

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Evidence of lattice deformation induced metal-insulator transition in math xmlns="http://www.w3.org/1998/Math/MathML">mrow>ms ub>mi>Ti/mi>mn>2/mn>/msub>msub>mi mathvariant="normal">O/mi>mn>3/mn>/msub>/mrow>/ math> K. Yoshimatsu, S. Miyazaki, N. Hasegawa, and H. Kumigashira

Phys. Rev. B **106**, L081110 — Published 10 August 2022 DOI: 10.1103/PhysRevB.106.L081110

1	Evidence of lattice deformation induced metal-insulator transition in Ti ₂ O ₃
2	
3	K. Yoshimatsu ^{1,2*} , S. Miyazaki ¹ , N. Hasegawa ¹ , and H. Kumigashira ^{1,2}
4	¹ Institute of Multidisciplinary Research for Advanced Materials, Tohoku University,
5	Sendai, Miyagi 980-8577, Japan
6	² Materials Research Center for Element Strategy (MCES), Tokyo Institute of Technology,
7	Yokohama 226-8503, Japan
8	
9	
10	Received date:
11	
12	
13	
14	*Author to whom correspondence should be addressed; E-mail:
15	kohei.yoshimatsu.c6@tohoku.ac.jp
16	

17 <u>Abstract</u>

18	We synthesized Ti_2O_3 epitaxial films with continuously varying ratios of the
19	<i>c</i> -axis to <i>a</i> -axis lattice constants (c/a ratios) on 4H-SiC (0001) substrates and
20	investigated their structural and electronic properties. Ti ₂ O ₃ films with a wide range of
21	c/a ratios were fabricated in a controllable fashion by changing the growth temperature.
22	As the c/a ratio at room temperature increased, the metal-insulator transition (MIT)
23	temperature systematically decreased and eventually the MIT disappeared. Detailed
24	analyses revealed that the MIT occurred at a critical c/a ratio of 2.68. The critical c/a
25	ratio for the occurrence of the MIT was also reproduced by density functional theory
26	calculations. These results provide evidence for the origin of the MIT in Ti_2O_3 . The
27	MIT is not a Mott transition induced by temperature, but a gradual
28	semimetal-to-semiconductor transition induced by lattice deformation.

INTRODUCTION

31	Corundum-type titanium sesquioxide (Ti ₂ O ₃) is a well-known $3d^{1}$
32	transition-metal oxide, and it exhibits a peculiar metal-insulator transition (MIT) [1].
33	Ti_2O_3 is a narrow-gap semiconductor with a gap of approximately 100 meV at room
34	temperature (RT) and shows a transition to semimetallic states at a temperature of
35	approximately 450 K that can occur over a broad temperature range of approximately
36	150 K [1-10]. The MIT is characterized by a concomitant drastic modification of the
37	ratio of the c-axis to a-axis lattice constants (c/a ratio) in the crystal, without changing
38	the crystal symmetry [5-8]. The MIT is unique to Ti ₂ O ₃ among most other
39	transition-metal oxide systems; thus, the MIT mechanism is discussed as one of the
40	longstanding issues in condensed matter physics [1–15].
41	The most relevant mechanism of the MIT is the overlap of the a_{1g} and e_{g}^{π}
42	bands due to the modulation of the c/a ratio (i.e., the Ti–Ti distance along the <i>c</i> -axis). In
43	trigonally distorted TiO ₆ octahedra, the t_{2g} levels split into a_{1g} and e_g^{π} levels. The a_{1g}
44	orbitals between the face-sharing TiO_6 octahedra along the <i>c</i> -axis are strongly

45 hybridized, thereby forming the a_{1g} and a_{1g}^* bands. The e_g^{π} orbitals that expand in the

46	<i>a–b</i> plane are less hybridized, thereby forming $e_g^{\pi} + e_g^{\pi*}$ bands, which lie between the
47	a_{1g} and a_{1g}^* bands. When the Ti–Ti distance along the <i>c</i> -axis is short, the $e_g^{\pi} + e_g^{\pi*}$
48	bands do not overlap with the a_{1g} bands [6, 7]. Accordingly, all Ti 3d electrons
49	completely occupy the a_{1g} bands; consequently, a narrow gap is formed at the Fermi
50	level (E_F) [3]. Although the above phenomenological model can qualitatively explain
51	the MIT mechanism, band-structure calculations indicated the importance of electron
52	correlation in the MIT of Ti_2O_3 [11, 16]. Thus, the origin of the MIT remains under
53	debate.
54	The most straightforward approach to address the origin of the MIT is to
55	investigate the relationship between the MIT and c/a ratio. Epitaxial thin films provide
56	one of the best systems for such analyses, because they offer high flexibility to
57	accommodate various crystal-lattice structures. Indeed, epitaxial Ti ₂ O ₃ films with two
58	
	different c/a ratios were successfully synthesized on a -Al ₂ O ₃ (0001) substrates at two
59	different <i>c/a</i> ratios were successfully synthesized on α -Al ₂ O ₃ (0001) substrates at two different growth temperatures (T_g) [14]. Although a significant lattice mismatch (8.3%)
59 60	different c/a ratios were successfully synthesized on α -Al ₂ O ₃ (0001) substrates at two different growth temperatures (T_g) [14]. Although a significant lattice mismatch (8.3%) prevented coherent growth of the films [13, 14, 17–19], Ti ₂ O ₃ films grown at high T_g

