frequencies and relaxation time of the three-dimensional (3D) 

soft mode phonon, which refers to the intrinsic oscillation of all three components Px, Py, Pz of the 

spontaneous polarization P [25], in the harmonic regime. Our analytical formulations are 

developed partly based on the work by Morozovska and colleagues [31], but here we consider the 

influences of polarization-oscillation-induced radiation electric field and epitaxial strain in 

ferroelectric thin films. Using an in-house dynamical phase-field model that considers coupled 

dynamics of strain, polarization, and EM waves, we then numerically simulate the excitation of 

harmonic polarization oscillation in a single-domain (100)pc BaTiO3 thin film (pc: pseudocubic) 

by applying an ultrafast THz electric-field pulse of moderate amplitude. The values of frequencies 

and relaxation time extracted from numerical simulation results agree well with the analytical 

calculation. Our results demonstrate the necessity of considering radiation electric field in 

understanding and predicting ultrafast THz excitation of ferroelectrics. 

Analytical Model. Let us consider a (100)pc BaTiO3 film epitaxially grown on a (110)O PrScO3 

substrate (O: orthorhombic) as an example, as shown in Fig. 1a. In such a heterostructure, the 

combination of anisotropic lattice mismatch strain and interfacial symmetry breaking can stabilize 

an in-plane-polarized single ferroelectric domain in the BaTiO3 film, which has been demonstrated 

experimentally [32]. Figure 1b shows the profile of the total free energy density (f tot) of such 
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anisotropically strained (100)pc BaTiO3 thin film at thermodynamic equilibrium, where Py=0 and 

the anisotropy mismatch strain εxx
mis  = 0.5%, εyy

mis  = 0.01% and εxy
mis  = 0 [32]. As shown, the 

equilibrium polarizations are located at the two degenerate energy minima at P0, where P0=(Px
0, 

Py
0, Pz

0) = (0.294, 0, 0) C m-2. Pz is always 0 at equilibrium because of the depolarization field and 

because the anisotropic mismatch strain favors an in-plane polarization along the x-axis. An 

ultrafast external stimulus such as a THz pulse can perturb the polarization away from the P0. After 

then, the polarization will oscillate around the P0 at its intrinsic frequency until it returns to 

equilibrium via damping. The slope of the local free energy landscape represents the magnitude of 

the total effective electric field, Ei
eff = -

∂f
 tot

∂Pi
 (i = x, y, z), that drives the polarization oscillation. In 

the harmonic regime (dashed line), Ei
eff  is approximately proportional to the variation of 

polarization Pi, as will be discussed shortly. 

The frequency and relaxation time of the soft mode phonons in the harmonic regime can be 

analytically derived by linearizing the equation of anharmonic motion for the 

polarization [31,33,34], given as,  

μ
∂

2
Pi

∂t2
+γ

∂Pi

∂t
=Ei

eff (1) 

where Pi are the three polarization components; μ and γ are the mass and damping coefficient, 

respectively. For a single-domain strained ferroelectric thin film, Ei
eff=Ei

Landau +Ei
elas+Ei

ext +Ei
d . 

Among them, Ei
Landau=-

∂f
 Landau

∂Pi
 is the effective electric field from the Landau free energy density. 

Using an eighth-order Landau free energy density for BaTiO3 [35], Ei
Landau is evaluated as, 

Ei
Landau=-2α1Pi-4α11Pi

3-2α12Pi(Pj
2+Pk

2)-6α111Pi
5-4α112Pi

3(Pj
2+Pk

2)-2α112Pi(Pj
4+Pk

4)-2α123PiPj
2Pk

2 

-8α1111Pi
7-2α1112Pi[Pj

6+Pk
6+3Pi

4(Pj
2+Pk

2)]-4α1122Pi
3(Pj

4+Pk
4)-2α1123PiPj

2Pk
2(2Pi

2+Pj
2+Pk

2), (2) 

where i = x, y, z, and j ≠ i, k ≠ i, j; α are Landau–Devonshire coefficients among which α1=α0(T-

Tc) is a linear function of temperature, and Tc is the Curie temperature. These coefficients are also 

provided in ref. [35]. The calculations and simulations in this work are all performed at T=298 K. 

The cubic and higher-order terms of P in Eq. (2) allow for modeling anharmonic polarization 

oscillation [12,34]. The expression of the elastic energy density felas is given in ref. [36] and the 

analytical expression of the corresponding effective field Ei
elas is derived in ref. [37].  

