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We develop a new, efficient, and general method to determine the Hofstadter spectrum of isolated
narrow bands. The method works for topological as well as for trivial narrow bands by projecting
the zero B-field hybrid Wannier states – which are localized in one direction and Bloch extended in
another direction – onto a representation of the magnetic translation group in the Landau gauge.
We then apply this method to find, for the first time, the Hofstadter spectrum for the exact single
particle charged excitations in the strong coupling limit of the magic angle twisted bilayer graphene
at the charge neutrality point and at |ν| = 2 down to low magnetic fields when the flux through the
moiré unit cell is only ∼ 1/25 of the electronic flux quantum i.e. ∼ 1T at the first magic angle. The
resulting spectra provide a means to investigate Landau quantization of the quasiparticles even if
their dispersion is interaction induced.

The rise of moiré materials [1–16] has brought into
focus the challenge to understand the physics of corre-
lated narrow bands subject to quantizing magnetic field
B [17–24]. Such narrow bands can be topologically non-
trivial even at B = 0, as is the case for the magic angle
twisted bilayer graphene (MATBG)[25–27]. Moreover,
for a moiré period ∼ 13nm, as in MATBG, the mag-
netic flux through the unit cell, φ, can readily become
comparable or even exceed the flux quantum φ0 = hc/e
using existing high field magnets, so that the interplay of
strong correlation and Hofstadter physics can be realized
in a laboratory [15, 28–30].

The traditional way to determine the non-interacting
Hofstadter spectrum in the MATBG is to minimally cou-
ple the magnetic vector potential A to the continuum
Bistritzer-MacDonald (BM) Hamiltonian [31] and then
to expand it in the Landau level (LL) basis [17–20]. Al-
though this provides a reliable method, it requires a large
upper cutoff on the LL index [19] in order to converge,
particularly at low B, or close to simple rational val-
ues of φ/φ0 = p/q where the LL basis method becomes
prohibitively computationally expensive. This is because
many Landau quantized remote bands are kept together
with the narrow bands of interest. Equivalently, at low
B, the real space shape of the narrow band wavefunc-
tions — with peaks in the local density of states at the
moiré triangular lattice sites — is mainly determined
by the interlayer tunneling (w0,1) induced periodic po-
tential and a superposition of a large number of LLs
is needed in order to recover such real space structure.
Open-momentum space method introduced in Ref. [22]
takes advantage of the sparse BM Hamiltonian matrix at
B 6= 0, but faces difficulties in uniquely identifying and
removing the spurious momentum edge states. More-
over, although Coulomb interaction does not have a big
effect on the remote bands, it dominates the dynamics
of partially filled narrow bands, which remain separated
from the remote bands by a band gap even when B 6= 0
(see Fig. 2(a)). If one is then interested in interaction
induced phenomena within the resulting narrow bands a

more efficient method is desirable.

The new method introduced here avoids the mentioned
difficulties. We illustrate it at low B, but it is readily gen-
eralizable to vicinity of simple fractions p/q. Thus, we
first solve the B = 0 problem using standard (efficient)
methods and find the hybrid Wannier states (hWSs) for
the B = 0 narrow bands [27, 32–34]. Such states are ex-
ponentially localized in one direction and Bloch extended
in another, say y-direction [33] (see Fig. 1). We stress
that even if the band is topologically non-trivial, there is
no obstruction to 1D exponential localization. The key
insight is that at B 6= 0, for the hWS centered at and near
the origin, the Landau gauge vector potential A = Bxŷ
can be treated perturbatively, because the region in real
space where A is large gets suppressed by the exponen-
tial localization of the hWS (see Fig. 1). Moreover, the
discrete translation symmetry along the y-direction used
in constructing the hWSs is preserved by such A. Next,
we generate the rest of the basis by projecting the hWSs
centered at and near the origin onto a representation of
the magnetic translation group (MTG). This gives two
quantum numbers, k1 ∈ [0, 1) and k2 ∈ [0, 1/q), asso-
ciated with magnetic translations by two non-collinear
vectors L1 and qL2 (Fig. 1). States with different k1 and
k2 are then guaranteed to be orthogonal. Because in the
original (B = 0) Brillouin zone k2 belonged to a larger
range [0, 1), we generate q states for each starting hWS at
the same k1 ∈ [0, 1) and k2 ∈ [0, 1/q) when B 6= 0. Thus,
for each B = 0 narrow band (of which there are two per
valley and spin in MATBG) and for each hWS center
described by a discrete index n0, we have q states. The
resulting states at the same k1 ∈ [0, 1) and k2 ∈ [0, 1/q)
then typically are not orthogonal, but by adjusting the
range of n0, the set of states can be readily made over-
complete and span the B 6= 0 narrow band Hilbert space.
A simple procedure involving diagonalization of the over-
lap matrix and keeping the 2q largest overlap eigenvalues
(per spin and valley) is then applied to obtain 2q orthog-
onal states within the MATBG narrow bands at B 6= 0.
For MATBG and at low B we find that the largest 2q
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FIG. 1. Left: illustrative real space probability density of a
hybrid Wannier state |wc(n0, k2g2)〉, with Chern index c =
+1, n0 = 0 and k2 = 0, and the Landau gauge magnetic
vector potential A = Bxŷ. Moiré unit cell primitive vectors
are L1,2. Right: moiré Brillouin zone and reciprocal lattice
vectors g1,2. Kt,b denote the Dirac point from the top and
bottom layers of the twisted bilayer graphene.