62	material. The other Ti ₂ O ₃ films grown at low T_g had a considerably large c/a ratio and
63	metallic conductivity over the entire measured temperature range [14]. Unfortunately,
64	owing to the formation of a secondary phase in Ti ₂ O ₃ films grown on α -Al ₂ O ₃ (0001)
65	substrates in a certain temperature range, the systematic control of the structural and
66	electronic properties by changing T_g has not yet been demonstrated [14, 17, 20]. In
67	particular, there is no information on how $T_{\rm MIT}$ changes as a function of the c/a ratio,
68	which has hindered the understanding of this material.
69	In this study, we synthesized Ti_2O_3 films with systematically varying c/a
70	ratios on 4H-SiC (0001) substrates [21]. Owing to the similarity in the local structures
71	of Ti_2O_3 and 4H-SiC on the (0001) planes [22] (see Fig. S1 in Supplemental Material
72	[23]), the corundum-type Ti_2O_3 phase was stabilized over a wide T_g range of
73	500–1050°C. In the obtained Ti ₂ O ₃ films, the c/a ratio at RT ($c_{\text{RT}}/a_{\text{RT}}$) was controllable
74	from 2.672 to 2.821 by changing $T_{\rm g}$. As $c_{\rm RT}/a_{\rm RT}$ increased, $T_{\rm MIT}$ systematically decreased,
75	and finally, MIT disappeared at all measurement temperatures. By considering the
76	thermal lattice expansion of Ti ₂ O ₃ , we revealed that the MIT occurred at a critical c/a
77	ratio of 2.68 in both bulk and films. The critical c/a ratio was also reproduced using

calculations based on density functional theory (DFT). These results indicate that the
 MIT is not a Mott transition induced by temperature, but a gradual
 semimetal-to-semiconductor transition induced by lattice deformation in Ti₂O₃.
 EXPERIMENTAL SECTION

83 Ti₂O₃ films were grown on 4H-SiC (0001) substrates using pulsed-laser 84 deposition (PLD) [13, 14, 17, 19, 20, 24]. A polycrystalline TiO ceramic tablet (3N 85 purity, Toshima Co., Ltd.) was used as the PLD target. A Nd:Y₃Al₅O₁₂ laser with 86 fourth-harmonic generation ($\lambda = 266$ nm) was used to ablate the target. The laser frequency and fluence were set to 10 Hz and approximately 0.5 J/cm², respectively, 87 88 where the deposition rate of the Ti₂O₃ films was set to approximately 100 nm/h. The 89 film thickness was fixed at approximately 100 nm, as confirmed using a stylus-type 90 profiler. A constant substrate temperature was set in the range of 500-1050°C. Oxygen 91 gas (6N purity) was fed into the PLD chamber to maintain an oxygen partial pressure of 5.0×10^{-7} Torr. The supply of O₂ gas was immediately stopped after deposition, and the 92

93 substrate was quenched. Both procedures prevent additional oxidation during the
94 cooling of Ti₂O₃ films [13–15, 20, 25].

95	The crystal structures of the films were characterized by Raman spectroscopy
96	and X-ray diffraction (XRD). XRD measurements were performed at RT using a Rigaku
97	SmartLab 9 kW diffractometer with Cu K α 1 radiation. The formation of corundum-type
98	Ti_2O_3 films was confirmed using Raman spectroscopy [24, 26–32] (see Fig. S2 in
99	Supplemental Material [23]). The out-of-plane (0001) orientation of the Ti ₂ O ₃ films was
100	revealed by out-of-plane XRD measurements (see Fig. S3 in Supplemental Material
101	[23]). The temperature dependence of the resistivity was measured in a standard
102	four-terminal geometry over the temperature range of 20 to 650 K.
103	DFT calculations were performed using Quantum ESPRESSO simulation
104	software [33, 34]. A rhombohedral primitive cell was chosen for the calculations to
105	reduce computational cost. Ultrasoft pseudopotentials were used, wherein Ti 3s, 3p, 3d,
106	and $4s$ and O $2s$ and $2p$ atomic levels were included as valence-band states. The
107	Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) functional
108	was used for the exchange-correlation potentials [35]. The kinetic energy and

