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We present a theoretical model of composite excitonic states in doped semiconductors. Many-
body interactions between a photoexcited electron-hole pair and the electron gas are integrated
into a computationally tractable few-body problem, solved by the variational method. We focus on
electron-doped ML-MoSez and ML-WSes due to the contrasting character of their conduction bands.
In both cases, the core of the composite is a tightly-bound trion (two electrons and valence-band
hole), surrounded by a region depleted of electrons. The composite in ML-WSez further includes
a satellite electron with different quantum numbers. The theory is general and can be applied to
semiconductors with various energy-band properties, allowing one to calculate their excitonic states

and to quantify the interaction with the Fermi sea.

Optical transitions in low-temperature doped semi-
conductors allow us to study many-body phenomena
through the interaction between photoexcited electron-
hole pairs and the Fermi sea [1-6]. For half a century,
various theoretical models have been proposed to under-
stand various observations. First studied during the late
1960s, Mahan predicted singularity in the optical con-
ductivity due to interaction of Fermi-surface electrons
with an infinite-mass valence-band (VB) hole [7, 8]. Back
then, this problem had direct connection with its contem-
porary z-ray edge problem due to excitation of deep core
electrons in metals [9-12]. Two decades later, the prob-
lem was extended to two- and one-dimensional electron
gases in semiconductor systems [13-18], along with the
idea of shakeup processes [19-22].

Common to these early studies was the assumption of a
relatively large Fermi energy, relevant in semiconductors
when Er > ep, where e is gained energy from binding
an exciton with free electron to form a trion. The de-
velopment of semiconductor nanostructures in the 1980s
and 1990s allowed researchers to study the physics of tri-
ons in the regime Fr < er [23-25]. It was then suggested
that the bare trion, a three-body complex, becomes cor-
related to the electron gas with the buildup of the Fermi
sea [26-29]. The result is a four-body composite, termed
a Suris tetron, in which the trion is bound to a Fermi
hole in the conduction band (CB hole) [27]. Namely,
the trion and the lack of Fermi-sea electrons in its vicin-
ity move together. Following the discovery of monolayer
transition-metal dichalcogenides (ML-TMDs) in the pre-
vious decade [30-36], the interest in this topic has been
revived [37—44]. Borrowing from atomic systems [45, 46],
an alternative perspective to the observed behavior in
ML semiconductors has been suggested. Rather than
trions, excitons are viewed as mobile impurities in the
electron gas, and the consequences of their interaction
with the Fermi sea are repulsive and attractive Fermi
polarons [47-50]. The latter is the equivalent of a trion.

This Letter describes a computational scheme through
which many-body correlated excitonic states are con-

verted to tractable few-body problems, solved by the
variational method. The results shed light on optical
measurements in ML semiconductors, providing support
for the existence of excitonic states with a trion at their
core surrounded by CB holes and satellite electrons if the
electronic band structure supports it. Given the discrep-
ancy with the Fermi-polaron picture, we find it impor-
tant to emphasize from the outset why it is a trion rather
than exciton at the core of these states. While the exci-
ton binding energy is an order of magnitude larger than
that of the trion, ex > er, their spatial extents do not
differ appreciably because the hole is equally and strongly
bound to either of the two electrons [51-56]. The trion
is glued by short-range forces between its three particles,
where the total gained energy is e x +e7. The long-range
dipolar force between an exciton and electron plays a sec-
ondary role. As such, and albeit ex > e, it is mislead-
ing to think of a trion as a tightly-bound exciton that is
loosely held together with a satellite electron. The three
particles of the trion remain strongly bound as long as
the average distance between electrons in the Fermi sea
exceeds the radius of the trion.

To make the discussion intelligible, we will focus on op-
tical transitions in ML-MoSe; and ML-WSes on accounts
of their archetypal CB structures [57, 58]. Figure 1(a)
shows the photoexcitation process in electron-doped ML-
MoSes, where the core trion is accompanied by a CB hole.
The two opposite-spin electrons exhaust the wavevector
space above the Fermi surface, k > kg, allowing them
to orbit and bind the VB hole. On the other hand, the
CB hole exhausts the k-space below the Fermi surface,
k < kp, and its spatial extent is commensurate with
1/kp. Hereafter, the combined core trion and CB hole is
referred to as a correlated trion (or tetron). Its photoex-
citation is accompanied by formation of exchange-hole
around the photoexcited electron, caused by exchange
interaction between the photoexcited electron and elec-
trons in —K (band-gap renormalization). The electron
from the time-reversed valley at K is pulled out of the
Fermi sea, resulting in a CB hole. This behavior is quali-