overlap eigenvalues are clearly separated by a gap from
the remaining small eigenvalues, and that the 2q orthog-
onal states have an almost perfect support by the B 6= 0
narrow bands only (see Fig. 2b and 2c).

If we use this method on a topologically trivial narrow
band, then a single value of n0 = 0 is sufficient and none
of the overlap eigenvalues become small even when φ =
φ0. On the other hand, for the topologically non-trivial
narrow bands of MATBG, we need to keep at least two
starting states with n0 = 0 and n0 = ±1 (for either sign)
in order to obtain complete orthogonal basis spanning
the B 6= 0 narrow bands. This is a direct consequence
of the non-trivial topology of the B = 0 narrow band
Hilbert space, spanned by a band with Chern number
+1 and a band with Chern number −1, one of which is
then deficient by p anomalous sub-bands while the other
has an excess of p sub-bands when B 6= 0 [35] [36–38].
We confirm this by studying the sublattice polarization
of the resulting states in Fig. 3 and analytical arguments
in the chiral limit presented in SM .

Our new basis can now be readily applied to find-
ing the B 6= 0 single electron or single hole excitation
spectra in the strong coupling problem by using the
method introduced in Refs. [39, 40]. Note that even at
B 6= 0, the 2-fold rotation about the out-of-plane axis
C2, the particle-hole P [19, 27] and the valley U(1) con-
servation symmetries of the BM Hamiltonian are pre-
served at any w0/w1; the time reversal symmetry T is
of course broken by B. Therefore, C2P guarantees that
if ΨK,m,k1,k2(r) is an eigenstate of ĤK
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defined via Eq. (1) below with an eigenvalue EK,m,k1,k2 ,
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FIG. 2. (a) Hofstadter spectrum for the non-interacting

BM Hamiltonian ĤK
BM (px, py − eB

c
x) calculated using Lan-

dau level basis at magic angle w1/vF kθ = 0.586 [44] and
w0/w1 = 0.7. The horizontal axes in (b) and (c) are the over-
laps between the B = 0 narrow bands hybrid Wannier states
projected onto the B 6= 0 representation of the MTG |Va〉,
and the exact magnetic subband states at various energies ob-
tained using the LL basis

∑
a |〈ΨK,m(k1, k2)|VK,a(k1, k2)〉|2;

the vertical axes are the sub-band index m. The states in
between the dashed lines belong to the B 6= 0 narrow bands
shown as blue in (a), demonstrating that at low B, |Va〉 have
support almost exclusively within the B 6= 0 narrow band
Hilbert space. w0/w1 = 0.7 in (b) and (c) is at the chiral
limit w0/w1 = 0.

lattice and layer spaces, respectively. Eliminating the
remote magnetic sub-bands using the RG procedure in-
troduced in Ref. [39] therefore still results in the resid-
ual Coulomb interaction projected onto the B 6= 0 nar-
row band Hilbert space to be of the form expressed in
Eq. (7). Moreover, ignoring the Zeeman effect, C2P guar-
antees that the spin valley U(4) symmetry [24, 41–43] is
still present even at B 6= 0. We can therefore follow
the double commutator method outlined in Refs. [39, 40]
in order to find the spectrum of the single particle or
single hole excitations at B 6= 0. The solutions of
the Eq. (9) for two-gate screened Coulomb interaction,

Vq = 2πe2

ε|q| tanh
(
|q|ξ
2

)
, with the gate separation ξ = Lm

are shown in the Fig. 3 for the charge neutral point (CNP,
i.e. ν = 0), together with their B = 0 density of states.
The results at |ν| = 2 for the heavy and light mass sides
are shown in the Fig.4. Below we provide details of the
calculations which lead to the stated results.