109 charge-density cut-offs were set to 60 and 600 Ry, respectively. The Ti and O positions 110 were optimized by a structural relaxation routine implementing the Monkhorst-Pack 111 scheme with a $6 \times 6 \times 6$ k-mesh in self-consistent calculations [36]. Accuracy of the total energy was less than 10^{-10} Ry at the end of the self-consistent calculations. The 112 113 density of states (DOS) of the valence-band states was integrated using the tetrahedron 114 method within a denser $12 \times 12 \times 12$ k-mesh in non-self-consistent calculations [37]. 115 The details of the DFT calculations were described elsewhere [14,15]. 116 117 **RESULTS & DISCUSSION** 118 Figure 1 shows reciprocal space maps (RSMs) of the Ti₂O₃ films grown at various T_g values, demonstrating that the lattice constants of the Ti₂O₃ films were 119 controllable by varying T_g . The 4H-SiC 10–19 and Ti₂O₃ 11–2<u>12</u> reciprocal points were 120 121 simultaneously observed in the RSMs. The Ti_2O_3 11–212 reciprocal points gradually shifted toward the small Q_z (large Q_x) direction with decreasing T_g , indicating 122 123 elongation of c (shortening of a) in the films.

124	The <i>a</i> and <i>c</i> values of the Ti_2O_3 films obtained from the RSMs are
125	summarized in Fig. 2(a). As shown in Fig. 2(a), c increased monotonically from 13.66
126	to 14.03 Å as T_g decreased from 1050 to 500°C. In contrast, <i>a</i> showed the opposite trend
127	to that of c; a decreased monotonically as T_g decreased. The a values were 5.102 and
128	4.986 Å for films grown at 1050 and 500°C, respectively. In comparison to bulk Ti_2O_3 ,
129	the Ti ₂ O ₃ films had larger c and smaller a, regardless of T_g . Note that the trends in the
130	lattice deformations by changing T_g are consistent with those of a previous report,
131	wherein the Ti ₂ O ₃ films were grown on α -Al ₂ O ₃ (0001) substrates [14].
132	The resulting $c_{\rm RT}/a_{\rm RT}$ ratios are plotted in Fig. 2(b) as a function of $T_{\rm g}$. As
133	expected from Fig. 2(a), the $c_{\rm RT}/a_{\rm RT}$ ratio increased monotonically with decreasing $T_{\rm g}$,
134	suggesting linear controllability of the c/a ratio in the Ti ₂ O ₃ films grown on 4H-SiC
134 135	suggesting linear controllability of the c/a ratio in the Ti ₂ O ₃ films grown on 4H-SiC (0001) substrates. Note that the increment of the $c_{\text{RT}}/a_{\text{RT}}$ ratio is probably attributed to
134 135 136	suggesting linear controllability of the c/a ratio in the Ti ₂ O ₃ films grown on 4H-SiC (0001) substrates. Note that the increment of the $c_{\text{RT}}/a_{\text{RT}}$ ratio is probably attributed to the small domain size of the films grown on low T_{g} [14] from an analogy to a previous
 134 135 136 137 	suggesting linear controllability of the c/a ratio in the Ti ₂ O ₃ films grown on 4H-SiC (0001) substrates. Note that the increment of the c_{RT}/a_{RT} ratio is probably attributed to the small domain size of the films grown on low T_g [14] from an analogy to a previous report on Ti ₂ O ₃ nanoparticles [38] (also see Supplemental Material [23]). The minimum
 134 135 136 137 138 	suggesting linear controllability of the c/a ratio in the Ti ₂ O ₃ films grown on 4H-SiC (0001) substrates. Note that the increment of the $c_{\text{RT}}/a_{\text{RT}}$ ratio is probably attributed to the small domain size of the films grown on low T_{g} [14] from an analogy to a previous report on Ti ₂ O ₃ nanoparticles [38] (also see Supplemental Material [23]). The minimum $c_{\text{RT}}/a_{\text{RT}}$ ratio was 2.672 at a T_{g} of 1000°C, which was slightly larger than the $c_{\text{RT}}/a_{\text{RT}}$ ratio

140 $c_{\text{RT}}/a_{\text{RT}}$ ratio of 2.821 was observed at the lowest T_g (500°C). This $c_{\text{RT}}/a_{\text{RT}}$ ratio was 141 much larger than that of bulk Ti₂O₃ and comparable to that of V₂O₃ ($c_{\text{RT}}/a_{\text{RT}} = 2.828$, 142 where a = 4.9717 Å and c = 14.005 Å) [39]. Consequently, the $c_{\text{RT}}/a_{\text{RT}}$ ratio was 143 controllable in the range of 2.672–2.821 owing to the similarity in the local structures of 144 Ti₂O₃ and 4H-SiC on the (0001) planes. 145 Having confirmed that the $c_{\text{RT}}/a_{\text{RT}}$ ratio of the Ti₂O₃ films was systematically