The external electric field Eext=Eapp+EEM is the sum of the applied electric field Eapp and the 

radiation electric field EEM in the ferroelectric thin film. EEM describes the backaction of the 

emitted EM wave on polarization dynamics. For a film that has a uniform polarization and is 

infinitely large in the xy plane, EEM propagates along the film thickness direction in the form of a 

plane wave with Ez
EM=0. The analytical expressions of Ex

EM and Ey
EMcan be obtained by adapting 

the established procedures [38,39]. Specifically, our derivations [40] indicate that Ei
EM(t) ≈ -

1

2

d

0c

∂Pi

∂t
(t), i=x,y when the film thickness d is sufficiently small (c is the speed of light in vacuum), 

and this expression is equivalent to that used in ref. [12]. The depolarizing field Ed satisfies the 

Gauss’s law ∇∙D = ρf, where D=0bE
d+P is electric displacement field; 0 and b are the vacuum 

permittivity and background dielectric constant [41–43], respectively; ρf is the free charge density. 
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For a thin film with a spatially uniform P, an infinitely large xy plane, and ρf = 0, Ed can be solved 

analytically as (Ex
d, Ey

d, Ez
d)= (0, 0, -

Pz

0b
).  

With a knowledge of the analytical expressions of all the effective fields contributing to the 

Ei
eff, we now linearize Eq. (1) by assuming that Pi=Pi

0+∆Pi(t), where the ∆Pi(t)=∆Pi
0eiωite-λit takes 

the form of a damped harmonic oscillation; ωi and ∆Pi
0  are the angular frequency and peak 

amplitude of the oscillation, respectively; λi is an auxiliary damping coefficient and the bold ‘i’ 

refers to the imaginary unit. Based on these, Eq. (1) can be rewritten as, 

(μλi
2
-μωi

2-γλi)∆Pi(t)+i(γωi-2ωiλiμ)∆Pi(t)=Ei
eff(P0)+ΔEi

eff(t), (3) 

where Ei
eff(P0) refers to the total effective field at initial equilibrium state, and thus Ei

eff(P0)=0; 

ΔEi
eff(t)= ΔEi

d(t)+ΔEi
EM(t) +ΔEi

Landau(t)+ΔEi
elas(t) is the temporal variation of the Ei

eff. Based on the 

expression of Ed mentioned above, the variation of the depolarization field ΔEd(t)=(0, 0, -
∆Pz

 

0b
). 

Since there is no radiation electric field at the initial equilibrium state, ΔEi
EM(t)=Ei

EM(t). Plugging 

in the expression of ∆Pi(t) into the analytically derived Ei
EM(t) shown above, one has Ei

EM(t) ≈ -
1

2

d

0c
(iωi-λi)∆Pi(t)  (i = x, y). In the case of near-equilibrium (harmonic) excitation, one has 

ΔEi
Landau (t) ≈  Ai(P

0)∆Pi(t)=
∂Ei

Landau

∂Pi
(P0)∆Pi(t) and ΔEi

elas (t)≈Bi(P
0)∆Pi(t)=

∂Ei
elas

∂Pi
(P0)∆Pi(t) [44]. 

Taken together, Eq. (3) can be further written as, 

(μλi
2
-μωi

2-γλi)+i (γωi-2ωiλiμ+
1

2

d

0c
ωi) =Ai(P

0)+Bi(P
0)+

1

2

d

0c
λi, i=x,y, (4a) 

(μλi
2
-μωi

2-γλi)+i(γωi-2ωiλiμ)=Ai(P
0)+Bi(P

0)-
1

0b

, i=z. (4b) 

Since the terms on the right-hand side of the Eqs. (4a-b) are all real numbers, the imaginary parts 

of the terms on the left-hand side must be equal to 0, from which the λi can be derived as, 

λx=λy= (γ+
1

2

d

0c
) (2μ)⁄ ; λz = γ (2μ)⁄  (5) 

As indicated by Eq. (5), the nonzero radiation electric field Ex
EM and Ey

EM induce a thickness(d)-

dependent damping term for the oscillation of the in-plane polarization Px and Py. The oscillation 

of the out-of-plane polarization Pz, by comparison, is only subjected to the intrinsic damping 

because Ez
EM=0. Plugging in the formulas of λi back to the Eqs. (4a-b), after some rearrangement, 

the angular frequencies of oscillation can be obtained as 

ωi =√-
Ai+Bi

μ
-λi

2
, i=x,y; ωi =√-

Ai+Bi-(1 0b⁄ )

μ
-λi

2
, i=z. (6) 

Based on Eq. (6), we can calculate the intrinsic oscillation frequencies of polarization via 

fi=i/(2). The relaxation time i, which is the time for the peak amplitude of Pi(t) to drop from 

its maximum to 1/e of that value, is calculated as i=1/λi.  