To obtain the narrow band Hilbert space, we start by
considering the BM model at B 6= 0 in Landau gauge at
B 6= 0 in Landau gauge ĤK

BM

(
px, py − eB

c x
)

where at
the valley K

ĤK
BM (px, py) =

(
vFσ · p T (r)eiq1·r

e−iq1·rT †(r) vFσ · (p + ~q1)

)
.(1)
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The Hamiltonian in valley K′ can be obtained by first ap-
plying time reversal to ĤK

BM (px, py) followed by the mini-
mal substitution py → py− eBc x. The Pauli matrices σ act
in the sublattice space [45]. The interlayer hopping func-

tions are T (r) =
∑3
j=1 Tje

−iqj ·r where q1 = kθ(0,−1),

q2,3 = kθ

(
±
√
3
2 ,

1
2

)
, kθ = 8π

3a0
sin θ

2 = 4π/(3Lm), a0 ≈
0.246nm, Lm is the period of the moiré lattice, and
Tj+1 = w012 + w1

(
cos
(
2π
3 j
)
σx + sin

(
2π
3 j
)
σy
)
, where

1n is an n × n unit matrix. At B = 0, ĤK
BM is invari-

ant under discrete translations by any integer multiple

of L1 = Lm

(√
3
2 ,

1
2

)
and L2 = Lm (0, 1). At B 6= 0

and in the chosen gauge ĤK
BM is still invariant under the

translation by L2, but a translation by L1 needs to be
accompanied by a gauge transformation,

ψ(r)→ t̂L1ψ(r) = ei
eB
~c L1xyψ(r− L1). (2)

Thus, if ψ(r) is an eigenstate then so is ei
eB
~c L1xyψ(r−L1).

Translations by L2 are generated by t̂L2
ψ(r) = ψ(r−L2).

Then t̂L2
t̂L1

= e−2πiφ/φ0 t̂L1
t̂L2

, where φ0 = hc
e and φ =

BL1xLm. If φ/φ0 = p/q, with p and q relatively prime
integers, then

[
t̂qL2

, t̂L1

]
= 0.

The B = 0 hWSs, |w±(n, kg2)〉, can be chosen
to be eigenstates of the periodic position operator

Ô = P̂ e−i
1

N1
g1·rP̂ , projected using P̂ onto the B =

0 narrow band Hilbert space studied (for details see
Ref.[33]); here N1 is a large integer. The eigenvalues

e−2πi
1

N1
(n+〈x±〉k/|L1|) give the Wilson loops [27, 32–34]

for the Chern +1 and Chern −1 hWSs. These states are
localized along L1 and Bloch extended along L2, as illus-
trated in the Fig. 1 As shown in Ref. [33], they satisfy,

t̂L1 |w±(n, k2g2)〉 = ei
eB
~c L1xy|w±(n+ 1, k2g2)〉 (3)

t̂L2 |w±(n, k2g2)〉 = e−2πik2 |w±(n, k2g2)〉. (4)

We construct our basis for the narrow band at B 6= 0
by projecting |w±(n0, k2g2)〉 onto representation of the
MTG. We include in our set a range of n0’s near 0 as

|W±(k1, k2;n0)〉 =
1√
N

∞∑
s=−∞

e2πisk1 t̂sL1
|w±(n0, k2g2)〉,

(5)
with normalization factor N and for k1 ∈ [0, 1) and tem-
porarily letting k2 ∈ [0, 1). The results in Figs.2b, 2c
and 3 include n0 = 0 and 1. Note that |W±(k1, k2;n0)〉
are simultaneous eigenstates of t̂L1