146 controlled by varying T_g , we next investigated the transport properties of the Ti₂O₃ films. Figure 3 shows the temperature dependence of the resistivity (ρ -T curves) of the Ti₂O₃ 147 148 films grown at various $T_{\rm g}$, namely, with different $c_{\rm RT}/a_{\rm RT}$ ratios. With decreasing $T_{\rm g}$ 149 (increasing $c_{\rm RT}/a_{\rm RT}$ ratio), a significant suppression of the MIT is clearly observed. For 150 the Ti₂O₃ film grown at 1050°C, the ρ -T curve showed a significant drop in resistivity, 151 starting at approximately 350 K and dropping by an order of magnitude over a wide 152 temperature range of approximately 150 K. This is similar to the MIT behavior in bulk 153 Ti_2O_3 [1–4, 7, 9, 10]. Therefore, it is logical to define the resistivity change as the 154 characteristic MIT of Ti₂O₃ although the observed temperature was much lower (by 155 approximately 100 K) than the $T_{\rm MIT}$ of bulk Ti₂O₃ (~450 K). As $T_{\rm g}$ decreased, the $T_{\rm MIT}$

156 became lower with a smaller resistivity change and eventually decreased to ~150 K for 157 the films grown at 700°C. Meanwhile, for the films grown below 700°C, a clear MIT was 158 not observed; the ρ -*T* curves of the films were almost flat over the entire measured 159 temperature range.

160 One might suspect that the lowering of T_{MIT} and disappearance of the MIT are 161 due to extrinsic effects, such as oxygen non-stoichiometry at different T_{g} . However, this 162 is unlikely to be the case for Ti₂O₃ for the following two reasons. First, the 163 corundum-type Ti₂O₃ phase is known to be unstable to oxygen non-stoichiometry, and 164 less than 1% oxygen non-stoichiometry compared to Ti atoms is tolerated in Ti₂O₃ [40]. 165 Second, even if the introduced excess oxygen in Ti₂O₃ became an acceptor, the small 166 number of hole carriers would hardly affect T_{MIT} , which has been demonstrated by the 167 previous results for bulk $(Ti_{1-x}V_x)_2O_3$ [4, 5, 10]; T_{MIT} of $(Ti_{1-x}V_x)_2O_3$ remains almost 168 unchanged (approximately 450 K) irrespective of substitutional V doping, which acts as 169 excess oxygen, although the resistivity in low-temperature insulating phases is strongly 170 suppressed [4, 10]. Therefore, the lowering of $T_{\rm MIT}$ and resultant disappearance of the

171 MIT observed from the ρ -*T* curves for the Ti₂O₃ films were attributed to the change in 172 the *c/a* ratios.

emperatures.
re at which
conductivity
the metallic
ne electronic
l zero points
Fig. S5 in
tions of the
of 433 K for
50 K [1–10],
10wn in Fig.
lms linearly

186 decreased with a slope of -3×10^3 K/(*c/a*). Surprisingly, the bulk data ($T_{\text{MIT}} = 433$ K,

187	$c_{\rm RT}/a_{\rm RT}$ = 2.639) followed this extrapolated straight line, suggesting that the MIT in
188	Ti ₂ O ₃ was mainly dominated by the c/a ratio. In addition, the $c_{\text{RT}}/a_{\text{RT}}$ ratio at $T_{\text{MIT}} = 0$ K
189	was estimated to be 2.77, which is consistent with the experimental result in Fig. 3,
190	where the MIT behavior disappears (T_{MIT} could not be determined from the ρ -T curves)
191	for the films grown at 650, 600, and 500°C (with $c_{\text{RT}}/a_{\text{RT}}$ ratios of 2.77, 2.79, and 2.82,
192	respectively). The previous results for Ti ₂ O ₃ films are also on the straight line [14],
193	suggesting the universality of the relationship between the T_{MIT} and c/a ratio in Ti ₂ O ₃ .
194	The $T_{\rm MC}$ for $c_{\rm RT}/a_{\rm RT} \leq 2.77$ also had a similar linear relationship with almost
195	the same slope of -3×10^3 K/(c/a). The coincidence between the $T_{\rm MIT}$ and $T_{\rm MC}$
196	behaviors suggests that the $T_{\rm MC}$ for $c_{\rm RT}/a_{\rm RT} \leq 2.77$ reflects an identical phenomenon to
197	the $T_{\rm MIT}$; the $T_{\rm MC}$ may not be the temperature of another transition but the onset
198	temperature of the broad MIT in Ti ₂ O ₃ . In contrast to the behavior of T_{MIT} , T_{MC} deviated
199	from the trend for $c_{\text{RT}}/a_{\text{RT}} \ge 2.77$. Because the MIT is absent for films with $c_{\text{RT}}/a_{\text{RT}} \ge$
200	2.77 (for relatively low T_g values of 650, 600, and 500°C), the deviation may originate
201	from extrinsic effects such as localization and/or scattering of conductive carriers at
202	defects due to the poor crystallinity of the films grown at low T_g [41, 42].