FIG. 1. Composite excitonic states in electron-doped ML-
MoSe2 and ML-WSe; following circularly-polarized photoex-
citation in the —K valley. The left diagrams in (a) and (b)
show the corresponding k-space configurations. The right dia-
grams correspond to real-space configurations, showing a core
trion surrounded by CB hole(s). The composite in ML-WSez
is further accompanied by a satellite electron. Each electron
in these composites comes with distinct spin and valley quan-
tum numbers.

tatively similar to the one found in GaAs-based quantum
wells in the sense that the spin and valley quantum num-
bers of the photoexcited electron are similar to those of
electrons in the Fermi sea.

Electron-doped ML-WSe; is different. As shown in
Fig. 1(b), the spin-valley quantum numbers of the pho-
toexcited electron are distinct, allowing for the genera-
tion of a six-particle composite. The trion at its core
comprises the VB hole and pulled-out electrons from the
Fermi seas of the time-reversed valleys. The VB hole
prefers binding tightly to these two electrons on accounts
of their heavier mass compared with that of the optically-
active electron in the top valley [56, 59]. The core trion
is accompanied by two CB holes and the ‘satellite’ pho-
toexcited electron. The latter captures the electron-
depleted region surrounding the core trion. When the
electron density increases, the radius of the depleted re-
gion shrinks (o< 1/kp), resulting in tighter binding of the
top-valley electron to the rest of the complex. Hereafter,
the six-particle composite is referred to as hexciton.

Before embarking on the theory, we mention that this
Letter is part of a tetrad [60-62]. The first study that ac-
companies this Letter is analysis of magneto-reflectance
data in ML-WSey [60]. We show that trions evolve to
hexcitons and then to 8-body composites (oxcitons) when
Er crosses to the top valley of the CB. In addition, we
analyze photoluminescence data and identify central and
secondary optical transitions of hexcitons. The evidence
we provide weakens our previous argument that exciton
interaction with shortwave plasmons stands behind the
observed optical transitions in electron rich ML-WSes
[37, 38, 57, 58]. The second study that accompanies
this Letter focuses on computational details of the theory
[61], meant to help interested readers utilize the compu-
tational model and revisit similar physics in both nascent
and good-old semiconductors. The third study is a com-
prehensive analysis of correlated trions and hexcitons in
ML-TMDs, where we further elaborate on the screened
interaction with the electron gas [62]. This Letter is the

center piece of the theory, which we present next.

To account for the filling factor of Fermi-sea electrons,
we use second quantization and write the Hamiltonian in
momentum space (A= 1)
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cLQ (ck, ) is the creation (annihilation) operator of an

electron with momentum k, and the index a encom-
passes the band index, spin, and valley quantum num-
bers. V4 5(q) is the Coulomb potential. Excitonic states
are found from solutions of

HC = EOC'. (2)

H;j = (¢i|K + V|¢;) and O;; = (¢i|¢;) are energy and
overlap matrix elements, where ¢; and ¢; are basis states
and C' is a coefficients vector. Excluding the energy
pocket of the photoexcited electron, CB electrons are as-
sumed to be hosted in additional N energy pockets across
the Brillouin zone, each with distinct spin-valley config-
uration. The resulting basis states of the composite read

|6i) Zoz

|do) is the ground state of the system (filled electronic
states up to the Fermi energy, Fr), the photoexcited VB
hole comes from the first creation operator (cy p,), and
X = {ko,ki1,p1,k2,p2, ..., kn,pn} where the wavevec-
tor index embodies the unique valley-spin configuration
of an electron in the complex. The pairs k; and p; de-
note a pulled-out electron and its CB hole. kg is the
wavevector of the photoexcited electron. In addition,
po = Q — ko — > ,(ke — pr) where Q is the transla-
tion wavevector of the composite (constant of motion).
The overlap matrix element is then

Oi; = ($il ;) Z¢ X)F

where ¢;(;y(X) are basis functions and the filling factor,

F(X) = fopo(l = fio) L1 (1 = fico) o, » (5)

is denoted in terms of Fermi distributions of electrons in
the filled VB (f, p, = 1) and CB energy pockets.