and t̂qL2
with eigen-

values e−2πik1 and e−2πiqk2 , respectively. Thus the qL2

translations break up the k2 domain into q pieces of equal
width 1/q. Therefore, we let |W± (k1, k2 + l/q;n0)〉, per-
manently fix k2 ∈ [0, 1/q), and let l = 0, 1, . . . q − 1.
For different values of k1 and k2 in their respective
domains |W± (k1, k2 + l/q;n0)〉’s are orthogonal because
they have different eigenvalues under t̂L1

and t̂qL2
. For

the same k1 and k2, but different l (and different n0) the

(a)    ￼w0/w1 = 0 (b)    ￼w0/w1 = 0.7
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FIG. 3. Landau level spectrum at magic angle in the strong
coupling limit for (a) w0/w1 = 0 and (b) w0/w1 = 0.7. The
gray lines denote the respective density of states N (E) at
B = 0, and the color of each magnetic sub-band denotes the
average value of its sublattice polarization. Blue (red) denotes
purely A (B) sublattice polarization.

states |W± (k1, k2 + l/q;n0)〉’s are in general not orthog-
onal. To orthogonalize them we diagonalize the overlap
matrix Mab = 〈Wa|Wb〉 =

(
U†DU

)
ab

where D is diag-
onal. In the above we combined l, the Chern number
index c = ±, and n0 into a single index a for each k1 and
k2, whose dependence we temporarily suppress. Then we
let

|Va〉 =
∑
b

|Wb〉U†ba
1√
Da

(6)

where b runs over all the indices but a runs only over
the 2q largest eigenvalues Da. As demonstrated in
Fig. 2b and Fig. 2c, at low B, the 2q orthogonal states
|Va(k1, k2)〉 at each k1 and k2 now form the basis span-
ning almost exclusively only the B 6= 0 narrow bands.
At larger B, we find a spillover into the remote bands;
for the results presented the spillover is negligible.

Having constructed the B 6= 0 narrow band Hilbert
space from the non-interacting BM model, we proceed to
study the spectrum of charged excitations in the strong
coupling limit at integer fillings of ν = 0 and |ν| = 2,
where the ground states at B = 0 have been shown to be
correlated insulating states belonging to the U(4) mani-
fold [46], and the spectrum of charged excitations is en-
tirely due to the Coulomb interaction projected onto the
narrow band Hilbert space. In this case the Hamilto-
nian consists of only the interaction V (r − r′) projected
onto the B 6= 0 narrow band basis. As described earlier,
the C2P symmetry guarantees that the dominant term
takes the form

Ĥint =
1

2

ˆ
dr

ˆ
dr′V (r− r′)δρ(r)δρ(r′), (7)

where δρ(r) = ρ(r) − ρ̄(r). Restoring the indices on our
B 6= 0 narrow band basis functions 〈r|Va〉, the projected
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FIG. 4. Landau level spectrum of charge ±1 excitations at
|ν| = 2 at magic angle in the strong coupling limit. Heavy
hole (a,c) and light electron (b,d) excitations for w0/w1 = 0
and w0/w1 = 0.7 respectively [40, 46]. The color scale for
sublattice polarization is the same as in Fig. 3.

density operator is ρ(r) =∑
k1,k2,a

∑
k′1,k

′
2,a
′

V †K,a(k1, k2; r)VK,a′(k
′
1, k
′
2; r)d†a,k1,k2da′,k′1,k′2 .

(8)
We arranged the fermion creation operators

with 2q discrete quantum numbers a and momen-
tum k1,k2 into 4-component “spinor”, d†a,k1,k2 =(
d†↑,K;a,k1,k2

, d†↓,K;a,k1,k2
, d†↑,K′;C2P [a,k1,k2]

, d†↓,K′;C2P [a,k1,k2]

)
.

The U(4) manifold can be generated from a valley po-
larized state, which is an eigenstate of ρ(r) with the
eigenvalue equal to ρ̄(r) at CNP, where it takes the form,

say, |Φν=0〉 =
∏
a,k1,k2,σ=↑,↓ d

†
σ,K;a,k1,k2

|0〉. Excitations
can be created using an operator X (see Ref. [39]) and
their strong coupling eigenenergies can be read off from
the equation

EX|Φν〉 =
1

2

ˆ
d2rd2r′V (r− r′) [ρ(r), [ρ(r′), X]] |Φν〉

+

ˆ
d2rd2r′V (r− r′) [ρ(r), X] δρ̄(r′)|Φν〉, (9)

where we extended the result to include ν = ±2 fillings
[40, 46]; the valley polarized states |Φν〉 are eigenstates
of δρ(r) with an eigenvalue δρ̄(r) [47]. The eigenener-
gies of the strong coupling single particle or single hole
excitations can now be determined from diagonalizing a

2q × 2q matrix for each k1 and k2. Their degeneracy is
determined by considering the action of X on |Φν〉.