203	Because the crystal deformation in Ti ₂ O ₃ is also influenced by temperature,
204	the effect of thermal lattice expansion should be considered for the phase transition
205	phenomena occurring at different temperatures. Assuming that the Ti ₂ O ₃ films show the
206	same thermal lattice expansion as the bulk, we replotted the T_{MIT} and T_{MC} in Fig. 4(b) as
207	a function of the c/a ratios that were calibrated using a thermal-expansion coefficient of
208	3.3×10^{-4} (c/a)/K for bulk Ti ₂ O ₃ (see Fig. S6 in Supplemental Material [23]) [5, 6]. It is
209	clear from the plot that the MIT in Ti_2O_3 occurs at a c/a ratio of 2.68 because the
210	coefficient is nearly orthogonal to the slope of T_{MIT} vs. $c_{\text{RT}}/a_{\text{RT}}$ ratio $[-3 \times 10^3 \text{ K}/(c/a)]$.
211	These results indicate that the MIT phenomena in $\mathrm{Ti}_2\mathrm{O}_3$ are governed mainly by a
212	critical c/a ratio of 2.68. Therefore, the temperature-induced insulator-to-metal
213	transition in Ti ₂ O ₃ occurs when the c/a ratio exceeds this critical value, owing to the
214	thermal expansion of its crystal lattice.

DFT calculations also supported the modulation of the electric properties by the c/a ratio of Ti₂O₃. Figure 5(a) shows the calculated energy gap of Ti₂O₃ with various c/a ratios in the range of 2.639 to 2.82 (corresponding to the $c_{\text{RT}}/a_{\text{RT}}$ ratios from the bulk to the film grown at 500°C). In the DFT calculation, the on-site Coulomb interaction 219 parameter U was set to 2.2 eV to reproduce the insulating phase of bulk Ti_2O_3 , which 220 has an energy gap of approximately 100 meV at a c/a ratio of 2.639 [5]. As shown in 221 Fig. 5(a), an energy gap was formed at c/a = 2.639 and its size systematically decreased 222 with increasing c/a ratio. At c/a = 2.68, the energy gap is closed, indicating that this is a 223 critical c/a ratio. Subsequently, the metallic states remain stable for $c/a \le 2.82$. These 224 results indicate the occurrence of lattice-deformation-driven MIT in Ti₂O₃ at a critical 225 c/a ratio. Furthermore, the excellent agreement of the critical c/a ratio between the 226 experiments and calculations suggests the validity of the present DFT + U calculation 227 for describing the electronic structure of Ti₂O₃. 228 To observe the change in electronic structures across the MIT in more detail, 229 the typical DOS near E_F of insulating Ti₂O₃ (c/a = 2.66) and metallic Ti₂O₃ (c/a = 2.70) 230 are shown in Figs. 5(b) and (c), respectively. The overall DOS shapes were similar for 231 the insulating and metallic Ti₂O₃. However, a closer inspection of $E_{\rm F}$ revealed that the small energy gap formed in the insulating Ti₂O₃ was closed by the slight overlap of the 232

- 233 Ti 3d states below and above E_F in metallic Ti₂O₃, which is schematically shown in the
- 234 inset of Fig. 5(a). These results demonstrate that the MIT is not a Mott transition

induced by temperature but a gradual semimetal-to-semiconductor transition induced bylattice deformation.

237 The present study provides clear evidence that the MIT of Ti₂O₃ originates 238 from lattice deformation, although it should be noted that the present study does not rule 239 out the importance of dynamic electronic interactions for the MIT in Ti_2O_3 [16]. We 240 used epitaxial films to investigate the relationship between the MIT and c/a ratio. An 241 alternative approach is the temperature- and pressure-dependent investigation of the 242 structural and electronic properties of a single bulk specimen under high uniaxial 243 pressure. Such a high-pressure study of bulk materials would more precisely reveal the 244 essential correlation of the MIT with the Ti–Ti distances instead of the c/a ratio. The 245 detailed structural parameters for the Ti-Ti distances along the c-axis and in the a-b plane, which are directly correlated to the a_{1g} and e_{g}^{π} bands, would provide useful 246 247 information on the contribution of dynamic electronic interactions to the MIT and pave 248 the way for more realistic calculations incorporating intersite electron correlations. 249