As is often the case, the computation becomes in-
tractable already for small values of N. To circumvent
this impasse, we first set the filling factor to F'(X) = 1,
and later we introduce the needed corrections to account
for the k-space restrictions imposed by the Fermi distri-
butions. The motivation for this approach is that the
multivariable integration over X can be carried analyt-
ically. We demonstrate the procedure by using Gaus-
sian basis functions, ¢;(X) = exp(—3X"M;X), where

Ckocv,po Cllcm CLN Cpn|do) - (3)
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M; is symmetric, real and positive definite matrix of size
(2N + 1) x (2N 4+ 1). Setting F(X) = 1, the overlap
matrix elements become

ANV
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where A is the area of the 2D system, M = (M;+M;)/2,
and |M| is its determinant. Focusing on the limit that
@ = 0, in which the complex resides in the light cone, the
kinetic-energy matrix element due to relative motions of
particles in the complex is
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wo = Wo,0, we = Wi, and w; = Wy 7 are diagonal ele-
ments of W = M~!. The kinetic energy of the photoex-
cited electron is linked to wq, and that of the VB hole to
the sum of matrix elements in W (S,,). Their respective
masses are m, and m,. Similarly, the kinetic energy of
the /-th CB electron-hole pair is linked to w; —wg, repre-
senting the electron energy above the Fermi level minus
that of the missing electron below the Fermi level.

The potential-energy matrix elements between states @
and j are calculated from
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The first term is the interaction between two quasiparti-
cles {\,n} and the second one is the interaction between
quasiparticle A and the VB hole. The former reads
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%' = Dxx + Dyy — Dy — Dy with D = M; —
AMT M~' M; and M = (M; + M;)/2. The equation
for Vé‘ is the same but with %)‘j = D). The potential
Vin(q) is bare or screened, depending on the identity of
the involved particles A and 7. The interaction between
the three particles of the core trion are described by the
bare (unscreened) Coulomb interaction because Fermi-
sea electrons cannot screen their fast relative motion as
long as arkr < 1, where ar is the trion radius. The

~

resulting matrix element is
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where ey, is the charge of quasiparticle A (1), rq is the
polarizability of the 2D semiconductor, ¢, is the dielec-
tric constant of the barriers around the semiconductor,
and © = *yf‘j" /2r¢. Erfi(x) and Ei(z) are imaginary error
function and exponential integral functions, respectively.

Other interactions, such as those between the core-
trion particles and CB holes (or satellite electron) are

weakly screened due to suppressed density fluctuations
in the charge-depleted region around the core trion [62].
Elaborate analysis is provided in Ref. [61], including an-
alytical expressions for matrix elements of the screened
potential, of the exchange interaction between an elec-
tron and its CB hole, and of the band-gap renormaliza-
tion (BGR) of the photoexcited electron.

Finally, the simplification made by setting F'(X) = 1
is counteracted by introducing the potentials

Ue(pe) = < e — ;Z@) O(kr — pe) »
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for the /** electron and CB hole, respectively, where ©(q)
is Heaviside step function. In addition to ‘fixing’ the ki-
netic energies, the energy constants, V. and Vz, are cho-
sen large enough, so that the energy minimization process
avoids solutions in which the £*" electron penetrates the
Fermi sea and its CB hole floats above the sea [63]. The
correction matrix elements read
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where 3, = k‘%_[/we, Yo = k%,z/w@ ge=1—eP(1+B)
and g7 = e (1 + ;). kpy is the Fermi wavenumber at
the /' energy pocket.

The advantage of this computational method is that
we work with small matrices instead of unwieldy multi-
variable integrals over the components of X. One can
then find the wavefunction of the composite,

U(X) =Y Ciexp(-3X"M;X), (13)

where the coefficients C; and energy of the system are
found by treating all elements of matrices M; as varia-
tional parameters [61, 64, 65].

We use the model to quantify the ground-state bind-
ing energies of the correlated trion (tetron) and 6-body
hexciton as a function of electron density. The dielectric
parameters and effective masses are modeled by assum-
ing that ML-WSes is encapsulated by hexagonal boron-
nitride [62]. The conclusions we are about to make are
qualitatively similar if we were to use effective masses
and polarizability of ML-MoSes. Figure 2(a) shows the
energy of the correlated trion, calculated by using the
bare (dashed line) and screened (solid line) potentials to
describe the interaction between the CB hole and core
trion [62]. The dotted line is the binding energy of the
core trion, calculated with the restriction k > kp for its
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FIG. 2. (a) Tetron energy vs Fermi energy (Er =~ 5 meV amounts to electron density n = 10'? cm™2). The dotted line is
the contribution from the core trion (i.e., without BGR and the CB hole). (b) k-space density distributions of particles in the
tetron when Er = 19 meV. (c) Left: Binding energy of the satellite electron to the hexciton. Right: Overlap between VB hole
and satellite electron. (d) Inter-particle distances in the hexciton, showing average distances within the core trion (rpe & 7ee),
between the VB hole and top-valley satellite electron (rp:), and between the VB and CB holes (rxz).