Figure 2a and 2b show the intrinsic frequency fi and the relaxation time i of the 3D soft mode 

phonon as a function of the film thickness d of the in-plane-polarized single-domain (100)pc 
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BaTiO3 film, respectively. For simplicity, we assume the film is always coherently strained [45] 

and maintains a single-domain state. As shown in Fig. 2a, fx and fy (the oscillation frequencies of 

Px and Py) differ significantly from each other in the (100)pc BaTiO3 film due to the discrepancies 

in the slope of the local free energy landscape along Px and Py. Both the fx and fy decrease as the d 

increases due to the stronger radiation-field induced damping in thicker films. When d reaches a 

threshold value, fx (fy) reduces to zero, indicating that the polarization dynamics is critically 

damped. At even larger d, the polarization dynamics becomes overdamped. There is no 

polarization oscillation in the case of critically or overdamped dynamics. 

Figure 2a also shows that the influence of EEM on the soft mode phonon frequency is relatively 

weak in thin ferroelectric films. For example, in a 10-nm-thick (100)pc BaTiO3 film, the EEM 

reduces the fx from 5.590 THz to 5.589 THz, and the fy from 1.363 THz to 1.357 THz. However, 

the trend is reverse for the thickness dependence of the relaxation time. As shown in Fig. 2b, for 

the 10-nm-thick film, the relaxation time calculated in the presence of EEM is only 1.3 ps, which 

is less than 1/10th of the value (13.5 ps) calculated without EEM. 

Dynamical phase-field simulations. In order to demonstrate the analytically predicted effects 

of the EEM on both the frequency (Fig. 2a) and relaxation time (Fig. 2b) of the soft mode phonons, 

we performed dynamical phase-field simulations to model the excitation of harmonic polarization 

oscillation in anisotropically strained, single-domain (100)pc BaTiO3 film by a low-amplitude 

ultrafast THz electric-field pulse. Compared to existing dynamical phase-field models that only 

consider coupled polarization and strain dynamics [33,46], our model considers the coupled 

dynamics of strain, polarization, and EM waves by solving the nonlinear equations of motions for 

the polarization P (Eq. 1), the mechanical displacement u, and the radiation electric field EEM in a 

coupled fashion. Here, all different effective electric fields that contributes to the Ei
eff, including 

Ei
Landau, Ei

elas, Ei
d, Ei

grad
, and the Ei

EM, are evaluated numerically without making approximations, 

which is different from the analytical model described in the previous section. Specifically, the 

Ei
grad

 results from the gradient energy density f
grad

=
1

2
G11(∇P)2  and is calculated as -

δf
 grad

δPi
 = 

G11∇2Pi, where G11 is the isotropic gradient energy coefficient. Furthermore, the spatiotemporal 

distribution of the EEM and associated radiation magnetic field HEM are numerically obtained by 

solving the Maxwell’s equations, 

∂EEM

∂t
=

1

κ0κb

(∇×HEM-
∂P

∂t
); 

∂HEM

∂t
=-

1

μ
0

∇×EEM, (7) 

where the term 
∂P

∂t
 showing the time-varying polarization is the source of electric dipole radiation. 

The polarization and strain dynamics are coupled since the elastic effective electric field Eelas is a 

function of the polarization P, stress-free strain ε0, and total strain ε [37]. Here, the total strain 

ε=ε(P0)+Δε(t). The expression of the ε(P0), that is, the strain at the initial equilibrium state, is 

obtained by solving the mechanical equilibrium equation [47] and given in [37]. The Δε(t) is 

calculated as Δεij=
1

2
(

∂Δui

∂j
+

∂Δuj

∂i
) , where Δ u (t) is the temporal variation of the mechanical 

displacement u with i, j = x, y, z, and obtained by solving the elastodynamics equation for the entire 

film-on-substrate heterostructure,  

ρ
∂

2
Δu

∂t2
=∇∙[c(Δε-Δε

0
)] (8) 
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where ρ and c are phase-dependent mass density and elastic stiffness tensor, respectively; Δε
0
(t) = 