CONCLUSION

252	In conclusion, we synthesized corundum-type Ti_2O_3 films on 4H-SiC (0001)
253	substrates and investigated their structural and electronic properties. Films with wide
254	$c_{\rm RT}/a_{\rm RT}$ ratios ranging from 2.672 to 2.821 were achieved in a controllable fashion by
255	changing $T_{\rm g}$. MIT was observed for films with $c_{\rm RT}/a_{\rm RT} \leq 2.75$, whereas MIT was absent
256	for those with $c_{\rm RT}/a_{\rm RT} \ge 2.77$. We found that the $T_{\rm MIT}$ was proportional to the $c_{\rm RT}/a_{\rm RT}$
257	ratio, and the MIT occurred at a critical value of 2.68 in both the Ti_2O_3 bulk and films.
258	Systematic DFT + U calculations with reasonable parameters confirmed that the MIT
259	occurred at a critical c/a ratio of 2.68. The good agreement between the experimental
260	and simulated MIT behaviors based on the c/a ratio indicated that the MIT is not a Mott
261	transition induced by temperature, but a gradual semimetal-to-semiconductor transition
262	induced by lattice deformation.
263	

264

ACKNOWLEDGEMENTS

We thank R. Kumashiro and K. Saitoh in the common equipment room ofAdvanced Institute for Materials Research at Tohoku University for their assistance

267	with Raman spectroscopy, XRD, and film-thickness measurements. This work was
268	partly supported by the MEXT Elements Strategy Initiative to Form Core Research
269	Center (JPMXP0112101001), Grant-in-Aid for Scientific Research (Nos. 22H01947 and
270	22H01948) from the Japan Society for the Promotion of Science Foundation, CREST
271	(JPMJCR18T1) from the Japan Science and Technology Agency (JST), Asahi Glass
272	Foundation, Nagamori Foundation, Research Foundation for the Electrotechnology of
273	Chubu, Toyota Riken Scholar Program, and Iketani Science and Technology Foundation.
274	N.H. acknowledges the financial support from the Chemistry Personnel Cultivation
275	Program of the Japan Chemical Industry Association. The authors would also like to

276 thank Editage for English language editing.

2	7	7
7	1	1

REFERENCES

- 278 [1] F. J. Morin, Phys. Rev. Lett. **3**, 34 (1959). DOI: <u>10.1103/PhysRevLett.3.34</u>.
- 279 [2] J. M. Honig, Rev. Mod. Phys. 40, 748 (1968). DOI: <u>10.1103/RevModPhys.40.748</u>.
- 280 [3] J. M. Honig and T. B. Reed, Phys. Rev. 174, 1020 (1968). DOI:
- 281 <u>10.1103/PhysRev.174.1020.</u>
- 282 [4] M. Uchida, J. Fujioka, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 101, 066406 (2008).
- 283 <u>DOI: 10.1103/PhysRevLett.101.066406.</u>
- [5] J. J. Capponi, M. Marezio, J. Dumas, and C. Schlenker, Solid State Commun. 20,
- 285 893 (1976). <u>DOI: 10.1016/0038-1098(76)91299-0.</u>
- 286 [6] C. N. R. Rao, R. E. Loehman, and J. M. Honig, Phys. Lett. 27A, 271 (1968). DOI:
- 287 <u>10.1016/0375-9601(68)90696-8.</u>
- 288 [7] L. L. Van Zandt, J. M. Honig, and J. B. Goodenough, J. Appl. Phys. **39**, 594 (1968).
- 289 <u>DOI: 10.1063/1.2163536</u>.
- 290 [8] H. J. Zeiger, Phys. Rev. B 11, 5132 (1975). DOI: 10.1103/PhysRevB.11.5132.
- 291 [9] C. F. Chang, T. C. Koethe, Z. Hu, J. Weinen, S. Agrestini, L. Zhao, J. Gegner, H. Ott,
- 292 G. Panaccione, H. Wu, M. W. Haverkort, H. Roth, A. C. Komarek, F. Offi, G. Monaco,

- 293 Y. -F. Liao, K. -D. Tsuei, H. -J. Lin, C. T. Chen, A. Tanaka, and L. H. Tjeng, Phys. Rev.
- 294 X **8**, 021004 (2018). DOI: <u>10.1103/PhysRevX.8.021004</u>.
- [10] G. V. Chandrashekhar, Q. Won Choi, J. Moyo, and J. M. Honig, Mat. Res. Bull. 5,
- 296 999 (1970). <u>DOI: 10.1016/0025-5408(70)90048-6.</u>
- 297 [11] L. F. Mattheiss, J. Phys.: Condens. Mater 8, 5987 (1996). DOI:
- 298 <u>10.1088/0953-8984/8/33/007.</u>
- 299 [12] Y. Guo, S. J. Clark, and J. Robertson, J. Phys.: Condens. Mater 24, 325504 (2012).
- 300 DOI: 10.1088/0953-8984/24/32/325504.
- 301 [13] K. Yoshimatsu, H. Kurokawa, K. Horiba, H. Kumigashira, and A. Ohtomo, APL
- 302 Mater. **6**, 101101 (2018). DOI: <u>10.1063/1.5050823</u>.
- 303 [14] K. Yoshimatsu, N. Hasegawa, Y. Nambu, Y. Ishii, Y. Wakabayashi, and H.
- 304 Kumigashira, Sci. Rep. 10, 22109 (2020). DOI: <u>10.1038/s41598-020-79182-5.</u>
- 305 [15] N. Hasegawa, K. Yoshimatsu, D. Shiga, T. Kanda, S. Miyazaki, M. Kitamura, K.
- 306 Horiba, and H. Kumigashira, "Electronic band structure of Ti₂O₃ thin films studied by
- angle-resolved photoemission spectroscopy" Phys. Rev. B 105, 235137 (2022). DOI:
- 308 <u>10.1103/PhysRevB.105.235137.</u>