electrons, but without BGR and the CB hole. The en-
ergy decay of the core trion is evidently faster than the
band-filling effect because it is harder for the VB hole
to bind with faster electrons (large k). The energy de-
cay of the correlated trion at large densities is evidently
weaker (solid and dashed lines), stemming from BGR of
the photoexcited electron and offset between the reduced
k-space of the other electron (k > kp) with increased k-
space of its CB hole (k < kp). Experiments show that
energy shifts of trion optical transitions are only mod-
erately changed when charge is added to the semicon-
ductor [43, 44, 66-68]. Comparing this behavior with
our calculations, we see that a bare potential overesti-
mates the binding energy of the CB hole at small charge
densities, whereas the use of screened potential under-
estimates this binding at large charge densities. Further
studies are needed to describe the correct screening effect
of the electron gas [62]. We continue analyzing results
calculated with the screened potential, bearing in mind
that the discussion is qualitatively similar when using the
bare potential. Figure 2(b) shows density distributions
of particles in the correlated trion. The distributions of
the electrons are not the same because the photoexcited
electron is affected by BGR (dashed black line) and the
other one by electron-hole exchange with its paired CB
hole (solid blue line) [61]. The band filling effect can be
seen from their vanishing distributions below the Fermi
energy. Conversely, the wavefunction of the CB hole van-
ishes above the Fermi energy (dotted red line). The VB
hole has no k-space restriction (solid green line).

Figure 2(c) shows the binding energy of the satellite
electron in the hexciton composite (i.e., the ionization
energy of the hexciton), calculated from the energy differ-
ence between 6- and 5-body composites. That the bind-
ing energy of the satellite electron grows with electron
density is consistent with measurements of ML-WSe,
[43, 44, 66, 67], wherein the increase in electron den-
sity results in energy redshift and amplification of the
dominant optical transition [60]. The redshift is analo-
gous to increased binding energy, and the amplification
to stronger overlap between the VB hole and photoex-

cited electron. As shown by Fig. 2(c), our calculations
corroborate this behavior. Figure 2(d) shows average dis-
tances between particles in the hexciton. The core trion
remains intact, as can be seen from the behavior of 7y,
& ree. The shrinkage of the CB holes when the charge
density increases can be seen from the average distance
between the VB and CB holes, r;:. The behavior of 7.z
and rzz is quantitatively similar [62]. The shrinkage of
the CB hole further attracts the satellite electron to the
core trion region, as can be seen from the behavior of 7.

Before concluding this work, we mention two topics
that merit further investigation. The first one deals with
the strong blueshift experienced by the exciton optical
transition when electrons (or holes) are added to the ML
[43, 44, 66-68]. To explain this behavior, we should in-
troduce scattered states to couple correlated trions and
excitons. Since energy levels of excitons reside in the
continuum of trion states with finite kinetic energies, the
result is a Fano-like resonance blueshift of the exciton
optical transition. The second topic that merits fur-
ther investigation deals with composite excitonic states
in multi-valley semiconductors such as Si or Ge. The rel-
atively large dielectric constant in bulk semiconductors
renders minuscule energy differences between the bind-
ing energies of composites with N and N + 1 particles.
Incorporating such materials in low dimensional systems
and encapsulating them in small-dielectric constant en-
vironments are ways to enhance the binding energy and
observe composites with relatively large V.

In conclusion, we have presented a theory of composite
excitonic states in doped semiconductors. This impor-
tant feat allows us to turn a rather difficult many-body
problem into a computationally manageable few-body
problem, which embodies the interaction between the
electron gas and excitonic complexes. Using this method,
we have calculated the tetron and hexciton states in
monolayer transition-metal dichalcogenides. Hopefully,
the theory will help to sort out the on-going debate on
the origin of optical transitions in doped semiconductors,
and will spark a search for composite excitonic states in
various multi-valley semiconductors.
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