ε0(t)-ε0(P0) is the temporal variation of the stress-free strain. Free surface mechanical boundary 

condition σiz=0 (i = x, y, z) is applied on the top surface of the ferroelectric film during the 

dynamics. The entire heterostructure is discretized into one-dimensional (1D) computational cells 

along z axis with a cell size of 1 nm. The (110)O PrScO3 substrate and the free space above the 

ferroelectric film are discretized into 100 and 10 cells, respectively. When solving the Maxwell’s 

equations, the absorbing boundary condition, expressed as 
∂EEM

∂z
=-

1

c

∂EEM

∂t
 [48], is applied on both 

the bottom and top surfaces of the computational system to prevent the reflection of the emitted 

EM waves back to the system. Likewise, the absorbing boundary condition for the mechanical 

displacement u, 
∂ui

∂z
=-

1

v

∂ui

∂t
 (i=x,y,z) is applied at the bottom surface of the substrate to make the 

substrate a perfect sink for elastic waves, where v is the transverse sound velocity for ux and uy and 

the longitudinal sound velocity for uz. Central finite difference is used to calculate spatial 

derivatives in all dynamical equations (Eqs. 1, 7 and 8), which are solved in a coupled manner 

using the classical Runge-Kutta method for time marching with a time step of 10-18 s. Specifically, 

the Maxwell’s equations are solved using the finite-difference time-domain (FDTD) method. The 

validation of our in-house 1D FDTD solver is provided in our recent work [49]. Relevant materials 

parameters for the single-domain BaTiO3 film and PrScO3 substrate [50] are collected from 

refs. [19,31,35,51–54]. Moreover, our in-house numerical solvers for all equations are Graphics 

Processing Unit (GPU)-accelerated. 

The THz electric-field pulse Eapp(t) is applied along the y axis. The waveform of Eapp(t), as 

shown in Fig. 3a, takes the form Ey
app(t)=E0

app
exp [-

(t-t0)
2

w2
] cos[ωapp(t-t0)]  based on [18]. Here 

ωapp/(2π) =1.5 THz defines the peak frequency of the THz electric-field pulse. E0
app

 = 106 V m-1 

and t0 = 0.6 ps are the amplitude and temporal position of the peak electric field, respectively, while 

w = 0.2 ps is the width of the Gaussian function. At the initial equilibrium state, the polarization 

in the 10-nm-thick single-domain (100)pc BaTiO3 film is along the +x-axis. Once a nonzero Py is 

induced by Ey
app, a nonzero ΔPx(t)=[Px(t)-Px

0] will be developed due to a nonzero but much smaller 

effective electric field Ex
Landau (see Eq. 2). As a result, both the Ey

EM and Ex
EM are nonzero, but the 

amplitude of the Ey
EM is two orders of magnitude larger, as shown in Fig. 3a and 3b. One can also 

apply the THz electric-field pulse along the in-plane diagonal axis, in which case Px and Py can be 

directly excited by the nonzero Ex
app  and Ey

app , respectively. To excite harmonic polarization 

oscillation, the E0
app

 cannot be too large, and meanwhile, the frequency window of the applied 

electric-field pulse needs to contain the frequencies of the soft mode phonons. For example, under 

the application of a gigahertz (GHz) electric field pulse, ΔP would not oscillate after the Eapp(t) is 

turned off [55]. In addition, the radiation electric field is negligible compared to the Eapp(t) for 

GHz excitation due to the slower temporal variation of ΔP. 

Figure 3c shows the evolution of the ΔPy(t) in a 10-nm-thick (100)pc BaTiO3 film with and 

without considering its conjugate radiation electric field component Ey
EM. Note that ΔPy(t)=Py(t) 

since Py
0=0. As shown, the Py reaches its peak amplitude at ~1.1 ps and decreases monotonically 

due to the damping. According to the analytical prediction, the Ey
EM  reduces the intrinsic 

oscillation frequency of Py from 1.363 THz to 1.357 THz (Fig. 2a) and the relaxation time from 

13.5 ps to 1.3 ps (Fig. 2b). The reduced relaxation time can be clearly seen from Fig. 3c. Notably, 

the decrease in the peak values of ΔPy at each oscillation period can be well described by the 
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analytical expression |∆Py|(t)=|∆Py
0|e

-
(t-t0)

τ , where τ is the analytically calculated relaxation time 

(13.5 ps or 1.3 ps) and ∆Py
0=Py(t=t0) is the peak amplitude as indicated in Fig. 3c with t0 = 1.1 ps. 