- 309 [16] A. I. Poteryaev, A. I. Lichtenstein, and G. Kotliar, Phys. Rev. Lett. 93, 086401
- 310 (2004). DOI: <u>10.1103/PhysRevLett.93.086401.</u>
- 311 [17] Y. Li, Y. Weng, J. Zhang, J. Ding, Y. Zhu, Q. Wang, Y. Yang, Y. Cheng, Q. Zhang,
- 312 P. Li, J. Lin, W. Chen, Y. Han, X. Zhang, L. Chen, X. Chen, J. Chen, S. Dong, X. Chen,
- and T. Wu, NPG Asia Mater **10**, 522 (2018). DOI: <u>10.1038/s41427-018-0050-5</u>.
- 314 [18] P. V. Shvets, D. Caffrey, K. Fleischer, I. Shvets, K. O'Neill, G. S. Duesberg, A. N.
- 315 Vinichenko, K. Y. Maksimova, and A. Y. Goikhman, Thin Solid Films 694, 137642
- 316 (2020). DOI: <u>10.1016/j.tsf.2019.137642</u>.
- 317 [19] C. Zhang, F. Hao, G. Gao, X. Liu, C. Ma, Y. Lin, Y. Lin, and X. Li, NPJ Quantum
- 318 Mater. **2**, 2 (2017). DOI: <u>10.1038/s41535-016-0006-3</u>.
- 319 [20] K. Yoshimatsu, O. Sakata, and A. Ohtomo, Sci. Rep. 7, 12544 (2017). DOI:
- 320 <u>10.1038/s41598-017-12815-4.</u>
- 321 [21] J. B. Casady and R. W. Johnson, Solid-State Electron. 39, 1409 (1996). DOI:
- 322 <u>10.1016/0038-1101(96)00045-7.</u>
- 323 [22] K. Momma and F. Izumi, J. Appl. Cryst. 44, 1272 (2011). DOI:
 324 <u>10.1107/S0021889811038970</u>.
- 325 [23] See Supplemental Material at

326 http://link.aps.org/supplemental/XXXXXXXXXXXX for schematic surface structures

- 327 of 4H-SiC and Ti₂O₃; out-of-plane XRD patterns, Raman spectra, XRD φ -scan, and first
- derivative of the resistivity curves of the films; and temperature dependence of the c/a
- 329 ratios for bulk Ti_2O_3 .
- 330 [24] K. Yoshimatsu and H. Kumigashira, Cryst. Growth Des. 22, 703 (2022). DOI:
- 331 <u>10.1021/acs.cgd.1c01214.</u>
- 332 [25] H. Kurokawa, K. Yoshimatsu, O. Sakata, and A. Ohtomo, J. Appl. Phys. 122,
- 333 055302 (2017). DOI: <u>10.1063/1.4997443.</u>
- 334 [26] A. Mooradian and P. M. Raccah, Phys. Rev. B 3, 4253 (1971). DOI:
- 335 <u>10.1103/PhysRevB.3.4253</u>.
- 336 [27] S. H. Shin, R. L. Aggarwal, B. Lax, and J. M. Honig, Phys. Rev. B 9, 583 (1974).
- 337 DOI: <u>10.1103/PhysRevB.9.583.</u>
- 338 [28] S. H. Shin, F. H. Pollak, T. Halpern, and P. M. Raccah, Solid State Commun. 16,
- 339 687 (1975). DOI: <u>10.1016/0038-1098(75)90453-6.</u>
- 340 [29] S. P. S. Porto and R. S. Krishnan, J. Chem. Phys. 47, 1009 (1967). DOI:
- 341 <u>10.1063/1.1711980.</u>