The resulting spectra at CNP are shown in the right
panel of Fig. 3a for the chiral limit w0/w1 = 0 and the
right panel of Fig. 3b for w0/w1 = 0.7; the spectra at
|ν| = 2 are shown in Fig. 4. We clearly see that despite
being at strong coupling the excitations’ spectra are Lan-
dau quantized in B 6= 0. In the chiral limit (Fig. 3a), the
degeneracy of the low lying excitations limits to 4 at low
B due to spin and sublattice degrees of freedom, the lat-
ter taking on values ±1 as marked by the blue and red
colors. Because they originate from B = 0 Chern bands
with opposite total Chern numbers, the B sublattice sec-
tor has q− 1 sub-bands while the A sublattice sector has
q+1 sub-bands for the 1/q sequence shown. Note that at
small B there is a small splitting between the low lying
opposite sublattice polarized strong coupling sub-bands
due to broken C2T symmetry and that this splitting in-
creases with increasing B. A similar conclusion has been
reached in a recent theoretical work [24], which reported
energy splitting of the charge-±1 excitations at full flux
φ/φ0 = 1. Also note the opposite evolution of the sub-
bands emanating from the B = 0 van Hove singularities.
Many of the features are reproduced at w0/w1 = 0.7, ex-
cept the smaller mean value of the sublattice polarization
(as marked by the color scheme), and larger splitting be-
tween the low lying magnetic sub-bands. Interestingly,
the sizable splitting between the light fermion LLs seen
for w0/w1 = 0.7 in Figs. 3b and 4d even at small φ/φ0
would give rise to prominent LL filling factors |νLL| = 0, 2
at CNP, and νLL = 0, 1 on the light mass side of ν = 2,
as observed in Ref. [15] without invoking moiré transla-
tional symmetry breaking.

SQUID-on-tip measurements found large orbital mag-
netic moments near ν = 3 [48] and ν = 1 [49]. We calcu-
late the total energy cost per moiré unit cell to fully fill
the Chern +1 and Chern −1 magnetic subbands in the
chiral limit along the φ/φ0 = 1/q sequence, defined as

E± = 1
q

1
N

∑
k

∑q±1
i=1 εi,k. Here k ∈ [0, 1) × [0, 1/q), and

N is the total number of k points in the discrete sum.
εi,k are the eigenenergies shown in Figs. (3) and (4). We
find that at ν = 0 and |ν| = 2, E± ≈ E0(ν) ± gµBB
(see SM Sec.IV), where µB = e~

2mc is the Bohr magne-

ton, and g ≈
√
3
π
mL2

m

~2
e2

εLm
. Taking e2

εLm
= 10meV gives

g ≈ 13.4 at the magic angle, which is within the range of
experimental values [48, 49].

STM data [50] at B 6= 0 show only results from re-
gions with the values of heterostrain 0.1% − 0.4%. It is
known that even such small values of strain dramatically
increase the non-interacting narrow band width [51, 52],
making the kinetic energy comparable or larger than the
Coulomb interaction scale e2/εLm, and stabilizing ener-
getically proximate nematic state [33, 52, 53]. Therefore,
the available STM data [50] at B 6= 0 may not be in the
limit dominated by the Coulomb interaction complicat-
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ing the comparison with the our result. Measurements
on magic angle devices at B 6= 0 with negligible strain
would be highly desirable.

Our method is general, and can be used to find the Hof-
stadter spectrum at larger φ/φ0 by starting with simple
fractions 1/q̄, where q̄ = 1, 2 or 3, where the LL based
calculation is manageable, building the hWSs for the 2q̄
Hofstadter bands, and then projecting onto the repre-
sentation of the MTG for φ/φ0 away from 1/q̄ (See SM
Sec.III.D for a brief discussion). Such generalizations, as
well as strain effects will be presented in future work.
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