The analytically calculated decreasing trajectories are shown as the dashed lines, which agree well 

with the simulation results. Figure 3d shows the frequency spectra of the simulated ΔPy(t) curves 

with and without Ey
EM (see red and black curves). Both curves show a single peak at the 1.36 THz, 

which is consistent with the analytical prediction. The predicted frequency shift from 1.363 THz 

to 1.357 THz is too small to resolve numerically. However, our simulations using thicker BaTiO3 

film confirm the analytically predicted frequency shift as well as the absence of polarization 

oscillation in overdamped systems [56]. The frequency spectrum of the Ey
EM(t) is also plotted in 

Fig. 3d, which displays a single peak at 1.36 THz, the same as that of ΔPy(t). Moreover, the 

oscillation frequency of Px extracted from the numerically simulated ΔPx(t) is 5.6 THz [57], which 

is also consistent with the analytical calculation (see Fig. 2a). It is noteworthy that both the Ex
EM 

and Ey
EM have a sufficiently large amplitude in the time-domain (Figs. 3a-b). Specifically, the peak 

amplitude of the Ey
EM is nearly 1/5th of the applied THz pulse Ey

app. Therefore, the predicted THz-

pulse-induced polarization oscillation can in principle be experimentally characterized by THz-

pump THz-probe spectroscopy, through which both the soft mode phonon frequencies and 

relaxation time can be experimentally determined. Furthermore, our simulations show that the 

radiation electric field can significantly modulate the frequency and the relaxation time of soft 

mode phonons in the anharmonic regime, which can be reached via intense THz excitation  [12,58]. 

In conclusion, our results show that an accurate modeling of ultrafast THz-field excitation of 

ferroelectrics requires considering the polarization-dynamics-induced radiation electric field. 

Using ultrafast THz-field-induced harmonic polarization oscillation in single-domain ferroelectric 

thin film as an example, we analytically and numerically demonstrate that the radiation electric 

field can reduce the frequency and particularly the relaxation time of soft mode phonons by 

increasing the damping. We have derived the analytical expressions on the soft mode phonon 

frequencies as a function of epitaxial strain and thin film thickness, which can be utilized to guide 

the thin-film synthesis and the THz pulse engineering for achieving resonant THz excitation. Our 

GPU-accelerated dynamical phase-field model, which considers fully coupled dynamics of strain, 

polarization, and EM waves, can be extended to model polarization dynamics in more complex 

ferroelectric materials under the excitation by other types of ultrafast light pulses. 
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Figure Captions 

 

Figure 1. (a) Schematics of the soft mode phonon A1(TO) in BaTiO3 (left), the excitation of the 

3D soft mode phonon in a BaTiO3(film)/PrScO3(substrate) heterostructure by an ultrafast THz 

electric-field pulse Eapp, and the radiation electric field EEM generated by the oscillating 

polarization P. The double-headed arrows indicate the polarization axis of the Eapp or EEM. (b) 

Profile of the relative total free energy density (ftot) of the anisotropically strained single-domain 

(100)pc BaTiO3 film as a function of the Px for Py=0, where the dashed line indicates a harmonic 

fitting. 

 

Figure 2. (a) Analytically calculated fx and fy (intrinsic oscillation frequency of Px and Py) as a 

function of the (100)pc BaTiO3 film thickness d, with (solid lines) and without (dashed lines) 

considering the EEM. The enlarged fy-d curves from d = 5 nm to 15 nm are shown in the inset. (b) 

Analytically calculated relaxation time τ of Px and Py oscillation as a function of d, with (solid line) 

and without (dashed line) considering the EEM . The enlarged τ-d curves from d=5 nm to 15 nm 

are shown in the inset. 

 

Figure 3. Temporal profiles of the (a) Ey
EM(t) and (b) Ex

EM(t) at 2 nm above the 10-nm-thick (100)pc 

BaTiO3 film upon the excitation by a THz electric-field pulse Eapp(t), which is applied along the 

y-axis and shown by the right axis. The results are from dynamical phase-field simulations. 

Oscillation trajectories of (c) the ΔPy(t) with (red solid line) and without (black solid line) 

considering the conjugate Ey
EM , obtained from dynamical phase-field (PF) simulations. The 

analytically calculated attenuation of the peak values of ΔPy are plotted using the dashed lines. (d) 

Frequency spectra of the Ey
EM(t) and the two solid lines of ΔPy(t) in (c). 
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