- 342 [30] X. Li, A. L. Zhu, W. Qu, H. Wang, R. Hui, L. Zhang, and J. Zhang, Electrochim.
- 343 Acta **55**, 5891 (2010). DOI: <u>10.1016/j.electacta.2010.05.041.</u>
- 344 [31] Y. Wu, Q. Zhang, X. Wu, S. Qin, and J. Liu, J. Solid State Chem. **192**, 356 (2012).
- 345 DOI: <u>10.1016/j.jssc.2012.04.036.</u>
- 346 [32] A. Ould-Hamouda, H. Tokoro, S.-I. Ohkoshi, and E. Freysz, Chem. Phys. Lett. 608,
- 347 106 (2014). DOI: <u>10.1016/j.cplett.2014.05.073.</u>
- 348 [33] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
- 349 G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., J. Phys.: Condens. Matter 21, 395502
- 350 (2009). DOI: <u>10.1088/0953-8984/21/39/395502</u>.
- 351 [34] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R.
- 352 Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, et al., J. Phys.: Condens. Matter 29,
- 353 465901 (2017). DOI: <u>10.1088/1361-648X/aa8f79</u>.
- 354 [35] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). DOI:
- 355 <u>10.1103/PhysRevLett.77.3865</u>.
- 356 [36] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). DOI:
- 357 <u>10.1103/PhysRevB.13.5188</u>.

- 358 [37] P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994). DOI:
- 359 <u>10.1103/PhysRevB.49.16223.</u>
- 360 [38] S. Tsujimoto, Y. Matsushita, S. Yu, K. Yamaura, and T. Uchikoshi, J. Asian Ceram.
- 361 Soc. **3**, 325 (2015). DOI: <u>10.1016/j.jascer.2015.06.007</u>
- 362 [39] D. B. McWhan, T. M. Rice, and J. P. Remeika, Phys. Rev. Lett. 23, 1384 (1969).
- 363 <u>DOI: 10.1103/PhysRevLett.23.1384.</u>
- 364 [40] S. Andersson, B. Collén, U. Kuylenstierna, and A. Magnéli, Acta Chem. Scand. 11,
- 365 1641 (1957). DOI: <u>10.3891/acta.chem.scand.11-1641.</u>
- 366 [41] P. W. Anderson, Phys. Rev. **109**, 1492 (1958). DOI: <u>10.1103/PhysRev.109.1492</u>.
- 367 [42] A. Möbius, Crit. Rev. Solid State Mater. Sci. 44, 1 (2019). DOI:
- 368 10.1080/10408436.2017.1370575.

Figure 1. Yoshimatsu et al.

Figure 2. K. Yoshimatsu et al.

Figure 4. K. Yoshimatsu et al.

404	FIGURE CAPTIONS
405	FIG. 1
406	Reciprocal space maps around 4H-SiC 10–19 reciprocal points for Ti ₂ O ₃ films grown at
407	(a) 1050°C, (b) 1000°C, (c) 800°C, (d) 750°C, (e) 700°C, (f) 650°C, (g) 600°C, and (h)
408	500°C. Ti ₂ O ₃ 11–2 <u>12</u> reciprocal points are indicated by the red markers.
409	
410	FIG. 2
411	(a) <i>a</i> -axis and <i>c</i> -axis lattice constants and (b) c/a ratios at RT (c_{RT}/a_{RT}) of the Ti ₂ O ₃ films
412	prepared at growth temperatures (T_g) of 500–1050°C. Solid lines indicate the values for
413	bulk Ti ₂ O ₃ [5, 6]. The dashed lines are guides to the eye.
414	
415	FIG. 3
416	Temperature dependence of resistivity (ρ -T curve) for the Ti ₂ O ₃ films grown at
417	temperatures of 500–1050°C. The ρ –T curve for bulk Ti ₂ O ₃ is also shown as a reference
418	[4]. Filled and open triangles indicate T_{MIT} and T_{MC} that were determined from the first
419	derivative of the ρ -T curves, respectively. (See Fig. S5 in Supplemental Material [23]).

420 FIG. 4

421	(a) Plots of $T_{\rm MIT}$ and $T_{\rm MC}$ as a function of $c_{\rm RT}/a_{\rm RT}$. The dashed lines are guides for the
422	eye. (b) Plots of T_{MIT} and T_{MC} as a function of the c/a ratios that were calibrated by the
423	temperature-induced lattice deformation. (See Fig. S6 in Supplemental Material [23]).
424	Dotted diagonal lines indicate the coordinate for the same c/a ratio. Red open squares
425	indicate the data of the Ti ₂ O ₃ film grown on α -Al ₂ O ₃ (0001) substrates ($c_{\text{RT}}/a_{\text{RT}} = 2.696$
426	and $T_{MIT} = 206$ K) [14]. Blue open circles indicate T_{MC} of the films in which the MIT is
427	absent.
428	
429	FIG. 5
430	(a) Energy gap at the Fermi level (E_F) as a function of the c/a ratios. The energy gap
431	was obtained from DFT calculations with $U = 2.2$ eV [11, 14, 15]. The inset shows

- 432 schematic band diagrams of insulating and metallic Ti_2O_3 near E_F . Calculated densities
- 433 of states near E_F with c/a ratios of (b) 2.66 and (c) 2.70. Insets of (b) and (c) show the
- 434 corresponding magnifications near $E_{\rm F}$.